首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen is a critical factor for plant development and nitrogen input is one of the important tactics to enhance the development and yield of crops. Nevertheless, nitrogen input could influence the occurrence of insects positively or negatively. Nitrogen is also one of the main elements composing the insecticidal crystal (Cry) protein. Cry protein production could affect nitrogen partitioning in Bt plants and as such nitrogen input may influence insect pest management in transgenic Bt rice, Oryza sativa L. (Poaceae). To test this possibility, we evaluated the impacts of nitrogen regimes on the main insect pests and their predators on two Bt rice lines, T2A‐1 and T1C‐19, expressing Cry2A and Cry1C, respectively, and their non‐transgenic parental counterpart MH63. The results showed that Cry proteins with different nitrogen regimes have enough insecticidal activity on rice leaffolder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Crambidae), in both laboratory and field experiments. Laboratory studies indicated that relevant parameters of ecological fitness in brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a non‐target insect pest, were significantly affected by nitrogen input both on Bt and MH63 rice lines. Nymphal survival, female adult longevity, and egg hatchability in N. lugens differed significantly among rice varieties. The experiments conducted in rice fields also demonstrated that nitrogen was positively correlated with the abundance of N. lugens on Bt rice, similar to that on MH63 rice. The abundances of two predators – the wolf spider Pirata subpiraticus (Boesenberg & Strand) (Araneae: Lycosidae) and the bug Cyrthorhinus lividipennis Reuter (Hemiptera: Miridae) – were significantly affected by rice growth stages but not by nitrogen input and rice varieties. In conclusion, the above results indicate that high nitrogen regimes for Bt rice (T2A‐1 and T1C‐19) and non‐Bt rice (MH63) cannot facilitate the management of insect pests.  相似文献   

2.
Two transgenic rice lines (T2A‐1 and T1C‐19b) expressing cry2A and cry1C genes, respectively, were developed in China, targeting lepidopteran pests including Chilo suppressalis (Walker) (Lepidoptera: Crambidae). The seasonal expression of Cry proteins in different tissues of the rice lines and their resistance to C. suppressalis were assessed in comparison to a Bt rice line expressing a cry1Ab/Ac fusion gene, Huahui 1, which has been granted a biosafety certificate. In general, levels of Cry proteins were T2A‐1 > Huahui 1 > T1C‐19b among rice lines, and leaf > stem > root among rice tissues. The expression patterns of Cry protein in the rice line plants were similar: higher level at early stages than at later stages with an exception that high Cry1C level in T1C‐19b stems at the maturing stage. The bioassay results revealed that the three transgenic rice lines exhibited significantly high resistance against C. suppressalis larvae throughout the rice growing season. According to Cry protein levels in rice tissues, the raw and corrected mortalities of C. suppressalis caused by each Bt rice line were the highest in the seedling and declined through the jointing stage with an exception for T1C‐19b providing an excellent performance at the maturing stage. By comparison, T1C‐19b exhibited more stable and greater resistance to C. suppressalis larvae than T2A‐1, being close to Huahui 1. The results suggest cry1C is an ideal Bt gene for plant transformation for lepidopteran pest control, and T1C‐19b is a promising Bt rice line for commercial use for tolerating lepidopteran rice pests.  相似文献   

3.
杀虫晶体蛋白(insecticidal crystal proteins,ICPs;含有Cry和Cyt 2大家族)和营养期杀虫蛋白(vegetative insecticidal proteins,Vips)等Bt杀虫蛋白可有效防治鳞翅目害虫,其中Cry应用最广泛。然而,一些地区的鳞翅目害虫已对Bt杀虫蛋白产生了抗性。目前,普遍认为鳞翅目昆虫中肠受体与Bt杀虫蛋白结合能力的改变是导致其对Bt杀虫蛋白产生抗性的最主要因素。在鳞翅目昆虫中,Cry受体是研究得最为透彻的Bt受体,已经被证实的有氨肽酶N、钙黏蛋白、碱性磷酸酶和ABC转运蛋白等。Vips杀虫蛋白类与鳞翅目昆虫中肠受体的结合方式与Cry杀虫蛋白相似,但结合位点与Cry杀虫蛋白不同。本文从结构特点、作用机制及不同鳞翅目昆虫间的表达差异等角度对以上4种鳞翅目昆虫中肠Bt受体进行了综述,并提出如下展望:(1)以棉铃虫或小菜蛾等鳞翅目昆虫为农业害虫模式生物进行深入研究,阐明其对Bt杀虫蛋白产生抗性的机制,为研究其他鳞翅目农业害虫对Bt杀虫蛋白产生抗性的机制提供理论借鉴;(2)鉴于在不同鳞翅目昆虫间,中肠Bt受体与Bt杀虫蛋白结合存在差异,且同一Bt杀虫蛋白与鳞翅目昆虫Bt受体并不专一性结合,Bt杀虫蛋白多基因组合策略是较为有效的田间鳞翅目昆虫防治策略,是今后一段时间内Bt杀虫蛋白应用的发展方向。  相似文献   

4.
The peptide ω‐Hexatoxin‐Hv1a (Hvt) is one of the most studied spider toxins. Its insecticidal potential has been reported against species belonging to the arthropod orders Lepidoptera, Diptera and Orthoptera. The gene encoding Hvt has been transformed into cotton and tobacco to protect the plants from damage by lepidopteran pests. This study evaluated the expression of the ω‐HXTX‐Hv1a gene in transgenic plants, and the toxicity of plant‐expressed and purified Hvt on target lepidopteran insects and on several non‐target species. Transgenic Bollgard II cotton plants, which produce Cry1Ac and Cry2Ab2 and purified Cry2Ab2 protein were included in the study as comparators. LC95 values of purified Hvt against Spodoptera littoralis and Heliothis virescens were 28.31 and 27.57 μg/ml of artificial diet, respectively. Larval mortality was 100% on Hvt‐transgenic tobacco plants but not on Hvt‐transgenic cotton, probably because of the significantly lower toxin expression level in the transgenic cotton line. Non‐target studies were conducted with larvae of the predators Chrysoperla carnea and Coccinella septempunctata, adults of the aphid parasitoid Aphidius colemani, and adult workers of the honey bee, Apis mellifera. Even at 40 μg/ml, Hvt did not adversely affect the four non‐target species. Purified Cry2Ab2 at 10 μg/ml also did not adversely affect any of the non‐target species. Our results show that Hvt might be useful for developing insecticidal plant varieties to control pest Lepidoptera.  相似文献   

5.
以Bt水稻华恢1号(Cry1Ac和CryAb融合基因;简称HH1)及其对照亲本明恢63(简称MH63)稻田靶标害虫二化螟Chilosuppressalis和次靶标害虫大螟Sesamia inferens为研究对象,研究了转基因抗虫水稻大田螟虫发生规律及其靶标和次靶标害虫致害力差异。结果表明,Bt水稻及其对照亲本上二化螟或大螟的卵块数量差异不显著,同时,对照亲本上二化螟与大螟的落卵量差异不显著,但Bt水稻上二化螟的落卵量显著大于大螟。与对照亲本相比,Bt水稻上二化螟幼虫发生量显著降低,降幅高达84.9%—100%,但大螟发生量差异不显著;此外,对照亲本上二化螟幼虫发生量显著高于大螟,但Bt水稻上两者差异不显著。同时,Bt水稻上二化螟导致的枯心/白穗率和受害丛率都显著低于其在对照亲本上的致害程度,降幅分别为30.8%—98.3%和11.4%—96.6%,而大螟差异不显著。可见,Bt水稻对靶标害虫二化螟具有较高抗性,而对次靶标害虫大螟的抗性不明显。另一方面,Bt水稻和对照亲本上二化螟导致的枯心/白穗率和受害从率都显著高于大螟。可见,二化螟仍是当前非转基因水稻上的主要害虫,而Bt水稻对二化螟幼虫发生的显著抑制作用以及对大螟幼虫发生的不显著影响,使得其大面积商业化种植下靶标害虫二化螟和次靶标害虫大螟间的竞争替代成为可能。  相似文献   

6.
Development of resistance to the insecticidal toxins from Bacillus thuringiensis (Bt) in insects is the major threat to the continued success of transgenic Bt crops in agriculture. The fitness of Bt‐resistant insects on Bt and non‐Bt plants is a key parameter that determines the development of Bt resistance in insect populations. In this study, a comprehensive analysis of the fitness of Bt‐resistant Trichoplusia ni strains on Bt cotton leaves was conducted. The Bt‐resistant T. ni strains carried two genetically independent mechanisms of resistance to Bt toxins Cry1Ac and Cry2Ab. The effects of the two resistance mechanisms, individually and in combination, on the fitness of the T. ni strains on conventional non‐Bt cotton and on transgenic Bt cotton leaves expressing a single‐toxin Cry1Ac (Bollgard I) or two Bt toxins Cry1Ac and Cry2Ab (Bollgard II) were examined. The presence of Bt toxins in plants reduced the fitness of resistant insects, indicated by decreased net reproductive rate (R0) and intrinsic rate of increase (r). The reduction in fitness in resistant T. ni on Bollgard II leaves was greater than that on Bollgard I leaves. A 12.4‐day asynchrony of adult emergence between the susceptible T. ni grown on non‐Bt cotton leaves and the dual‐toxin‐resistant T. ni on Bollgard II leaves was observed. Therefore, multitoxin Bt plants not only reduce the probability for T. ni to develop resistance but also strongly reduce the fitness of resistant insects feeding on the plants.  相似文献   

7.
Understanding the behavior of pests targeted with Bacillus thuringiensis Berliner (Bt) crops is important to define resistance management strategies. Particularly the study of larval movement between plants is important to determine the feasibility of refuge configurations. Exposure to Bt maize, Zea mays L. (Poaceae), has been suggested to increase larval movement in lepidopteran species but few studies have examined the potential for resistance to interact with behavioral responses to Bt toxins. Choice and no‐choice experiments were conducted with Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) to determine whether Cry1F resistance influences neonate movement. Leaf discs of Cry1F maize and the corresponding isoline were used to characterize behavioral responses. In both experiments, the location (on or off of plant tissues) and mortality of susceptible and Cry1F resistant neonates was recorded for 5 days, but the analysis of larvae location was performed until 7 h. Our results indicated no strong difference between resistant and susceptible phenotypes in S. frugiperda and O. nubilalis, although a small percentage of susceptible neonates in both species abandoned maize tissue expressing Cry1F. However, significant behavioral differences were observed between species. Ostrinia nubilalis exhibited increased movement between leaf discs, whereas S. frugiperda selected plant tissue within the first 30 min and remained on the chosen plant regardless of the presence of Cry1F. Spodoptera frugiperda reduced larval movement may have implications to refuge configuration. This study represents the first step toward understanding the effects of Cry1F resistance on Lepidoptera larval behavior. Information regarding behavioral differences between species could aid in developing better and more flexible resistance management strategies.  相似文献   

8.
The rice stem borer, Chilo suppressalis, is one of the most damaging insect pests to rice production worldwide. Although C. suppressalis has been the focus of numerous studies examining cold tolerance and diapause, plant–insect interactions, pesticide targets and resistance, and the development of RNAi‐mediated pest management, the absence of a high‐quality genome has limited deeper insights. To address this limitation, we generated a draft C. suppressalis genome constructed from both Illumina and PacBio sequences. The assembled genome size was 824.35 Mb with a contig N50 of 307 kb and a scaffold N50 of 1.75 Mb. Hi‐C scaffolding assigned 99.2% of the bases to one of 29 chromosomes. Based on universal single‐copy orthologues (BUSCO), the draft genome assembly was estimated to be 97% complete and is predicted to encompass 15,653 protein‐coding genes. Cold tolerance is an extreme survival strategy found in animals. However, little is known regarding the genetic basis of the winter ecology of C. suppressalis. Here, we focused our orthologous analysis on those gene families associated with animal cold tolerance. Our finding provided the first genomic evidence revealing specific cold‐tolerant strategies in C. suppressalis, including those involved in glucose‐originated glycerol biosynthesis, triacylglycerol‐originated glycerol biosynthesis, fatty acid synthesis and trehalose transport‐intermediate cold tolerance. The high‐quality C. suppressalis genome provides a valuable resource for research into a broad range of areas in molecular ecology, and subsequently benefits developing modern pest control strategies.  相似文献   

9.
Cotton‐ and maize‐producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), have been commercialized since 1996. Bt plants are subjected to environmental risk assessments for non‐target organisms, including natural enemies that suppress pest populations. Here, we used Cry1F‐resistant Spodoptera frugiperda (J.E. Smith) and Cry1Ac and Cry2Ab‐resistant Trichoplusia ni (Hübner) as prey for the assassin bug, Zelus renardii (Kolenati), a common predator in maize and cotton fields. In tritrophic studies, we assessed several fitness parameters of Z. renardii when it fed on resistant S. frugiperda that had fed on Bt maize expressing Cry1F or on resistant T. ni that had fed on Bt cotton expressing Cry1Ac and Cry2Ab. Survival, nymphal duration, adult weight, adult longevity and female fecundity of Z. renardii were not different when they were fed resistant‐prey larvae (S. frugiperda or T. ni) reared on either a Bt crop or respective non‐Bt crops. ELISA tests demonstrated that the Cry proteins were present in the plant at the highest levels, at lower levels in the prey and at the lowest levels in the predator. While Z. renardii was exposed to Cry1F and Cry1Ac and Cry2Ab when it fed on hosts that consumed Bt‐transgenic plants, the proteins did not affect important fitness parameters in this common and important predator.  相似文献   

10.
The rice striped stem borer (SSB, Chilo suppressalis) is one of the most destructive pests of rice plants. Si‐mediated rice defense against various pests has been widely reported, and sodium silicate (SS) has been used as an effective source of silicon for application to plants. However, there is quite limited information about the direct effects of Si application on herbivorous insects. SSB larval performance and their insecticide tolerance were examined after they had been reared either on rice plants cultivated in nutrient solution containing 0.5 and 2.0 mM SS or on artificial diets with 0.1% and 0.5% SS. SS amendment in either rice culture medium or artificial diets significantly suppressed the enzymatic activities of acetylcholinesterase, glutathione S‐transferases, and levels of cytochrome P450 protein in the midgut of C. suppressalis larvae. Larvae fed on diets containing SS showed lower insecticide tolerance. Additionally, RNA‐seq analysis showed that SS‐mediated larval insecticide tolerance was closely associated with fatty acid biosynthesis and pyruvate metabolism pathways. Our results suggest that Si not only enhances plant resistance against insect herbivore, but also impairs the insect's capacity to detoxify the insecticides. This should be considered as another important aspect in Si‐mediated plant–insect interaction and may provide a novel approach of pest management.  相似文献   

11.
Bt cotton (Cry1Ac) has been commercially grown in China since 1997, saving China's cotton production from attack by Bt‐target pests and also tremendously reducing pesticide usage. In recent years, however, Bt cotton, with 4.2 million ha of cultivation, has suffered from a secondary target pest, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). In China, growers have even had to re‐adopt conventional pesticides to control the pest, and this practice has already caused serious pesticide residue. In order to clarify the sublethal effects of chemical pesticide, the responses of a Bt‐susceptible and a Bt‐tolerant (Bt10) S. exigua strain to three treatment combinations were examined, including Bt toxin, sublethal chlorpyrifos, and Bt + sublethal chlorpyrifos. The susceptible and the Bt10 strain responded differently to dual pressure. Bt toxin + sublethal chlorpyrifos treatment lowered larval mortality and stimulated population increase of the susceptible S. exigua, whereas it delayed growth and development of the Bt10 strain. Under dual pressure, although larvae of the Bt10 strain developed faster than larvae of the susceptible strain, the Bt10 population experienced higher larval mortality, prolonged pupal duration, decreased pupal weight, decreased emergence rate, and shortened adult longevity. Compared with the susceptible strain, the Bt10 strain was deleteriously affected by sublethal chlorpyrifos. The Bt‐tolerant/resistant S. exigua population was more vulnerable to chemical pesticides like chlorpyrifos regardless of whether it was exposed to Bt toxin or not. Our study provides a reference for increasing the efficacy of control of S. exigua in Bt‐cotton planting areas.  相似文献   

12.
There is no conclusive evidence that Helicoverpa spp. (Lepidoptera: Noctuidae) in Australia have evolved significant levels of resistance to Bollgard II® cotton (which expresses two Bt toxin genes, cry1Ac and cry2Ab). However, there is evidence of surviving larvae on Bollgard II cotton in the field. The distribution and survival of early‐instar Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae were examined on whole Bollgard II and non‐Bt cotton plants in greenhouse bioassays. The expression of Cry toxins in various parts of Bollgard II plants was compared to the survival of larvae in those locations. Only 1% of larvae survived after 6 days on greenhouse‐grown Bollgard II plants compared to 31% on non‐Bt cotton plants. Overall, and across all time intervals, more larvae survived on reproductive parts (squares, flowers, and bolls) than on vegetative parts (leaves, stems, and petioles) on Bollgard II plants. The concentration of Cry1Ac toxin did not differ between plant structures, whereas Cry2Ab toxin differed significantly, but there was no relationship between the level of expression and the location of larvae. This study provides no evidence that lower expression of Cry toxins in the reproductive parts of plants explains the survival of H. armigera larvae on Bollgard II cotton.  相似文献   

13.
Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot‐and‐mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound‐ and pathogen‐inducible mpi promoter. The mpi‐pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi‐pci rice, compared with larvae fed on wild‐type plants, was observed. Expression of the mpi‐pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi‐pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi‐pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi‐pci fusion gene for dual resistance against insects and pathogens in rice plants.  相似文献   

14.
The transgenic maize (Zea mays L.) event MON 88017 produces the Bacillus thuringiensis Berliner (Bt) toxin Cry3Bb1 to provide protection from western corn rootworm (Diabrotica virgifera virgifera LeConte) larval feeding. In response to reports of reduced performance of Cry3Bb1‐expressing maize at two locations in Illinois, we conducted a two‐year experiment at these sites to characterize suspected resistance, as well as to evaluate root injury and adult emergence. Single‐plant bioassays were performed on larvae from each population that was suspected to be resistant. Results indicate that these populations had reduced mortality on Cry3Bb1‐expressing maize relative to susceptible control populations. No evidence of cross‐resistance between Cry3Bb1 and Cry34/35Ab1 was documented for the Cry3Bb1‐resistant populations. Field studies were conducted that included treatments with commercially available rootworm Bt hybrids and their corresponding non‐Bt near‐isolines. When compared with their near‐isolines, larval root injury and adult emergence were typically reduced for hybrids expressing Cry34/35Ab1 either alone or in a pyramid. In many instances, larval root injury and adult emergence were not significantly different for hybrids expressing mCry3A or Cry3Bb1 alone when compared with their non‐Bt near‐isolines. These findings suggest that Cry34/35Ab1‐expressing Bt maize may represent a valuable option for maize growers where Cry3Bb1 resistance is either confirmed or suspected. Consistent trends in adult size (head capsule width and dry mass) for individuals recovered from emergence cages were not detected during either year of this experiment. Because of the global importance of transgenic crops for managing insect pests, these results suggest that improved decision‐making for insect resistance management is needed to ensure the durability of Bt maize.  相似文献   

15.
The sustainability of genetically engineered insecticidal Bacillus thuringiensis Berliner (Bt) maize, Zea mays L. (Poaceae), is threatened by the evolution of resistance by target pest species. Several Lepidoptera species have evolved resistance to Cry proteins expressed by Bt maize over the last decade, including the African maize stem borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae). The insect resistance management (IRM) strategy (i.e., the high‐dose/refuge strategy) deployed to delay resistance evolution is grounded on certain assumptions about the biology and ecology of a pest species, for example, the interactions between the insect pest and crop plants. Should these assumptions be violated, the evolution of resistance within pest populations will be rapid. This study evaluated the assumption that B. fusca adults and larvae select and colonize maize plants at random, and do not show any preference for either Bt or non‐Bt maize. Gravid female B. fusca moths of a resistant and susceptible population were subjected to two‐choice oviposition preference tests using stems of Bt and non‐Bt maize plants. Both the number of egg batches as well as the total number of eggs laid on each stem were recorded. The feeding preference of Bt‐resistant and susceptible neonate B. fusca larvae were evaluated in choice test bioassays with whorl leaf samples of specific maize cultivars. Although no differential oviposition preference was observed for either resistant or susceptible female moths, leaf damage ratings indicated that neonate larvae were able to detect Bt toxins and that they displayed feeding avoidance behaviour on Bt maize leaf samples.  相似文献   

16.
The coleopteran insect western corn rootworm (WCR, Diabrotica virgifera virgifera) is an economically important pest in North America and Europe. Transgenic corn plants producing Bacillus thuringiensis (Bt) insecticidal proteins have been useful against this devastating pest, but evolution of resistance has reduced their efficacy. Here, we report the discovery of a novel insecticidal protein, PIP‐47Aa, from an isolate of Pseudomonas mosselii. PIP‐47Aa sequence shows no shared motifs, domains or signatures with other known proteins. Recombinant PIP‐47Aa kills WCR, two other corn rootworm pests (Diabrotica barberi and Diabrotica undecimpunctata howardi) and two other beetle species (Diabrotica speciosa and Phyllotreta cruciferae), but it was not toxic to the spotted lady beetle (Coleomegilla maculata) or seven species of Lepidoptera and Hemiptera. Transgenic corn plants expressing PIP‐47Aa show significant protection from root damage by WCR. PIP‐47Aa kills a WCR strain resistant to mCry3A and does not share rootworm midgut binding sites with mCry3A or AfIP‐1A/1B from Alcaligenes that acts like Cry34Ab1/Cry35Ab1. Our results indicate that PIP‐47Aa is a novel insecticidal protein for controlling the corn rootworm pests.  相似文献   

17.
Transgenic Bacillus thuringiensis Berliner (Bt) crops receive particular attention because they carry genes encoding insecticidal proteins that might negatively affect non‐target arthropods. Here, laboratory experiments were conducted to evaluate the impact of Cry1Ab‐expressing transgenic maize [5422Bt1 (event Bt11) and 5422CBCL (MON810)] on the biological parameters of two non‐target arthropods, the aphid Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) and its predator the ladybeetle Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). In a long‐term assay (three generations), no significant differences were found between R. maidis fed Bt maize and those fed a near‐isogenic line (5422) when individual parameters were compared, including nymph development time, adult longevity, aphid spawning period, and fecundity. No negative effects were detected throughout the life cycle of Pjaponica in aphids’ feeding amount, development (nymphs, pupae, adults, and progeny eggs), fecundity, or egg hatching when they preyed on Bt maize‐fed aphids compared with non‐Bt maize treatments. A tritrophic assay revealed that Cry1Ab was highly diluted through the food chain (Bt maize leaves, R. maidis, and P. japonica), as detected by an enzyme‐linked immunosorbent assay (ELISA). In conclusion, although Cry1Ab concentrations in maize leaves increased as the plants developed, Cry1Ab levels were significantly reduced in the aphid R. maidis, and no traces of Cry1Ab were detected in P. japonica preying on Bt maize‐fed aphids. The two hybrids of Bt maize expressing Cry1Ab had no negative effects on the measured biological parameters of the aphid R. maidis or its predator, the ladybeetle P. japonica.  相似文献   

18.
《Journal of Asia》1999,2(1):61-67
A large number of Bacillus thuringiensis (Bt) isolates separated from different ecological regions of Pakistan were characterized for crystal protein gene composition and pesticidal activity against two lepidopteran rice insect pests, the yellow stem borer (Scirpophaga incertulas) and the rice leaf folders (Cnaphalocrocis medinalis). A representative seventeen isolates were selected on the basis of initial screening and further characterization of pesticidal activity was performed according to following criteria; colony and parasporal inclusion morphology, SDS-PAGE, western blot analysis and comparative biotoxicity assays to determine LC50 values. All isolates produced parasporal inclusion bodies and spores in their cells. Immunoblotting results showed that Pakistanian isolates synthesized entomocidal proteins belonging to Cry1A and Cry2A toxin groups. The biological activity of local isolates demonstarted a wide range of LC50 values against both target insects pests. The most potent isolates, INS 1.13, INS 2.25 and NW 4.1 against S. incertulas showed LC50 values of 29.83, 30.37 and 24.77 ng/ml of toxin, respectively. The LC50 values of 57.37 and 73.09 ng/ml of toxin were exhibited by local isolates, INS 2.25 and RL 4.8 against C. medinalis, respectively.  相似文献   

19.
Wan P  Wu K  Huang M  Yu D  Wu J 《Environmental entomology》2008,37(4):1043-1048
Genetically modified cotton that produces a crystalline protein from Bacillus thuringiensis subsp. kurstaki (Berliner) (Bt) has been widely deployed to manage lepidopteran insect pests in cotton growing areas worldwide. However, susceptibility of different insect species to Bt protein varies, which may affect lepidopteran pest populations in the field. Studies on effects of two transgenic cotton lines (BG1560 and GK19) carrying a Cry1A gene on common cutworm Spodoptera litura F. (Lepidoptera: Noctuidae), were conducted during 2002-2005 in the cotton planting region of the Yangtze River valley of China. Results showed that common cutworm larvae had low susceptibility to Bt cotton. There was no significant difference in larval population densities in conventional and Bt cotton fields. However, the larval populations of the insect on conventional plants treated with chemical insecticides for control of target pest of Bt cotton were significantly lower than that in Bt cotton fields. These results indicated that the common cutworm was the potential to become a major and alarming pest in Bt cotton fields, and therefore efforts to develop an effective alternative management strategy are needed.  相似文献   

20.
周浩  李博  牛林  邱林  王永 《生物安全学报》2018,27(4):249-254
【目的】二化螟是水稻的重要害虫之一,钙黏蛋白(cadherin,CAD)是一类重要的Bt杀虫蛋白受体,在获得二化螟钙黏蛋白基因(Cs CAD1)的基础上,明确Cs CAD1蛋白与Cry1Ac和Cry2Aa蛋白的结合能力。【方法】利用PCR技术克隆Cs CAD1基因片段,将构建的p ET-28a-(+)-Cs CAD1重组质粒转入原核表达菌株BL21(DE3)中,IPTG诱导表达。目的蛋白经Ni柱亲和纯化后SDS-PAGE电泳检测,利用western blot和ligand blot技术分析其与Cry1Ac和Cry2Aa蛋白的结合能力。【结果】重组载体可在表达菌株BL21中表达一个约44 ku的蛋白,原核表达载体构建成功。SDS-PAGE显示该蛋白条带单一,且纯度较好。Ni柱亲和层析纯化该目的蛋白后进行Ligand blot分析,结果显示Cs CAD1重组蛋白可以与Cry1Ac和Cry2Aa蛋白结合。【结论】Cs CAD1蛋白可以与Cry1Ac和Cry2Aa蛋白结合,是潜在的Cry蛋白受体,所得结果有助于阐明Cry1Ac和Cry2Aa蛋白对二化螟的作用机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号