首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inferences about the evolutionary impact of gene duplications often rely on the analysis of their long-term outcome. The fate of the majority of them must, however, be decided shortly after duplication. Here we analysed the evolutionary pattern of 10 mouse genes very recently duplicated by retrotransposition, by sequencing the retroposed copy in five to 10 closely related mouse species. In all cases the retroposed copy experienced accelerated nonsynonymous evolution whereas the divergence pattern of the source copy appeared unaffected by the duplication, consistent with the neofunctionalization model. The analysis further revealed that most retrogenes, including pseudogenes, did not experience a period of relaxed neutral evolution, but have been submitted to purifying selection ever since their retroposition. We propose that these duplicates play a biochemical role but are not indispensable. Purifying selection prevents them from acquiring a negative role until they are lost or silenced. This period of unnecessary redundancy could in rare cases give the time for new functions to evolve.  相似文献   

2.

Background

Duplicated genes frequently experience asymmetric rates of sequence evolution. Relaxed selective constraints and positive selection have both been invoked to explain the observation that one paralog within a gene-duplicate pair exhibits an accelerated rate of sequence evolution. In the majority of studies where asymmetric divergence has been established, there is no indication as to which gene copy, ancestral or derived, is evolving more rapidly. In this study we investigated the effect of local synteny (gene-neighborhood conservation) and codon usage on the sequence evolution of gene duplicates in the S. cerevisiae genome. We further distinguish the gene duplicates into those that originated from a whole-genome duplication (WGD) event (ohnologs) versus small-scale duplications (SSD) to determine if there exist any differences in their patterns of sequence evolution.

Results

For SSD pairs, the derived copy evolves faster than the ancestral copy. However, there is no relationship between rate asymmetry and synteny conservation (ancestral-like versus derived-like) in ohnologs. mRNA abundance and optimal codon usage as measured by the CAI is lower in the derived SSD copies relative to ancestral paralogs. Moreover, in the case of ohnologs, the faster-evolving copy has lower CAI and lowered expression.

Conclusions

Together, these results suggest that relaxation of selection for codon usage and gene expression contribute to rate asymmetry in the evolution of duplicated genes and that in SSD pairs, the relaxation of selection stems from the loss of ancestral regulatory information in the derived copy.  相似文献   

3.
It is well known that repositioning of a gene often exerts a strong impact on its own expression and whole development. Here we report the results of genome-wide analyses suggesting that repositioning may also radically change the evolutionary fate of gene duplicates. As an indicator of these changes, we used the GC content of gene pairs which originated by duplication. This indicator turned out to be duplicate-asymmetric, which means that genes in a pair differ significantly in GC content despite their apparent origin from a common ancestor. Such an asymmetry necessarily implies that after duplication two originally identical genes mutated in opposite directions—toward GC-rich and GC-poor content, respectively. In mammalian genomes, this trend is definitely associated with presumably methylated hypermutable CpG sites, and in a typical GC-asymmetric gene pair, its two member genes are embedded in GC-contrasting isochores. However, we unexpectedly found similar significant GC asymmetry in fish, fly, worm, and yeast. This means that neither methylation alone nor methylation in combination with isochores can be counted as a primary cause of the GC asymmetry; rather they represent specific realizations of some universal principle of genome evolution. Remarkably, genes from pairs with the greatest GC asymmetry tend to be on different chromosomes, suggesting that the mutational difference between gene duplicates is associated with translocation of a new gene to a different place in the genome, whereas GC symmetric pairs demonstrate the opposite tendency. A recently emerged extra gene copy is usually on the same chromosome as is its parent but quickly, by 0.05 substitution per synonymous site, either has perished or occupies a different chromosome. During this earliest posttranslocation period, the ratio of nonsynonymous/synonymous base substitutions is unusually high, suggesting a rapid adaptive evolution of novel functions. In a general context of evolution by gene duplication, our interpretation of this position-dependent GC asymmetry between duplicated genes is that evolution of redundant genes toward a new function has often been associated with their very early, postduplication repositioning in the genome, with a concomitant abrupt change in epigenetic control of tissue/stage-specific expression and an increase in the mutation rate. Of eight eukaryotic genomes studied, the most distinguished in this respect is the human genome.Reviewing Editor: Dr. Manyuan Long  相似文献   

4.
The origin of new genes through gene duplication is fundamental to the evolution of lineage- or species-specific phenotypic traits. In this report, we estimate the number of functional retrogenes on the lineage leading to humans generated by the high rate of retroposition (retroduplication) in primates. Extensive comparative sequencing and expression studies coupled with evolutionary analyses and simulations suggest that a significant proportion of recent retrocopies represent bona fide human genes. We estimate that at least one new retrogene per million years emerged on the human lineage during the past ∼63 million years of primate evolution. Detailed analysis of a subset of the data shows that the majority of retrogenes are specifically expressed in testis, whereas their parental genes show broad expression patterns. Consistently, most retrogenes evolved functional roles in spermatogenesis. Proteins encoded by X chromosome−derived retrogenes were strongly preserved by purifying selection following the duplication event, supporting the view that they may act as functional autosomal substitutes during X-inactivation of late spermatogenesis genes. Also, some retrogenes acquired a new or more adapted function driven by positive selection. We conclude that retroduplication significantly contributed to the formation of recent human genes and that most new retrogenes were progressively recruited during primate evolution by natural and/or sexual selection to enhance male germline function.  相似文献   

5.
Raquel Assis 《Fly》2014,8(2):91-94
Gene duplication is thought to play a key role in phenotypic innovation. While several processes have been hypothesized to drive the retention and functional evolution of duplicate genes, their genomic contributions have never been determined. We recently developed the first genome-wide method to classify these processes by comparing distances between expression profiles of duplicate genes and their ancestral single-copy orthologs. Application of our approach to spatial gene expression profiles in two Drosophila species revealed that a majority of young duplicate genes possess new functions, and that new functions are acquired rapidly—often within a few million years. Surprisingly, new functions tend to arise in younger copies of duplicate gene pairs. Moreover, we found that young duplicates are often specifically expressed in testes, whereas old duplicates are broadly expressed across several tissues, providing strong support for the hypothetical “out-of-testes” origin of new genes. In this Extra View, I discuss our findings in the context of theoretical predictions about gene duplication, with a particular emphasis on the importance of natural selection in the evolution of novel phenotypes.  相似文献   

6.
Layeghifard M  Rabani R  Pirhaji L  Yakhchali B 《Gene》2008,426(1-2):65-71
Circadian rhythms, that are governed physiologically and behaviorally by endogenous clock, have been described in many species. Living organisms use this endogenous circadian clock to anticipate environmental transitions, perform activities at biologically advantageous times during the day, and undergo characteristic seasonal responses. Gene duplication is one of the most important mechanisms in the evolution of gene diversity. After duplication, one or both of duplicates can accumulate amino acid changes, thereby promoting functional divergence through the action of natural selection. The circadian system, like many other multigene families, has undergone this genetic revolution, and so circadian genes that are found in single copies in insects are duplicated in vertebrates. We analyzed six groups of genes involved in vertebrates' circadian rhythm pathway to find signatures of molecular evolutionary processes such as gene duplication, natural selection, recombination, and functional divergence. The obtained results, then, were used to determine what evolutionary forces have influenced the fates of duplicated genes of each group. We showed in this research that recombination has not been widespread during the evolution of circadian genes and that purifying selection has been the prominent natural pressure operating on circadian genes. We also showed that the evolution of circadian genes has been depended on gene duplication and functional divergence. Finally, we put forward models best describing the evolutionary fates of circadian duplicates.  相似文献   

7.
8.
Gene duplication is a major mechanism to create new genes. After gene duplication, some duplicated genes undergo functionalization, whereas others largely maintain redundant functions. Duplicated genes comprise various degrees of functional diversification in plants. However, the evolutionary fate of high and low diversified duplicates is unclear at genomic scale. To infer high and low diversified duplicates in Arabidopsis thaliana genome, we generated a prediction method for predicting whether a pair of duplicate genes was subjected to high or low diversification based on the phenotypes of knock-out mutants. Among 4,017 pairs of recently duplicated A. thaliana genes, 1,052 and 600 are high and low diversified duplicate pairs, respectively. The predictions were validated based on the phenotypes of generated knock-down transgenic plants. We determined that the high diversified duplicates resulting from tandem duplications tend to have lineage-specific functions, whereas the low diversified duplicates produced by whole-genome duplications are related to essential signaling pathways. To assess the evolutionary impact of high and low diversified duplicates in closely related species, we compared the retention rates and selection pressures on the orthologs of A. thaliana duplicates in two closely related species. Interestingly, high diversified duplicates resulting from tandem duplications tend to be retained in multiple lineages under positive selection. Low diversified duplicates by whole-genome duplications tend to be retained in multiple lineages under purifying selection. Taken together, the functional diversities determined by different duplication mechanisms had distinct effects on plant evolution.  相似文献   

9.
Males and females share most of the same genes, so selection in one sex will typically produce a correlated response in the other sex. Yet, the sexes have evolved to differ in a multitude of behavioral, morphological, and physiological traits. How did this sexual dimorphism evolve despite the presence of a common underlying genome? We investigated the potential role of gene duplication in the evolution of sexual dimorphism. Because duplication events provide extra genetic material, the sexes each might use this redundancy to facilitate sex‐specific gene expression, permitting the evolution of dimorphism. We investigated this hypothesis at the genome‐wide level in Drosophila melanogaster, using the presence of sex‐biased expression as a proxy for the sex‐specific specialization of gene function. We expected that if sexually antagonistic selection is a potent force acting upon individual genes, duplication will result in paralog families whose members differ in sex‐biased expression. Gene members of the same duplicate family can have different expression patterns in males versus females. In particular, duplicate pairs containing a male‐biased gene are found more frequently than expected, in agreement with previous studies. Furthermore, when the singleton ortholog is unbiased, duplication appears to allow one of the paralog copies to acquire male‐biased expression. Conversely, female‐biased expression is not common among duplicates; fewer duplicate genes are expressed in the female‐soma and ovaries than in the male‐soma and testes. Expression divergence exists more in older than in younger duplicates pairs, but expression divergence does not correlate with protein sequence divergence. Finally, genomic proximity may have an effect on whether paralogs differ in sex‐biased expression. We conclude that the data are consistent with a role of gene duplication in fostering male‐biased, but not female‐biased, gene expression, thereby aiding the evolution of sexual dimorphism.  相似文献   

10.
11.
Katju V  Lynch M 《Genetics》2003,165(4):1793-1803
The significance of gene duplication in provisioning raw materials for the evolution of genomic diversity is widely recognized, but the early evolutionary dynamics of duplicate genes remain obscure. To elucidate the structural characteristics of newly arisen gene duplicates at infancy and their subsequent evolutionary properties, we analyzed gene pairs with < or =10% divergence at synonymous sites within the genome of Caenorhabditis elegans. Structural heterogeneity between duplicate copies is present very early in their evolutionary history and is maintained over longer evolutionary timescales, suggesting that duplications across gene boundaries in conjunction with shuffling events have at least as much potential to contribute to long-term evolution as do fully redundant (complete) duplicates. The median duplication span of 1.4 kb falls short of the average gene length in C. elegans (2.5 kb), suggesting that partial gene duplications are frequent. Most gene duplicates reside close to the parent copy at inception, often as tandem inverted loci, and appear to disperse in the genome as they age, as a result of reduced survivorship of duplicates located in proximity to the ancestral copy. We propose that illegitimate recombination events leading to inverted duplications play a disproportionately large role in gene duplication within this genome in comparison with other mechanisms.  相似文献   

12.
The origin and subsequent evolution of new genes have been considered as an important source of genetic and phenotypic diversity in organisms. Dog breeds show great phenotypic diversity for morphological, physiological, and behavioral traits. However, the contributions of newly originated retrogenes, which provide important genetic bases for dog species differentiation and adaptive traits, are largely unknown. Here, we analyzed the dog genome to identify new RNA‐based duplications and comprehensively investigated their origin, evolution, functions in adaptive traits, and gene movement processes. First, we totally identified 3,025 retrocopies including 476 intact retrogenes, 2,518 retropseudogenes, and 31 chimerical retrogenes. Second, selective pressure along with ESTs expression analysis showed that most of the intact retrogenes were significantly under stronger purifying selection and subjected to more functional constraints when compared to retropseudogenes. Furthermore, a large number of retrocopies and chimerical retrogenes that occurred approximately 22 million years ago implied a burst of retrotransposition in the dog genome after the divergence time between dog and its closely related species red fox. Interestingly, GO and pathway analyses showed that new retrogenes had expanded in glutathione biosynthetic/metabolic process which likely provided important genetic basis for dogs' adaptation to scavenge human waste dumps. Finally, consistent with the results in human and mouse, a significant excess of functional retrogenes movement on and off the X chromosome in the dog confirmed a general pattern of gene movement process in mammals which was likely driven by natural selection or sexual antagonism. Together, these results increase our understanding that new retrogenes can reshape the dog genome and provide further exploration of the molecular mechanisms underlying the dogs' adaptive evolution.  相似文献   

13.

Background

Gene duplication is an important mechanism that can lead to the emergence of new functions during evolution. The impact of duplication on the mode of gene evolution has been the subject of several theoretical and empirical comparative-genomic studies. It has been shown that, shortly after the duplication, genes seem to experience a considerable relaxation of purifying selection.

Results

Here we demonstrate two opposite effects of gene duplication on evolutionary rates. Sequence comparisons between paralogs show that, in accord with previous observations, a substantial acceleration in the evolution of paralogs occurs after duplication, presumably due to relaxation of purifying selection. The effect of gene duplication on evolutionary rate was also assessed by sequence comparison between orthologs that have paralogs (duplicates) and those that do not (singletons). It is shown that, in eukaryotes, duplicates, on average, evolve significantly slower than singletons. Eukaryotic ortholog evolutionary rates for duplicates are also negatively correlated with the number of paralogs per gene and the strength of selection between paralogs. A tally of annotated gene functions shows that duplicates tend to be enriched for proteins with known functions, particularly those involved in signaling and related cellular processes; by contrast, singletons include an over-abundance of poorly characterized proteins.

Conclusions

These results suggest that whether or not a gene duplicate is retained by selection depends critically on the pre-existing functional utility of the protein encoded by the ancestral singleton. Duplicates of genes of a higher biological import, which are subject to strong functional constraints on the sequence, are retained relatively more often. Thus, the evolutionary trajectory of duplicated genes appears to be determined by two opposing trends, namely, the post-duplication rate acceleration and the generally slow evolutionary rate owing to the high level of functional constraints.
  相似文献   

14.
15.
Ponce R  Hartl DL 《Gene》2006,376(2):174-183
The origin of new genes and of new functions for existing genes are fundamental processes in molecular evolution. Sdic is a newly evolved gene that arose recently in the D. melanogaster lineage. The gene encodes a novel sperm motility protein. It is a chimeric gene formed by duplication of two other genes followed by multiple deletions and other sequence rearrangements. The Sdic gene exists in several copies in the X chromosome, and is presumed to have undergone several duplications to form a tandemly arrayed gene cluster. Given the very recent origin of the gene and the gene cluster, the analysis of the composition of this gene cluster represents an excellent opportunity to study the origin and evolution of new gene functions and the fate of gene duplications. We have analyzed the nucleotide sequence of this region and reconstructed the evolutionary history of this gene cluster. We found that the cluster is composed by four tandem copies of Sdic; these duplicates are very similar but can be distinguished by the unique pattern of insertions, deletions, and point mutations in each copy. The oldest gene copy in the array has a 3' exon that has undergone accelerated diversification, and also shows divergent regulatory sequences. Moreover, there is evidence that this might be the only gene copy in the tandem array that is transcribed at a significant level, expressing a novel sperm-specific protein. There is also a retrotransposon located at the 3' end of each Sdic gene copy. We argue that this gene cluster was formed in the last two million years by at least three tandem duplications and one retrotransposition event.  相似文献   

16.
基因倍增研究进展   总被引:2,自引:0,他引:2  
李鸿健  谭军 《生命科学》2006,18(2):150-154
基因倍增是指DNA片段在基因组中复制出一个或更多的拷贝,这种DNA片段可以是一小段基因组序列、整条染色体,甚至是整个基因组。基因倍增是基因组进化最主要的驱动力之一,是产生具有新功能的基因和进化出新物种的主要原因之一。本文综述了脊椎动物、模式植物和酵母在进化过程中基因倍增研究领域的最新进展,并讨论了基因倍增研究的发展方向。  相似文献   

17.
Wang W  Zheng H  Fan C  Li J  Shi J  Cai Z  Zhang G  Liu D  Zhang J  Vang S  Lu Z  Wong GK  Long M  Wang J 《The Plant cell》2006,18(8):1791-1802
Retroposition is widely found to play essential roles in origination of new mammalian and other animal genes. However, the scarcity of retrogenes in plants has led to the assumption that plant genomes rarely evolve new gene duplicates by retroposition, despite abundant retrotransposons in plants and a reported long terminal repeat (LTR) retrotransposon-mediated mechanism of retroposing cellular genes in maize (Zea mays). We show extensive retropositions in the rice (Oryza sativa) genome, with 1235 identified primary retrogenes. We identified 27 of these primary retrogenes within LTR retrotransposons, confirming a previously observed role of retroelements in generating plant retrogenes. Substitution analyses revealed that the vast majority are subject to negative selection, suggesting, along with expression data and evidence of age, that they are likely functional retrogenes. In addition, 42% of these retrosequences have recruited new exons from flanking regions, generating a large number of chimerical genes. We also identified young chimerical genes, suggesting that gene origination through retroposition is ongoing, with a rate an order of magnitude higher than the rate in primates. Finally, we observed that retropositions have followed an unexpected spatial pattern in which functional retrogenes avoid centromeric regions, while retropseudogenes are randomly distributed. These observations suggest that retroposition is an important mechanism that governs gene evolution in rice and other grass species.  相似文献   

18.
Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths.  相似文献   

19.
The Saccharomyces cerevisiae genome sequence, augmented by new data on gene expression and function, continues to yield new findings about eukaryote genome evolution. Analysis of the duplicate gene pairs formed by whole-genome duplication indicates that selection for increased levels of gene expression was a significant factor determining which genes were retained as duplicates and which were returned to a single-copy state, possibly in addition to selection for novel gene functions. Proteome comparisons between worm and yeast show that genes for core metabolic processes are shared among eukaryotes and unchanging in function, while comparisons between different yeast species identify 'orphan' genes as the most rapidly evolving fraction of the proteome. Natural hybridisation among yeast species is frequent, but its long-term evolutionary significance is unknown.  相似文献   

20.
Divergence in expression between duplicated genes in Arabidopsis   总被引:2,自引:0,他引:2  
New genes may arise through tandem duplication, dispersed small-scale duplication, and polyploidy, and patterns of divergence between duplicated genes may vary among these classes. We have examined patterns of gene expression and coding sequence divergence between duplicated genes in Arabidopsis thaliana. Due to the simultaneous origin of polyploidy-derived gene pairs, we can compare covariation in the rates of expression divergence and sequence divergence within this group. Among tandem and dispersed duplicates, much of the divergence in expression profile appears to occur at or shortly after duplication. Contrary to findings from other eukaryotic systems, there is little relationship between expression divergence and synonymous substitutions, whereas there is a strong positive relationship between expression divergence and nonsynonymous substitutions. Because this pattern is pronounced among the polyploidy-derived pairs, we infer that the strength of purifying selection acting on protein sequence and expression pattern is correlated. The polyploidy-derived pairs are somewhat atypical in that they have broader expression patterns and are expressed at higher levels, suggesting differences among polyploidy- and nonpolyploidy-derived duplicates in the types of genes that revert to single copy. Finally, within many of the duplicated pairs, 1 gene is expressed at a higher level across all assayed conditions, which suggests that the subfunctionalization model for duplicate gene preservation provides, at best, only a partial explanation for the patterns of expression divergence between duplicated genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号