首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Portions of two mitochondrial genes (12S and 16S ribosomal RNA) were sequenced to determine the phylogenetic relationships among the major clades of snakes. Thirty-six species, representing nearly all extant families, were examined and compared with sequences of a tuatara and three families of lizards. Snakes were found to constitute a monophyletic group (confidence probability [CP] = 96%), with the scolecophidians (blind snakes) as the most basal lineages (CP = 99%). This finding supports the hypothesis that snakes underwent a subterranean period early in their evolution. Caenophidians (advanced snakes), excluding Acrochordus, were found to be monophyletic (CP = 99%). Among the caenophidians, viperids were monophyletic (CP = 98%) and formed the sister group to the elapids plus colubrids (CP = 94%). Within the viperids, two monophyletic groups were identified: true vipers (CP = 98%) and pit vipers plus Azemiops (CP = 99%). The elapids plus Atractaspis formed a monophyletic clade (CP = 99%). Within the paraphyletic Colubridae, the largely Holarctic Colubrinae was found to be a monophyletic assemblage (CP = 98%), and the Xenodontinae was found to be polyphyletic (CP = 91%). Monophyly of the henophidians (primitive snakes) was neither supported nor rejected because of the weak resolution of relationships among those taxa, except for the clustering of Calabaria with a uropeltid, Rhinophis (CP = 94%).   相似文献   

2.
The phylogenetic relationships of microhylid frogs are poorly understood. The first molecular phylogeny for continental African microhylids is presented, including representatives of all subfamilies, six of the eight genera, and the enigmatic hemisotid Hemisus. Mitochondrial 12S and 16S rRNA sequence data were analysed using parsimony, likelihood and Bayesian methods. Analyses of the data are consistent with the monophyly of all sampled subfamilies and genera. Hemisus does not nest within either brevicipitines or non-brevicipitines. It is possibly the sister group to brevicipitines, in which case brevicipitines might not be microhylids. Phrynomantis and Hoplophryne potentially group with non-African, non-brevicipitine microhylids, in agreement with recent morphological and molecular data. Within brevicipitines, Breviceps is recovered as the sister group to a clade of Callulina+Spelaeophryne+Probreviceps. The relationships among the genera within this latter clade are unclear, being sensitive to the method of analysis. Optimal trees suggest the Probreviceps macrodactylus subspecies complex might be paraphyletic with respect to P. uluguruensis, corroborating preliminary morphological studies indicating that P. m. rungwensis may be a distinct species. P. m. loveridgei may be paraphyletic with respect to P. m. macrodactylus, though this is not strongly supported. Some biogeographic hypotheses are examined in light of these findings.  相似文献   

3.
The conifers, which traditionally comprise seven families, are the largest and most diverse group of living gymnosperms. Efforts to systematize this diversity without a cladistic phylogenetic framework have often resulted in the segregation of certain genera and/or families from the conifers. In order to understand better the relationships between the families, we performed cladistic analyses using a new data set obtained from 28S rRNA gene sequences. These analyses strongly support the monophyly of conifers including Taxaceae. Within the conifers, the Pinaceae are the first to diverge, being the sister group of the rest of conifers. A recently discovered Australian genus Wollemia is confirmed to be a natural member of the Araucariaceae. The Taxaceae are nested within the conifer clade, being the most closely related to the Cephalotaxaceae. The Taxodiaceae and Cupressaceae together form a monophyletic group. Sciadopitys should be considered as constituting a separate family. These relationships are consistent with previous cladistic analyses of morphological and molecular (18S rRNA, rbcL) data. Furthermore, the well-supported clade linking the Araucariaceae and Podocarpaceae, which has not been previously reported, suggests that the common ancestor of these families, both having the greatest diversity in the Southern Hemisphere, inhabited Gondwanaland.  相似文献   

4.
5.
The phylogenetic relationships among threePseudorasbora fishes (Cyprinidae, Sarcocheiichthyinae) occurring in Japan (P. parva, P. pumila pumila andP. pumila subsp. sensu Nakamura [1963]) were inferred from nucleotide sequences of the mitochondrial 16S rRNA gene. The sequences. of 1240 bp, were determined and compared for 22 specimens from 2–8 populations for each taxon, with a singlePungtungia herzi specimen as an outgroup. A total of 171 sites (13.8%) were variable among the specimens, but only 0–2 sites within each population. The phylogenetic relationships estimated by neighbor-joining, maximum-parsimony and maximum-likelihood methods confirmed a sister relationship between the twoP. pumila subspecies, with a high level of confidence. However, their genetic distinction from each other (4.1±0.4SD % sequence difference on average) was at a level similar to that between them andP. parva (5.9±0.5%). The geographic distribution of the twoP. pumila subspecies, which are separated by the Fossa Magna region, suggests that the genetic divergence of the two subspecies originated from a vicariant process separating the freshwater ichthyofaunas of eastern and western Honshu.Pseudorasbora parva populations were divided into two genetic groups (1.8±0.2% sequence difference), one group comprising continental and part of the Japanese populations, and the other the remaining Japanese populations. This suggests that at least two genetically divergent lineages had been originally distributed in Japan, but a strong possibility remains that the present situation has resulted from artificial transplantation.  相似文献   

6.
Abstract The DNA of mouse adenovirus strain K87 (MAd-2) was cloned and mapped with restriction endonucleases Bgl II, Cla I, Eco RI, Hin dII and Sph I. Large differences were found the MAd-2 and MAd-1 (strain FL) DNA molecules in terms of number and location of restriction sites. The MAd-2 genome also appeared as larger size than in the MAd-1 genome (34.72 kb vs. 30.14 kb). Our results confirm the existence of two distinct adenovirus species in the mouse. Hybridization experiments, on the other hand, indicate that both MAd-1 and MAd-2 are genetically related to human adenovirus type 2 (HAd-2). Overlapping regions of DNA homology are located in genes coding for HAd-2 structural components which could explain serological relationships observed between the human and the murine adenoviruses.  相似文献   

7.
Abstract 16S rRNA gene (rDNA) studies of the six species of the genus Microbacterium, M. lacticum, M. laevaniformans, M. dextranolyticum, M. imperiale, M. arborescens and M. aurum , were performed and the primary structures were compared with those of 29 representative actinobacteria and related organisms. Phylogenetic analysis indicated that six species of the genus Microbacterium and representative four species of the genus Aureobacterium appear to be phylogenetically coherent as was suggested by Rainey et al., although the peptidoglycan types of these two genera are different (peptidoglycan type B1 or B2). Thus, the phylogenetical analyses revealed that members of actinobacteria with group B-peptidoglycan do not cluster according to their peptidoglycan types, but form compact cluster different from actinobacteria or actinomycetes with group A-peptidoglycan.  相似文献   

8.
Phylogenetic analysis of 15 species of the genus Aquaspirillum based on 16S rRNA gene (rDNA) sequences indicated that the genus Aquaspirillum is phylogenetically heterogeneous and the species could be divided into four groups as follows: Aquaspirillum serpens, the type species of this genus, A. dispar and A. putridiconchylium are situated in the family Neisseriaceae; members of the second group, A. gracile, A. delicatum, A. anulus, A. giesbergeri, A. sinuosum, A. metamorphum and A. psychrophilum, are included in the family Comamonadaceae; the two members of the third group, A. arcticum and A. autotrophicum, are included in the family Oxalobacteriaceae; and members of the fourth group, A. polymorphum, A. peregrinum, and A. itersonii, are included in the alpha-subdivision of Proteobacteria. Thus, phylogenetic studies indicated that all the species excepting A. serpens, the type species, should be transferred to distinct genera.  相似文献   

9.
We investigate phylogenetic relationships among hornworts, liverworts and mosses, and their relationships to other green plant groups, by analysis of nucleotide variation in complete 18s rRNA gene sequences of three green algae, two hornworts, seven liverworts, nine mosses, and six tracheophytes. Parsimony and maximum-likelihood analyses yield a single optimal tree in which the hornworts are resolved as the basal group among land plants, and the liverworts and mosses are sister taxa that together form the sister clade to the tracheophytes. This phylogeny is internally robust as indicated by decay indices and by comparison (using both parsimony and likelihood criteria) to topologies representing five alternative hypotheses of bryophyte relationships. We discuss some possible reasons for differences between the phylogeny inferred from the rRNA data and those inferred from other character sets.  相似文献   

10.
A number of phylogenies exist for cockroaches that differ in the postulated relationships among families and genera. The relationship of the wood-feeding genus, Cryptocercus, to other cockroach families and to termites, has generated considerable debate. Grandcolas (1994), based on morphological analysis, synonymized the family Cryptocercidae with Polyphagidae and placed the genus Cryptocercus in the subfamily Polyphaginae. To determine if an independent set of characters supports the placement of Cryptocercus in Polyphaginae, a phylogenetic analysis of relationships among representative genera of the five cockroach families was undertaken. DNA sequence of a -430 base pair portion of the mitochondrial small ribosomal subunit gene from representatives of Blattidae, Blattellidae, Blaberidae and Cryptocercus, previously published by Kambhampati (1995) and Kambhampati et al. (1996), and the homologous sequence from representatives of Polyphagidae were used in the analysis. A total of twenty cockroach taxa and three termite genera were included in the study. Because a recent study showed that Cryptocercus punctulatus consists of a species complex, DNA sequence from four individuals collected in different parts of the U.S.A. was included in the study. The trees estimated from parsimony and neighbour-joining analyses indicated that Cryptocercus is a monophyletic clade which is most closely related to members of Blattidae. Polyphagidae is indicated as a sister group to the Blattidae + Cryptocercus complex, suggesting that Polyphagidae may belong to the superfamily Blattoidea rather than to Blaberoidea as proposed by McKittrick (1964). Blaberidae and Blattellidae were sister groups as previously proposed. Based on the present analysis, I propose that the genus Cryptocercus be retained in the family Cryptocercidae. Cockroaches  相似文献   

11.
To determine the significance of differences between clonal libraries of environmental rRNA gene sequences, differences between homologous coverage curves, CX(D), and heterologous coverage curves, CXY(D), were calculated by a Cramér-von Mises-type statistic and compared by a Monte Carlo test procedure. This method successfully distinguished rRNA gene sequence libraries from soil and bioreactors and correctly failed to find differences between libraries of the same composition.  相似文献   

12.
Clostridium perfringens, the first pathogenic clostridium examined, was placed in the nonmycoplasma subgroup of the low-dG+dC-content gram-positive cluster on the basis of the results of a phylogenetic analysis in which we used 16S rRNA comparisons. The closest relative that has been identified to date is Clostridium pasteurianum.  相似文献   

13.
Comparative DNA sequence analysis of 16S rRNA genes (rDNA) was undertaken to further our understanding of the make-up of bacterial communities in the rumen fluid of dairy cattle. Total DNA was extracted from the rumen fluid of 10 cattle fed haylage/corn silage/concentrate rations at two different times. Rumen samples were collected on two separate occasions from five cows each. In experiment 1, 31 cloned rDNA sequences were analysed. In experiment 2, DNA extractions were amplified using either 12 or 30 cycles of PCR in order to examine biases introduced during the reactions. A set of 53 sequences were analysed in experiment 2 from DNA amplified using 12 cycles and 49 sequences from PCR using 30 cycles. Sequences from the 5' end of 16S rRNA gene were compared with existing sequences in the Ribosomal Database Project. Clones from experiment 1 produced a data set in which 55% of the sequences were similar to low G+C Gram-positive bacteria related to the genus Clostridia, the majority of which were closely related to bacteria in Cluster XIV. Approximately 30% of the cloned sequences were related to bacteria in the Prevotella-Bacteroides group. Clones from experiment 2 produced a data set in which the majority of sequences were related to the Prevotella-Bacteroides group, regardless of the number of cycles of PCR. The remaining sequences clustered with members of the genus Clostridia. The majority of rDNA sequences analysed in this study represent novel rumen bacteria which have not yet been isolated.  相似文献   

14.
A recent analysis of amino acid sequence data (Graur et al.) suggested that the mammalian order Rodentia is polyphyletic, in contrast to most morphological data, which support rodent monophyly. At issue is whether the hystricognath rodents, such as the guinea pig, represent an independent evolutionary lineage within mammals, separate from the sciurognath rodents. To resolve this problem, we sequenced a region (2,645 bp) of the mitochondrial genome of the guinea pig containing the complete 12S ribosomal RNA, 16S ribosomal RNA, and transfer RNA(VAL) genes for comparison with the available sciurognath and other mammalian sequences. Several methods of analysis and statistical tests of the data all show strong support for rodent monophyly (91%-98% bootstrap probability, or BP). Calibration with the mammalian fossil record suggests a Cretaceous date (107 mya) for the divergence of sciurognaths and hystricognaths. An older date (38 mya) for the controversial Mus- Rattus divergence also is supported by these data. Our neighbor-joining analyses of all available sequence data (25 genes) confirm that some individual genes support rodent polyphyly but that tandem analysis of all data does not. We propose that the conflicting results are due to several compounding factors. The unique biochemical properties of some hystricognath metabolic proteins, largely responsible for generating this controversy, may have a single explanation: a cascade effect resulting from inactivation of the zinc-binding abilities of insulin. After excluding six genes possibly affected by insulin inactivation, analyses of all available sequence data (7,117 nucleotide sites, 3,099 amino acid sites) resulted in strong support for rodent monophyly (94% BP for DNA sequences, 90% for protein sequences), which lends support to the insulin-cascade hypothesis.   相似文献   

15.
16.
Based on partial sequences of the 12S and 16S ribosomal RNA genes, we estimated phylogenetic relationships among brown frogs of the Rana temporaria group from China. From the phylogenetic trees obtained, we propose to include Rana zhengi in the brown frogs. Monophyly of the brown frogs was not unambiguously supported, but four well-supported clades (A, B, C, and D) always emerged, although relationships among them remained unresolved. Clade A contained brown frogs with 24 chromosomes and was split into two distinct subclades (Subclade A-1: R. chensinensis and R. huanrenensis; Subclade A-2: R. dybowskii). Polytomous relationships among populations of R. chensinensis and R. huanrenensis suggested the necessity of further taxonomic assessment. Rana kunyuensis proved to be the sister group to R. amurensis, and these two species formed Clade B. Clade C was composed of R. omeimontis and R. chaochiaoensis, and Clade D included R. sauteri, which has been placed in other ranid genera. These relationships did not change after adding published data, and monophyly of Subclade A-1, A-2, and other East Asian brown frogs with 24 chromosomes (R. pirica and R. ornativentris) was ascertained, though their relationships were unresolved. Clade C, together with R. japonica and R. longicrus, also formed a monophyletic group. Brown frogs related to Clades A and C were estimated to have dispersed from continental Asia to adjacent regions through multiple events.  相似文献   

17.
从12S rRNA基因序列推测鹭科13种鸟类的系统发生关系   总被引:11,自引:0,他引:11  
对鹭科12个种的线粒体12S rRNA基因全长约975bp的序列进行了测定,并从GenBank获得黄顶夜鹭12S rRNA基因全序列。比对后的序列长993bp,含363变异位点,288个多态位点,187个简约信息位点。使用邻接法和最大简约法重建的分子系统树将13种鹭聚为2支:第一支包括白鹭、中白鹭、大白鹭、池鹭、牛背鹭、苍鹭、草鹭、夜鹭、黄顶夜鹭,第二支由黄苇渴Gan、黑苇Gan、栗苇Gan、大麻Gan组成。结果提示将鹭科分为鹭亚科和Gan亚科的传统观点是合理的,不支持Payne将鹭科分为日鹭亚科(Ardeinae)、夜鹭亚科(Nycticracinae)、Gan亚科(Botaurinae)和虎鹭亚科(Tigrisomatinae)的观点。进一步的分析表明:白鹭在系统演化中要早于大白鹭和中白鹭分支出来,大白鹭和中白鹭与苍鹭、草鹭和牛背鹭间的亲缘关系较近,而与白鹭较远,支持Sibley(1990)将大白鹭和中白鹭作为独立的大白鹭属(Casmerodius)和中白鹭属(Mesophoyx)的建议;黑Gan、栗苇Gan与黄苇Gan在系统发生中构成一单系群,提示将黑Gan置于苇Gan属(Ixobrychus)是合适的[动物学报49(2):205—210,2003]。  相似文献   

18.
Bacterial phylogeny based on 16S and 23S rRNA sequence analysis   总被引:28,自引:0,他引:28  
Abstract: Molecular phylogeny increasingly supports the understanding of organismal relationships and provides the basis for the classification of microorganisms according to their natural affiliations. Comparative sequence analysis of ribosomal RNAs or the corresponding genes currently is the most widely used approach for the reconstruction of microbial phylogeny. The highly and less conserved primary and higher order structure elements of rRNAs document the history of microbial evolution and are informative for definite phylogenetic levels. An optimal alignment of the primary structures and a careful data selection are prerequisites for reliable phylogenetic conclusions. rRNA based phylogenetic trees can be reconstructed and the significance of their topologies evaluated by applying distance, maximum parsimony and maximum likelihood methods of phylogeny inference in comparison, and by fortuitous or directed resampling of the data set. Phylogenetic trees based on almost equivalent data sets of bacterial 23S and 16S rRNAs are in good agreement and their overall topologies are supported by alternative phylogenetic markers such as elongation factors and ATPase subunits. Besides their phylogenetic information content, the differently conserved primary structure regions of rRNAs provide target sites for specific hybridization probes which have been proven to be powerful tools for the identification of microbes on the basis of their phylogenetic relationships.  相似文献   

19.
Nearly complete sequences of 16S rRNA genes were determined for eight bacterial strains representing five species of the rRNA homology group II pseudomonads that are members of the beta subclass of the class Proteobacteria. Comparative analysis with published sequence data indicated that Pseudomonas andropogonis, Ps. caryophylli, Ps. gladioli pv. gladioli and Ps. cepacia aggregate in one coherent cluster at 94·2% sequence similarity; Ps. solanacearum and Ps. pickettii shared 95·3% and 92·8% similarity with Alcaligenes eutrophus in another cluster. Both clusters joined at 87·8% similarity, which is similar to that for genera in this subclass of Proteobacteria. Based on this study and on comparison with other works we suggest that these species are separated from authentic pseudomonads and constitute a new genus or possibly two related genera accommodating Ps. andropogonis, Ps. caryophylli, Ps. gladioli, Ps. cepacia, and Ps. solanacearum, Ps. pickettii and A. eutrophus, respectively. Four strains of Ps. solanacearum representing Biovars 1, 2, 3 and 4 were subdivided into two clusters at 99·1% sequence similarity, in agreement with other published phenotypic and genotypic studies. The two clusters may be potentially regarded as subspecies.  相似文献   

20.
The genus Paramecium includes species that are well known and very common in freshwater environments. Species of Paramecium are morphologically divided into two distinct groups: the "bursaria" subgroup (foot-shaped) and the "aurelia" subgroup (cigar-shaped). Their placement within the class Oligohymenophorea has been supported by the analysis of the small subunit rRNA gene sequence of P. tetraurelia. To confirm the stability of this placement and to resolve relationships within the genus, small subunit rRNA gene sequences of P. bursaria, P. calkinsi, P. duboscqui, P. jenningsi, P. nephridiatum, P. primaurelia, and P. polycaryum were determined and aligned. Trees constructed using distance-matrix, maximum-likelihood, and maximum-parsimony methods all depicted the genus as a monophyletic group, clustering with the other oligohymenophorean taxa. Within the Paramecium clade, P. bursaria branches basal to the other species, although the remaining species of the morphologically defined "bursaria" subgroup do not group with P. bursaria, nor do they form a monophyletic subgroup. However, the species of the "aurelia" subgroup are closely related and strongly supported as a monophyletic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号