首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The disease process of ulcerative colitis (UC) is associated with a block in -oxidation of short chain fatty acid in colonic epithelial cells which can be reproduced by exposure of cells to sulfides. The aim of the current work was to assess the level in the -oxidation pathway at which sulfides might be inhibitory in human colonocytes. Isolated human colonocytes from cases without colitis (n = 12) were exposed to sulfide (1.5 mM) in the presence or absence of exogenous CoA and ATP. Short chain acyl-CoA esters were measured by a high performance liquid chromatographic assay. 14CO2 generation was measured from [1-14C]butyrate and [6-14C]glucose. 14CO2 from butyrate was significantly reduced (p < 0.001) by sulfide. When colonocytes were incubated with hydrogen sulfide in the presence of CoA and ATP, butyryl-CoA concentration was increased (p < 0.01), while crotonyl-CoA (p < 0.01) and acetyl-CoA (p < 0.01) concentrations were decreased. These results show that sulfides inhibit short chain acyl-CoA dehydrogenase. As oxidation of n-butyrate governs the epithelial barrier function of colonocytes the functional activity of short chain acyl-CoA dehydrogenase may be critical in maintaining colonic mucosal integrity. Maintaining the functional activity of dehydrogenases could be an important determinant in the expression of ulcerative colitis.  相似文献   

2.
The ligninolytic system of the basidiomycete Ceriporiopsis subvermispora is composed of manganese peroxidase (MnP) and laccase. In this work, the source of extracellular hydrogen peroxide required for MnP activity was investigated. Our attention was focused on the possibility that hydrogen peroxide might be generated by MnP itself through the oxidation of organic acids secreted by the fungus. Both oxalate and glyoxylate were found in the extracellular fluid of C. subvermispora cultures grown in chemically defined media, where MnP is also secreted. The in vivo oxidation of oxalate was measured; 14CO2 evolution was monitored after addition of exogenous [14C]oxalate to cultures at constant specific activity. In standard cultures, evolution of CO2 from oxalate was maximal at day 6, although the MnP titers were highest at day 12, the oxalate concentration was maximal (2.5 mM) at day 10, and the glyoxylate concentration was maximal (0.24 mM) at day 5. However, in cultures containing low nitrogen levels, in which the pH is more stable, a better correlation between MnP titers and mineralization of oxalate was observed. Both MnP activity and oxidation of [14C]oxalate were negligible in cultures lacking Mn(II). In vitro assays confirmed that Mn(II)-dependent oxidation of [14C]oxalate by MnP occurs and that this reaction is stimulated by glyoxylate at the concentrations found in cultures. In addition, both organic acids supported phenol red oxidation by MnP without added hydrogen peroxide, and glyoxylate was more reactive than oxalate in this reaction. Based on these results, a model is proposed for the extracellular production of hydrogen peroxide by C. subvermispora.  相似文献   

3.
Functional interactions of calcium ions, hydrogen peroxide, and nitric oxide as signal mediators in root cells of wheat (Triticum aestivum L.) seedlings upon induction of their heat resistance was studied with use of inhibitor-based analysis. Treatment of the seedlings with hydrogen peroxide or a combination of calcium chloride with ionophore A23187 significantly increased their content of nitric oxide, which peaked 0.5–1 h after the start of the treatment. CaCl2 or exogenous NO donor (sodium nitroprusside, SNP) transitorily increased the hydrogen peroxide level in the roots. Seedlings pretreatments with calcium chelator (EGTA), blocker of Ca2+ channels (LaCl3), inhibitor of phospholipase C (neomycin), or antagonist of cyclic adenosine-5'-diphosphatribose formation (nicotinamide) more or less prevented the rise in the nitric oxide content in roots caused by exogenous H2O2; the SNP-induced rise in hydrogen peroxide was also damped down. However, the seedlings pretreatment with antioxidants ionol or dimethylthiourea did not hinder the increase in the NO level, which was caused by exogenous Ca2+. The inhibitors of NO synthase (NG-nitro-L-arginine methyl ester, L-NAME) or nitrate reductase (sodium tungstate) did not interfere in the accumulation of H2O2 in root tissues stimulated by exogenous calcium. Calcium antagonists diminished the seedlings heat resistance increased by hydrogen peroxide or SNP. Antioxidants and inhibitors of NO synthase or nitrate reductase weakened the calcium-stimulated enhancement in the seedlings heat resistance. It was concluded that calcium may activate NO- and H2O2-generating enzymatic systems as well as participate in the transduction of signals of these mediators into genetic apparatus and in the formation of physiological reactions underlying the enhanced heat resistance.  相似文献   

4.
Chlorobium limicola was grown on a mineral salts medium with CO2 as the main carbon source supplemented with specifically labeled 14C propionate and the incorporation of 14C into alanine ( intracellular pyruvate), aspartate ( oxaloacetate), and glutamate ( -ketoglutarate) was studied in long term labeling experiments. During growth in presence of propionate 30% of the cell carbon were derived from propionate and 70% from CO2. Propionate was not oxidized to CO2.All three amino acids were found to be labeled. The labeling patterns indicate that propionate was assimilated via propionyl CoA, methylmalonyl CoA and succinyl CoA. When 1-14C propionate was the labeled precursor no radioactivity was found in the carboxyl group(s) of alanine, aspartate and glutamate, excluding the incorporation of propionate into the amino acids via succinate oxidation to fumarate. With 1-14C propionate preferentially aspartate (C-3) and glutamate (C-2) became labeled, with 2-14C propionate alanine (C-3) and glutamate (C-4). These findings indicate that propionate was incorporated into the amino acids via succinyl CoA, -ketoglutarate, isocitrate, and citrate, followed by a si-type cleavage of citrate to oxaloacetate and acetyl CoA (or acetate). Similar experiments with U-14C acetate confirm these conclusions. Thus, all reactions of the proposed reductive tricarboxylic acid cycle could be demonstrated in autotrophically growing cells.  相似文献   

5.
The pivotal role of acetyl coenzyme A in CO2 assimilation by autotrophic methanogenic bacteria has been demonstrated by pulse-labelling of growing Methanobacterium thermoautotrophicum with 14CO2. After very short incubation with 14CO2 (1.5 s) approximately 1% of label incorporated into the soluble cell fraction was contained in acetyl coenzyme A. The percentage distribution of 14C within acetyl CoA markedly decreased with time, which is indicative for acetyl CoA being an immediate 14CO2 fixation product. Label in the acetate molecule first appeared in the carboxyl carbon, but the methyl carbon became equally labelled within only 10 s. The acetyl CoA was compared with authentic material by various criterions and its cellular concentration was determined to be 52 M. This small cellular pool size of acetyl CoA as compared to e.g. alanine (6.4 mM) provides an explanation for the observed labelling kinetics. The data are fully consistent with autotrophic carbon assimilation via a total synthesis of acetyl coenzyme A from 2 CO2.Dedicated to Professor Dr. Gerhart Drews on occasion of his 60th birthday  相似文献   

6.
Salivary nitrate is reduced to nitric oxide (NO) via nitrite in the human oral cavity. The nitrite and NO formed can be transformed to reactive nitrogen oxide species (RNOS). In this investigation, RNOS formed in mixed whole saliva and its fractions were detected by the oxidation of aminophenyl fluorescein (APF) and the transformation of 3-amino-4-monomethylamino-2′,7′-difluorofluorecein (DAF-FM) to its triazol form (DAF-FMT). Nitrite-induced oxidation of APF and formation of DAF-FMT increased as pH was decreased from 7 to 5 and SCN? inhibited the oxidation of APF and the formation of DAF-FMT around neutral pH and enhanced at pH about 5. The SCN?-dependent inhibition was due to the suppression of salivary peroxidase and the enhancement was due to the formation of NOSCN from HNO2 and SCN?. It is deduced that the increase in the concentrations of nitrite and H+ in the oral cavity may result in the enhanced formation of RNOS.  相似文献   

7.
Nitrite reductase (cytochrome cd) from T. denitrificans has been crystallized in high yield in three simple and rapid steps. The spectral absorption ratio at 408 to 280 nm was 1.52. Light absorption spectra in the oxidized and reduced states were virtually identical to those of nitrite reductase from P. aeruginosa. EPR spectroscopy of nitrite reductase at 12° showed a low-spin ferric heme resonance with g-values at 2.52, 2.45 and 1.73 assigned to the d-heme. Reaction of nitrite reductase with nitrite in the presence of the reducing systems [(ascorbate + PMS) or sulfide] resulted in the formation of nitric oxide (confirmed by gas chromatography) which reacted with both c- and d-hemes of nitrite reductase yielding an EPR-detectable enzyme-NO complex with g-values at 2.07, 2.04 and 1.99 and a 14N hyperfine splitting constant of 22.5 gauss. The amount of nitric oxide produced enzymatically with sulfide as electron donor was only 5% of that found when ascorbate plus PMS served as reductant.To our knowledge the detection of the unique enzyme-NO complex is the first definitive EPR evidence for the mandatory liganding of nitric oxide with pure nitrite reductase during nitrite reduction.  相似文献   

8.
The pathway of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum has been investigated by long term labelling of the organism with isotopic acetate and pyruvate while exponentially growing on H2 plus CO2. Maximally 2% of the cell carbon were derived from exogeneous tracer, 98% were synthesized from CO2. Since growth was obviously autotrophic the labelled compounds functioned as tracers of the cellular acetyl CoA and pyruvate pool during cell carbon synthesis from CO2. M. thermoautotrophicum growing in presence of U-14C acetate incorporated 14C into cell compounds derived from acetyl CoA (N-acetyl groups) as well as into compounds derived from pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), hexosephosphates (galactosamine), and pentosephosphates (ribose). The specific radioactities of N-acetylgroups and of the three amino acids were identical. The hexosamine exhibited a two times higher specific radioactivity, and the pentose a 1.6 times higher specific radioactivity than e.g. alanine. M. thermoautotrophicum growing in presence of 3-14C pyruvate, however, did not incorporate 14C into cell compounds directly derived from acetyl CoA. Those compounds derived from pyruvate, dicarboxylic acids and hexosephosphates became labelled. The specific radioactivities of alanine, aspartate and glutamate were identical; the hexosamine had a specific radioactivity twice as high as e.g. alanine.The finding that pyruvate was not incorporated into compounds derived from acetyl CoA, whereas acetate was incorporated into derivatives of acetyl CoA and pyruvate in a 1:1 ratio demonstrates that pyruvate is synthesized by reductive carboxylation of acetyl CoA. The data further provide evidence that in this autotrophic CO2 fixation pathway hexosephosphates and pentosephosphates are synthesized from CO2 via acetyl CoA and pyruvate.  相似文献   

9.

Background

Nitrate and nitrite (jointly referred to herein as NOx) are ubiquitous environmental contaminants to which aquatic organisms are at particularly high risk of exposure. We tested the hypothesis that NOx undergo intracellular conversion to the potent signaling molecule nitric oxide resulting in the disruption of endocrine-regulated processes.

Methodology/Principal Findings

These experiments were performed with insect cells (Drosophila S2) and whole organisms Daphnia magna. We first evaluated the ability of cells to convert nitrate (NO3 ) and nitrite (NO2 ) to nitric oxide using amperometric real-time nitric oxide detection. Both NO3 and NO2 were converted to nitric oxide in a substrate concentration-dependent manner. Further, nitric oxide trapping and fluorescent visualization studies revealed that perinatal daphnids readily convert NO2 to nitric oxide. Next, daphnids were continuously exposed to concentrations of the nitric oxide-donor sodium nitroprusside (positive control) and to concentrations of NO3 and NO2 . All three compounds interfered with normal embryo development and reduced daphnid fecundity. Developmental abnormalities were characteristic of those elicited by compounds that interfere with ecdysteroid signaling. However, no compelling evidence was generated to indicate that nitric oxide reduced ecdysteroid titers.

Conclusions/Significance

Results demonstrate that nitrite elicits developmental and reproductive toxicity at environmentally relevant concentrations due likely to its intracellular conversion to nitric oxide.  相似文献   

10.
In cells of Rhodopseudomonas sphaeroides f. sp. denitrificans nitrite and nitric oxide, the products of denitrification, inhibit activity of nitrogenase enzyme.Ferredoxin-linked CO2 fixation, with H2 as a reductant, was also inhibited by nitrite and NO in denitrifying cells.EPR spectroscopy of cell preparations treated with NO showed that it reacts with non-haem iron-sulphur proteins to form iron-nitrosyl complexes. Nitrite also reacts with these iron-sulphur proteins, but the formation of ironnitrosyl complexes was dependent on the presence of dithionite. Since nitrite is reduced to NO by dithionite it is likely that nitrogenase and CO2 fixation reactions are inhibited not only by nitrite itself, but also by nitric oxide.Abbreviation DPPH 1,1-diphenyl-2-picrylhydrazyl  相似文献   

11.
Recycling of carbon in the oxidative pentose phosphate pathway (OPPP) of intact pea root plastids has been studied. The synthesis of dihydroxyacetone phosphate (DHAP) and evolution of CO2 was followed in relation to nitrite reduction. A close coupling was observed between all three measured fluxes which were linear for up to 60 min and dependent upon the integrity of the plastids. However, the quantitative relationship between 1-14CO2 evolution from glucose 6-phosphate and nitrite reduction varied with available hexose phosphate concentration. When 10 mM glucose 6-phosphate was supplied to intact plastids a stoichiometry of 1.35 was observed between 14CO2 evolution and nitrite reduction. As exogenous glucose 6-phosphate was decreased this value fell, becoming 0.47 in the presence of 0.2 mM glucose 6-phosphate, indicative of considerable recycling of carbon. This conclusion was reinforced when using [2-14C]glucose-6-phosphate. The measured release of 2-14CO2 was consistent with the data for 1-14CO2, suggesting complete recycling of carbon in the OPPP. Ribose 5-phosphate was also able to support nitrite reduction and DHAP production. A stoichiometry of 2 NO 2 ? reduced: 1 DHAP synthesised was observed at concentrations of 1 mM ribose 5-phosphate or less. At concentrations of ribose 5-phosphate greater than 1 mM this stoichiometry was lost as a result of enhanced DHAP synthesis without further increase in nitrite reduction. It is suggested that this decoupling from nitrite reduction is a function of excess substrate entering directly into the non-oxidative reactions of the OPPP, and may be useful when the demand for OPPP products is not linked to the demand for reductant. The significance of recycling in the OPPP is discussed in relation to the coordination of nitrate assimilation with carbohydrate oxidation in roots and with the utilisation of carbohydrate by other pathways within plastids.  相似文献   

12.
A scheme of development of nitrite-induced oxyhemoglobin oxidation in erythrocytes based on the analysis of experimental data is proposed. It was found that, contrary to widespread opinion, direct oxidative-reductive interaction between hemoglobin and nitrite is absent or negligible under physiological conditions. The driving stage of this process is methemoglobin-catalyzed peroxidase oxidation of nitrite. The product of the oxidation (presumably NO2 ·) directly oxidizes oxyhemoglobin to methemoglobin-peroxide complex without hydrogen peroxide release into the environment. The oxidant itself is reduced to nitrite or oxidized to nitrate as a result of interaction with another NO2 · molecule. Thus, the stoichiometry of the process depends on the ratio of rates of these two reactions. Substances that are able to compete with nitrite for peroxidase and therefore to prevent the nitrite oxidation effectively protect hemoglobin from oxidation. Catalase is not able to destroy methemoglobin-peroxide complexes, but it can prevent their production in the course of interaction of methemoglobin and free peroxide by destroying the latter.__________Translated from Biokhimiya, Vol. 70, No. 4, 2005, pp. 575–587.Original Russian Text Copyright © 2005 by Titov, Petrenko.  相似文献   

13.
Considerable evidence has appeared over the past few years that nitric oxide (NO) is an important anoxic metabolite and a potent signal molecule in plants. Several pathways operative in different cell compartments, lead to NO production. Mitochondria, being a major NO producing compartment, can generate it by either nitrite reduction occurring at nearly anoxic conditions or by the oxidative route via nitric oxide synthase (NOS). Recently we compared both pathways by ozone collision chemiluminescence and by DAF fluorescence. We found that nitrite reduction to NO is associated with the mitochondrial membrane fraction but not with the matrix. In case of the nitric oxide synthase pathway, an L-arginine dependent fluorescence was detected but its response to NOS inhibitors and substrates was untypical. Therefore the existence of NOS or NOS-like activity in barley root mitochondria is very doubtful. We also found that mitochondria scavenge NO. In addition, we found indirect evidence that mitochondria are able to convert NO to gaseous intermediates like NO2, N2O and N2O3.Key words: nitrate reductase, nitric oxide synthase, nitric oxide, mitochondria, DAF fluorescenceMitochondria are known as powerhouses of the cell. These organelles harbour the citric acid cycle and electron transport chain. Almost all the eukaryotic mitochondria share these basic functions. In addition to the energy generation, mitochondria are one of the major producers of reactive oxygen species1 and involved in retrograde signalling.2 Recent evidence suggests that mitochondria are one of the major producers of nitric oxide (NO) in plants.3,4 Since nitric oxide has gained high importance, this novel property of mitochondria stimulated interest in NO signalling research.Eukaryotic mitochondria may produce NO by two distinct pathways. One is an oxidative pathway which uses L-arginine as a substrate and produces NO and citrulline7 and the other is a reductive pathway which uses nitrite as a substrate and produces NO at low oxygen conditions.5,6  相似文献   

14.
The effect of hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) on the heat resistance of wheat (Triticum aestivum L.) coleoptile cells, the formation of reactive oxygen species (ROS), and the activity of the antioxidant enzymes in them was investigated. The treatment of coleoptiles with 100 µM NaHS caused transient enhancement of the generation of the superoxide anion radical (O2 ?) and an increased hydrogen peroxide content. The activities of antioxidant enzymes—superoxide dismutase, catalase, and guaiacol peroxidase— and coleoptile resistance to damaging heat was later found to have increased. The biochemical and physiological effects of the hydrogen sulfide donor described above were inhibited by the treatment of wheat coleoptiles with the hydrogen peroxide scavenger dimethylthiourea, the NADPH oxidase inhibitor imidazole, the extracellular calcium chelator EGTA, and the phosphatidylinositol-specific phospholipase C inhibitor neomycin. A conclusion was made on the role of ROS generation, which is dependent on the activity of NADPH oxidase and calcium homeostasis, in the transduction of the H2S signal, which induces antioxidant enzymes and the development of plant cell heat resistance.  相似文献   

15.
Summary Intact cells obtained from Thiobacillus denitrificans grown autotrophically with thiosulfate as the oxidizable substrate and nitrate as the final electron acceptor catalyzed the reduction of nitrate, nitrite and nitric oxide stoichiometrically to nitrogen gas with the concomitant oxidation of thiosulfate. In addition, nitrous oxide was also capable of acting as the terminal oxidant of the respiratory chain with thiosulfate as the reductant. The anaerobic oxidation of thiosulfate by NO3 -, NO, and N2O was sensitive to the flavoprotein inhibitors, antimycin A or NHQNO, and cyanide or azide thus, implicating the participation of flavins, and cytochromes of b-, c-, and a-types in the denitrification process. The nitrite reductase system, however, was not markedly affected by the electron transport chain inhibitors. The experimental observations suggest that the dissimilatory nitrate reduction in the chemoautotroph T. denitrificans involves nitrite, nitric oxide, and nitrous oxide as theintermediates with nitrogen gas as the final reduction product.Non-Standard Abbreviations TTFA Thenoyltrifluoroacetone - NHQNO 2-n-nonyl-4-hydroxyquinoline N-oxide  相似文献   

16.
Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O2). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO2 as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO2. Both strains grow at temperatures between 5 and 40°C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate.  相似文献   

17.
Batch experiments were carried out to investigate the stoichiometry and kinetics of microbial degradation of toluene under denitrifying conditions. The inoculum originated from a mixture of sludges from sewage treatment plants with alternating nitrification and denitrification. The culture was able to degrade toluene under anaerobic conditions in the presence of nitrate, nitrite, nitric oxide, or nitrous oxide. No degradation occurred in the absence of Noxides. The culture was also able to use oxygen, but ferric iron could not be used as an electron acceptor. In experiments with14C-labeled toluene, 34%±8% of the carbon was incorporated into the biomass, while 53%±10% was recovered as14CO2, and 6%±2% remained in the medium as nonvolatile water soluble products. The average consumption of nitrate in experiments, where all the reduced nitrate was recovered as nitrite, was 1.3±0.2 mg of nitrate-N per mg of toluene. This nitrate reduction accounted for 70% of the electrons donated during the oxidation of toluene. When nitrate was reduced to nitrogen gas, the consumption was 0.7±0.2 mg per mg of toluene, accounting for 97% of the donated electrons. Since the ammonia concentration decreased during degradation, dissimilatory reduction of nitrate to ammonia was not the reductive process. The degradation of toluene was modelled by classical Monod kinetics. The maximum specific rate of degradation, k, was estimated to be 0.71 mg toluene per mg of protein per hour, and the Monod saturation constant, K s , to be 0.2 mg toluene/l. The maximum specific growth rate, max , was estimated to be 0.1 per hour, and the yield coefficient, Y, was 0.14 mg protein per mg toluene.Abbreviations NVWP Non Volatile Water-soluble Products  相似文献   

18.
Werner M. Kaiser 《Planta》1979,145(4):377-382
Hydrogen peroxide (6x10-4 M) causes a 90% inhibition of CO2-fixation in isolated intact chloroplasts. The inhibition is reversed by adding catalase (2500 U/ml) or DTT (10 mM). If hydrogen peroxide is added to a suspension of intact chloroplasts in the light, the incorporation of carbon into hexose- and heptulose bisphosphates and into pentose monophosphates is significantly increased, whereas; carbon incorporation into hexose monophosphates and ribulose 1,5-bisphosphate is decreased. At the same time formation of 6-phosphogluconate is dramatically stimulated, and the level of ATP is increased. All these changes induced by hydrogen peroxide are reversed by addition of catalase or DTT. Additionally, the conversion of [14C]glucose-6-phosphate into different metabolites by lysed chloroplasts in the dark has been studied. In presence of hydrogen peroxide, formation of ribulose-1,5-bisphosphate is inhibited, whereas formation of other bisphosphates,of triose phosphates, and pentose monophosphates is stimulated. Again, DTT has the opposite effect. The release of 14CO2 from added [14C]glucose-6-phosphate by the soluble fraction of lysed chloroplasts via the reactions of oxidative pentose phosphate cycle is completely inhibited by DTT (0.5 mM) and re-activated by comparable concentrations of hydrogen peroxide. These results indicate that hydrogen peroxide interacts with reduced sulfhydryl groups which are involved in the light activation of enzymes of the Calvin cycle at the site of fructose- and sedoheptulose bisphophatase, of phosphoribulokinase, as well as in light-inactivation of oxidative pentose phosphate cycle at the site of glucose-6-phosphate dehydrogenase.Abbreviations ADPG ADP-glucose - DHAP dihydroxyacetone phosphate - DTT dithiothreitol - FBP fructose-1,6-bisphosphate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - HMP hexose monophosphates (fructose-6-phosphate, glucose-6-phosphate, glucose-1-phosphate) - 6-PGI 6-phosphogluconate - PMP pentose monophosphates (xylulose-5-phosphate, ribose-5-phosphate, ribulose-5-phosphate) - RuBP ribulose-1,5-bisphosphate - S7P sedoheptulose-7-phosphate - SBP sedoheptulose-1,7-bisphosphate Dedicated to Prof. Dr. W. Simonis on the occasion of his 70th birthday  相似文献   

19.
Oxidative stress contributes to the pathogenesis of many disorders, including diabetes and cardiovascular disease. Immune cells are major sources of superoxide (O2∙−) as part of the innate host defense system, but exaggerated and sustained O2∙− generation may lead to progressive inflammation and organ injuries. Previous studies have proven organ-protective effects of inorganic nitrite, a precursor of nitric oxide (NO), in conditions manifested by oxidative stress and inflammation. However, the mechanisms are still not clear. This study aimed at investigating the potential role of nitrite in modulating NADPH oxidase (NOX) activity in immune cells. Mice peritoneal macrophages or human monocytes were activated by lipopolysaccharide (LPS), with or without coincubation with nitrite. O2∙− and peroxynitrite (ONOO) formation were detected by lucigenin-based chemiluminescence and fluorescence techniques, respectively. The intracellular NO production was measured by DAF-FM DA fluorescence. NOX isoforms and inducible NO synthase (iNOS) expression were detected by qPCR. LPS increased both O2∙− and ONOO production in macrophages, which was significantly reduced by nitrite (10 µmol/L). Mechanistically, the effects of nitrite are (1) linked to increased NO generation, (2) similar to that observed with the NO donor DETA-NONOate, and (3) can be abolished by the NO scavenger carboxy-PTIO or by the xanthine oxidase (XO) inhibitor febuxostat. Nox2 expression was increased in activated macrophages, but was not influenced by nitrite. However, nitrite attenuated LPS-induced upregulation of iNOS expression. Similar to that observed in mice macrophages, nitrite also reduced O2∙− generation in LPS-activated human monocytes. In conclusion, XO-mediated reduction of nitrite attenuates NOX activity in activated macrophages, which may modulate the inflammatory response.  相似文献   

20.
Tolbutamide partially inhibited the growth but increased the glycogen content of Tetrahymena pyriformis in logarithmically growing cultures. Tolbutamide slightly increased 14CO2 production from [1-14C] and [6-14HC] glucose and [2-14C] pyruvate, but had little effect on the oxidation of [1-14C] acetate when any of these substrates were added to the proteose-peptone medium in which the cells had been grown. Measurement of 14CO2 production from [1-14C] and [2-I4C]-glyoxylate showed that this substrate was primarily oxidized via the glyoxylate cycle, with little if any oxidation occurring via the peroxisomal glyoxylate oxidase. Addition of tolbutamide inhibited the glyoxylate cycle as indicated by a marked reduction in label appearing in CO2 and in glycogen from labeled acetate. In control cells, addition of acetate strongly inhibited the oxidation of [2-14C]-pyruvate whereas addition of pyruvate had little effect on the oxidation of [1-14C]-acetate. Acetate was more effective than pyruvate in preventing the growth inhibitory and glycogen-increasing effects of tolbutamide. The data suggest that one effect of tolbutamide may be to interfere with the transfer of isocitrate and acetyl CoA across mitochondrial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号