首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为了更好地理解放牧对草原生态系统物种多度分布格局的影响, 以及常见种和稀有种对维持群落多样性的作用, 以内蒙古典型草原为研究对象, 基于长期放牧控制实验平台(包括7个载畜率水平(0、1.5、3.0、4.5、6.0、7.5、9.0 sheep·hm-2)和两种地形系统(平地和坡地)), 研究了群落内全部物种、常见种和稀有种的丰富度和多度对放牧强度的响应规律, 并选取对数正态模型、对数级数模型和幂分割模型, 对物种多度数据进行拟合。结果表明: 1)平地系统中, 物种丰富度和多度在低放牧强度下(1.5、3.0 sheep·hm-2)增加, 而在中、高度放牧强度下(4.5-9.0 sheep·hm-2)降低, 全部物种的多度分布在大多数放牧强度下符合幂分割模型, 在高放牧强度下也符合对数正态模型; 坡地系统中, 物种丰富度和多度随着放牧强度增加而显著降低, 全部物种的多度分布在各个放牧强度下, 均符合幂分割模型和对数正态模型。2)随着放牧强度增加, 常见种的多度响应趋势与全部物种的响应趋势一致, 其多度分布均符合幂分割模型和对数正态模型; 稀有种的丰富度响应趋势与全部物种的响应趋势一致, 其多度分布符合幂分割模型, 同时也部分符合对数正态和对数级数模型。总之, 适宜的载畜率有利于生物多样性和初级生产力的提高, 平地系统中物种多度的响应在一定程度上支持放牧优化假说; 而坡地系统中不同物种多度的响应差异说明: 确定最佳载畜率时, 还需要考虑地形因素的影响。此外, 模型的拟合结果表明: 生态位分化机制对内蒙古典型草原物种多度分布起着主要作用, 常见种和稀有种通过不同的响应方式共同维持着草原生态系统的物种多样性。  相似文献   

3.
4.
5.
6.
1. Grasshoppers are dominant herbivores in grassland ecosystems, and many studies have examined how grazing by large herbivores and precipitation patterns individually influence the dynamics of grassland grasshopper assemblages, but their combined effects are largely unknown. 2. In this study, grazing intensities (ungrazed, moderate, and heavy) were manipulated and precipitation (ambient and increased amount of rainfall) altered in a field experiment to test the effects of grazing and altered precipitation on a grasshopper community in a meadow steppe in northeastern China. 3. It was found that grasshopper species richness did not change according to different grazing intensities under ambient precipitation, but was significantly higher (by 38.1%) in moderate grazing intensities under increased precipitation. Grasshopper abundance increased considerably with increasing grazing intensities in ambient precipitation treatments; however, grasshopper abundance in heavy grazing intensities was significantly lower (by 32.9%) than in the other two grazing intensities under increased precipitation. Moreover, the responses of grasshopper abundance to grazing under altered precipitation were species‐specific. 4. Grazing effects on grasshopper species diversity were mediated through the species richness and biomass of grasses (food resources), but the effects on grasshopper abundance were mediated through plant height (vegetation structure) under altered precipitation. 5. These results suggest that appropriate grazing by large herbivores would be considered as beneficial management practices for maintaining grasshopper diversity and abundance under conditions of increased precipitation in grassland ecosystems. Additionally, greater attention should be paid to the population dynamics of different grasshopper species to better understand the responses of grasslands to grazing and altered precipitation.  相似文献   

7.
《Plant Ecology & Diversity》2013,6(5-6):509-520
Background: Burial mounds (kurgans) of Eurasian steppes are man-made habitat islands that have the potential to harbour rich plant diversity due to micro-habitats associated with their topography.

Aims: We assessed whether kurgan micro-habitats harboured different species pools and functional groups from those found on the surrounding steppes. In addition, we asked if these mounds were affected by different grazing intensities from those on the surrounding vegetation.

Methods: We surveyed kurgan micro-habitats (northern and southern slopes, surrounding ditch) and adjacent steppe plains in non-grazed, moderately grazed and heavily grazed sites in northern Kazakhstan. We analysed differences in species composition of four habitats under three grazing regimes using Generalised Linear Mixed Models, PCA ordination and indicator species analysis.

Results: Kurgan micro-habitats had diverse vegetation and supported the co-existence of plant species with different environmental needs. We identified 16 steppe specialists confined to kurgan micro-habitats. Steppe vegetation was well-adapted to extensive grazing, although heavy grazing supported ruderals and a decline in steppe specialists. There was a significant interaction between grazing intensity and habitat type: heavy grazing supported ruderals and suppressed steppe specialists especially on the slopes.

Conclusions: We highlighted that kurgans play an important role as maintaining high plant diversity locally in extensive steppe plains in Central-Asia by increasing environmental heterogeneity and supporting specialist species confined to these micro-habitats.  相似文献   

8.
1. Understanding how foraging decisions take place at the local scale is relevant because they may directly affect the fitness of individual plants. However, little is known about how local diversity and density affect the foraging behaviour of most pollinator groups. 2. By introducing two potted plant species (Salvia farinacae and Tagetes bonanza) into two populations of Taraxacum officinale, we investigated how plant identity, the mixtures of these plant species, and total plant density affected the attraction to and the foraging within a patch for six pollinator groups. 3. The foraging behaviour was mainly driven by the availability of the preferred plant species, and secondly by patch diversity and density. In general, dense patches and those containing the three‐species mixture were preferred by all insect groups for arrival, although muscoid and hover flies responded less to local floral composition than bees. Local diversity and density had, however, a weaker effect on foraging behaviour within patches. Site dependence in response to floral treatments could be attributable to differences between sites in pollinator assemblage and Taraxacum density. 4. Studies like ours will help to understand how foraging decisions occur at the local scale and how foraging patterns may differ between pollinators and sites.  相似文献   

9.
10.
11.
A growing food demand and advanced agricultural techniques increasingly affect farmland ecosystems, threatening invertebrate populations with cascading effects along the food chain upon insectivorous vertebrates. Supporting farmland biodiversity thus optimally requires the delineation of species hotspots at multiple trophic levels to prioritize conservation management. The goal of this study was to investigate the links between grassland management intensity and orthopteran density at the field scale and to upscale this information to the landscape in order to guide management action at landscape scale. More specifically, we investigated the relationships between grassland management intensity, floral indicator species, and orthopteran abundance in grasslands with different land use in the SW Swiss Alps. Field vegetation surveys of indicator plant species were used to generate a management intensity proxy, to which field assessments of orthopterans were related. Orthopteran abundance showed a hump‐shaped response to management intensity, with low values in intensified, nutrient‐rich grasslands and in nutrient‐poor, xeric grasslands, while it peaked in middle‐intensity grasslands. Combined with remote‐sensed data about grassland gross primary productivity, the above proxy was used to build landscape‐wide, spatially explicit projections of the potential distribution of orthopteran‐rich grasslands as possible foraging grounds for insectivorous vertebrates. This spatially explicit multitrophic approach enables the delineation of focal farmland areas in order to prioritize conservation action.  相似文献   

12.
1.  There are myriad ways in which pollinators and herbivores can interact via the evolutionary and behavioural responses of their host plants.
2.  Given that both herbivores and pollinators consume and are dependent upon plant-derived nutrients and secondary metabolites, and utilize plant signals, plant chemistry should be one of the major factors mediating these interactions.
3.  Here we build upon a conceptual framework for understanding plant-mediated interactions of pollinators and herbivores. We focus on plant chemistry, in particular plant volatiles and aim to unify hypotheses for plant defence and pollination. We make predictions for the evolutionary outcomes of these interactions by hypothesizing that conflicting selection pressures from herbivores and pollinators arise from the constraints imposed by plant chemistry.
4.  We further hypothesize that plants could avoid conflicts between pollinator attraction and herbivore defence through tissue-specific regulation of pollinator reward chemistry, as well as herbivore-induced changes in flower chemistry and morphology.
5.  Finally, we test aspects of our predictions in a case study using a wild tomato species, Solanum peruvianum , to illustrate the diversity of tissue-specific and herbivore-induced differences in plant chemistry that could influence herbivore and pollinator behaviour, and plant fitness.  相似文献   

13.
1. Pollinating insects provide important ecosystem services and are influenced by the intensity of grazing. Based on the Intermediate Disturbance Hypothesis (IDH), pollinator diversity is expected to peak at intermediate grazing intensities. However, this hump‐shaped relationship is rarely found. 2. The effect of grazing intensity was tested on flower cover, on the abundance and richness of bees, hoverflies and bee flies, and on pollination services to early‐flowering bee‐pollinated Asphodelus ramosus L. For that, we used data on 11 plant–pollinator phryganic communities from Lesvos Island (Greece) widely differing in grazing intensities. 3. Flower abundance and richness showed hump‐shaped relationships with grazing intensity. Grazing affected the abundance and richness of bees and hoverflies directly and also indirectly, through changes in the flower community. Grazing influenced directly the richness but not the abundance of bee flies. Overall, pollinator abundance and richness showed hump‐shaped relationships with grazing intensity, but variations in strength (hoverfly abundance) and direction (bee community) of the effect appeared along the season. Early in the season, grazing increased bee abundance but decreased richness, resulting in increased pollen limitation in A. ramosus. 4. The effects of grazing on pollinators vary with the intensity of the disturbance, generally supporting the IDH, and the timing of land‐use activities may influence pollination services. Management strategies should include moderate grazing levels to preserve overall diversity in this area, however, the conservation of particular early bee or bee‐pollinated species may benefit from reduced grazing in early spring.  相似文献   

14.
Abstract Fire intensity measures the heat output of a fire, and variation in fire intensity has been shown to have many effects on the demography of plant species, although the consequent effects on the floristic composition of communities have rarely been quantified. The effects of variation in fire intensity on the floristic composition of dry sclerophyll vegetation with different fire histories near Sydney was estimated. In particular, differences in species abundance of woodland and shrubland communities subjected to four fire‐intensity classes: unburnt, low intensity (<500 kW m?1), medium intensity (500–2500 kW m?1) and high intensity (>2500 kW m?1) were examined. The samples had a standardized previous fire frequency and season, thus minimizing the effects of other aspects of the fire regime. There was a clear effect of fire intensity on the relative abundances of the vascular plant species, with increasing intensity of the fire producing vegetation that was increasingly different from the unburnt vegetation. This pattern was repeated in both the woodland and shrubland vegetation types, suggesting that it was not an artefact of the experimental conditions. However, the effects of fire intensity on floristic composition were no greater than were the differences between these two similar vegetation types, with variation in fire intensity accounting for only approximately 10% of the floristic variation. Nevertheless, the effects of fire intensity on the abundance of individual species were consistent across taxonomic groups, with the monocotyledon and Fabaceae species being more abundant at higher than lower intensities, the Proteaceae and Rutaceae more abundant at intermediate intensities, and the Epacridaceae more abundant at lower rather than higher intensities. The number of fire‐tolerant species increased with increasing fire intensity, and those fire‐tolerant species present were most abundant in the areas burnt with medium intensity. The number of fire‐sensitive species did not respond to fire intensity, and those species present were most abundant in the areas burnt with low intensity. This suggests that either fire‐sensitive species respond poorly to higher fire intensities or fire‐tolerant species respond poorly to lower fire intensities, perhaps because of differences in seed germination, seedling survival or competition among adults.  相似文献   

15.
Summary In field experiments withAralia hispida inflorescences, the following variables were manipulated: number of umbels per inflorescence, number of flowers per umbel, and amounts of pollen and nectar per flower. Visitation rates by bumble bees, the principal pollinators, were then observed. In the reward-variation experiments, bees appeared to learn the positions of nectar-rich shoots, and visited them significantly more often than nectar-poor shoots. They did not respond to similar variation in pollen production. The nectar preferences developed slowly after the treatments were imposed, and bees continued to favor sites that had been occupied by nectar-rich shoots even after the treatments were discontinued. Visitation rate was approximately proportional to flower number, making it unlikely that increases in inflorescence size produced a disproportionate gain in male reproductive success (a necessary condition in certain models for the evolution of dioecy). For a fixed number of flowers per inflorescence, bees preferred inflorescences with more umbels. In pairwise choice tests of male-phase and female-phase umbels of various sizes, bees preferred male-phase umbels and larger umbels; the preference for male-phase umbels is stronger in bees that had previously fed on male-phase umbels.  相似文献   

16.
17.
18.
Predicting the consequences of land-cover change on tropical biotas is a pressing task. However, testing the applicability of models developed with data from one region to another region has rarely been done. Bird faunas were sampled along 3.0-km routes in southern Costa Rica (Coto Brus) to develop statistical models to describe the abundance and richness of groups as a function of land-cover characteristics. The relative value of the land-cover models was assessed by comparing them with null models. The generalizability of the models was tested with data from north-western Costa Rica (Monteverde) to determine whether the models were applicable to another area that has undergone significant land-cover change in the last 60 years. The richness and abundance of understory, open-country and edge non-insectivore groups showed clear relationships with land-cover variables, and the land-cover models had lower prediction errors than the null models for Coto Brus. With one exception, useful models for canopy birds, edge insectivores and hummingbirds could not be developed. The land-cover models of abundance of canopy insectivores, understory insectivores and non-insectivores, and edge non-insectivores were generalizable to Monteverde whereas the land-cover models of abundance of open-country birds and species richness for any of the groups were not better than null models for Monteverde. The results indicate that land-cover models that describe the abundance or richness of various bird groups provide useful predictions in the area where the data were collected and that models of abundance of some canopy, understory and edge birds may perform well in areas that are similar in elevation, life zones and land use to the area from which data were collected. Land-cover models of the abundance of other groups, and of the richness of the majority of groups, may be less generalizable to other areas, or it may be difficult to develop models at all.  相似文献   

19.
Abstract This field study was designed to test whether the taxonomic group and geographic range size of a host plant species, usually found to influence insect species richness in other parts of the world, affected the number of gall species on Australian eucalypts. We assessed the local and regional species richness of gall-forming insects on five pairs of closely related eucalypt species. One pair belonged to the subgenus Corymbia, one to Monocalyptus, and three to different sections of Symphyomyrtus. Each eucalypt pair comprised a large and a small geographic range species. Species pairs were from coastal or inland regions of eastern Australia. The total number of gall species on eucalypt species with large geographic ranges was greater than on eucalypt species with small ranges, but only after the strong effect of eucalypt taxonomic grouping was taken into account. There was no relationship between the geographic range size of eucalypt species and the size of local assemblages of gall species, but the variation in insect species composition between local sites was higher on eucalypt species with large ranges than on those with small ranges. Thus the effect of host plant range size on insect species richness was due to greater differentiation between more widespread locations, rather than to greater local species richness. This study confirms the role of the geographic range size of a host plant in the determination of insect species richness and provides evidence for the importance of the taxon of a host plant.  相似文献   

20.
1. The effects of eutrophication on phytoplankton, zooplankton and fish in lakes are well known. By contrast, little is known about the response of the zoobenthos to nutrient enrichment, while smaller organisms, such as the meiofauna, have for the most part been neglected. 2. In a long‐term (16 months) microcosm experiment, we assessed the effects of five levels of nutrients [total phosphorus (TP), 7–250 μg L?1; nitrate, 2–8 mg L?1] on a freshwater meiofaunal assemblage and on nematode diversity in particular. 3. Within the first 8 months, meiofaunal succession was only weakly affected, whereas, during the last 4 months, nutrient addition influenced most of the main taxa, with a concomitant change in the assemblage structure. 4. The density of the numerically dominant nematodes decreased upon nutrient enrichment, whereas ostracods became more numerous. Other taxa, including copepods, reached a maximum at intermediate nutrient levels or, in case of oligochaetes, were almost unaffected by nutrient enrichment. However, the changes in the density of the main taxa were usually insufficient to alter their biomass. Consequently, meiofaunal biomass was remarkably unresponsive to nutrient addition, while meiofaunal density displayed a unimodal relationship, with a peak at a TP concentration of 30 μg L?1. In addition, nematode species richness decreased significantly with increasing nutrient concentrations. 5. We hypothesise that the response of meiofaunal taxa to nutrients is attributable to the development of primary producers, which shifted with enrichment from low densities of edible diatoms and unicellular green algae to large standing stocks of inedible forms, such as Lemna minor and Cladophora spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号