首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is a pest of stored grain in Africa, Asia, and Europe. It is a quarantine insect for much of the rest of the world. Control of T. granarium can be achieved with methyl bromide, but this fumigant is an ozone‐depleting substance and is being phased out worldwide. Thus, there is an urgent need to find new methods of control, including the use of low temperatures. Here, we assess the effects of diapause and cold acclimation on the cold tolerance of T. granarium. The percentage of larvae in diapause increased with larval density, reaching 57.3% when reared at a density of 73 larvae g?1 diet. The cold tolerance of T. granarium was assessed by the supercooling points (SCPs) of various life stages. The SCP of non‐acclimated insects ranged from ?26.2 ± 0.2 °C (mean ± SEM) for eggs to ?14.4 ± 0.4 °C for larvae. The lowest SCP for larvae, ?24.3 ± 0.3 °C, was obtained for diapausing‐acclimated larvae. Based on mean LT50 values, the most cold‐tolerant stage at ?10 °C was the diapausing‐acclimated larvae (87 days) followed by non‐diapausing‐acclimated larvae (51 days), diapausing non‐acclimated larvae (19 days), adults (4 days), non‐diapausing non‐acclimated larvae (2 days), pupae (0.4 days), and eggs (0.2 days). The estimated times to obtain 99.9968% mortality (Probit 9) for diapausing‐acclimated larvae are 999, 442, 347, 84, and 15 days at 0, ?5, ?10, ?15, and ?20 °C, respectively. Probit 9 is an estimated value used by quarantine experts to estimate conditions that are required to kill all insects. In light of the long exposure time needed to control T. granarium even at ?20 °C, cooling to below ?27 °C (i.e., below the SCP of eggs) will quickly kill all life stages and may be the best way to control this insect with low temperatures.  相似文献   

2.
Abstract. Eretmocerus eremicus is a parasitoid wasp that is not native to Britain. It is a biological control agent of glasshouse whitefly and has recently been released under licence in Britain for the first time. This study assessed the effect of low temperature on the outdoor establishment potential of E. eremicus in Britain. The developmental threshold calculated by three linear methods was between 6.1° and 11.6 °C, with a degree‐day requirement per generation between 256.3 and 366.8° day?1. The supercooling points of non‐acclimated and acclimated larvae were similar (approximately ?25 °C). Non‐acclimated and acclimated larvae were subject to considerable pre‐freeze mortality, with lethal temperature (LTemp50) values of ?16.3 and ?21.3 °C, respectively. Lethal time experiments indicated a similar lack of cold tolerance with 50% mortality of both non‐acclimated and acclimated larvae after 7 days at ?5 °C, 10 days at 0 °C and 13 days at 5 °C. Field trials showed that neither non‐acclimated nor acclimated larvae survived longer than 1 month when exposed to naturally fluctuating winter temperatures. These results suggest that releasing E. eremicus into British greenhouses would pose minimal risk because typical British winter temperatures would be an effective barrier against establishment in the wild.  相似文献   

3.
Potato tuber moth (PTM), Phthorimaea operculella (Zeller), (Lepidoptera: Gelechiidae) is an invasive insect pest damaging solanaceous crops. We measured the supercooling point (SCP) and survival at low temperature of different development stages to determine which would be capable of overwintering in the Korean climate and adapting to low temperatures. The SCP ranges from ?23.8°C of the egg to ?16.8 of fourth instar larvae (L4). After short periods of low temperature acclimation in L3 (third instar larva), L4 and prepupae, only the prepupal stage showed a significant lowered SCP from ?20.78 to ?22.37°C. When exposed to different subzero temperature for two hours the egg turned out to be the most cold tolerant stage showing LT50 of ?21.7°C followed by the pupal stage with ?15.89°C. One hundred percent mortality was observed when the larvae or adults were exposed to temperatures below ?15.1°C even for a period as short as 2 h. The results suggest that PTM pupae and egg would be the main overwintering stage in Korea where winter temperature does not drop below ?15°C.  相似文献   

4.
Larvae of the goldenrod gall moth, Epiblema scudderiana, use a freeze avoidance strategy of cold hardiness to survive the winter. A key metabolic adaption that supports subzero survival is the accumulation of large amounts of glycerol as a colligative antifreeze. Production of glycerol relies on polyol dehydrogenase (PDH) which catalyzes the NADPH‐dependent conversion of glyceraldehyde into glycerol. Kinetic analysis of PDH from E. scudderiana revealed significant changes in properties as a result of subzero temperature acclimation; the Km for glyceraldehyde in 5°C‐acclimated larvae was 7.0 mM and doubled in ? 15°C‐exposed larvae. This change suggested that PDH is regulated by a state‐dependent covalent modification. Indeed, high and low Km forms could be interconverted by incubating larval extracts in vitro under conditions that stimulated either endogenous protein kinases or protein phosphatases. Protein kinase incubations doubled the Km glyceraldehyde of the 5°C enzyme, whereas protein phosphatase incubations decreased the Km of the ? 15°C enzyme by about 50%. PDH was purified by ion exchange and affinity chromatography steps and then subjected to electrophoresis. Staining with ProQ Diamond phosphoprotein stain showed a much higher phosphate content of PDH from ? 15°C‐acclimated larvae, a result that was further confirmed by immunoblotting that showed a much greater phosphoserine content on the ? 15°C enzyme. These experiments established that PDH is regulated by state‐dependent reversible phosphorylation in E. scudderiana and suggest that this regulatory mechanism makes a significant contribution to controlling the synthesis, maintenance, and degradation of glycerol pools over the winter months. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
S. Tvermyr 《BioControl》1969,14(3):245-250
Larvae ofNeodiprion sertifer (Geoff.) were reared on twigs from Scots pine at three different temperatures, 12°C, 18°C and 24°C. The LT50 of virus-infected larvae was 19.3, 9.5 and 4,6 days respectively. In the control the median length of the larval period was 45.7, 29.8 and 22.1 days at the same temperatures. From this results it is concluded that both the LT50 and the length of the larval period are prolonged by low temperature. The medium length of the larval period, however, is relatively more prolonged than is the LT50. Therefore, nuclear polyhedrossis virus may be an effective control agent againstN. sertifer in cool areas even if the LT50 is relatively long.  相似文献   

6.
The LT50 ofFarinocystis tribolii Weiser to larvae ofTribolium castaneum (Herbst) increased with the age of the insect indicating that older larvae were relatively more tolerant to the infection though there was 100 % mortality ultimately. The adults were less susceptible than larvae and between sexes, females were more susceptible than males. The number of spores produced increased with the stage of the larvae, but there was no variation in the size of spores in the different instars. The LC50 on 20th and 40th day of inoculation were 1.4×107 and 2.1×106 respectively. Mortality-time due toF. tribolii was shorter at 35 °C than at 25 °C. Sporulation occurred earlier at 35 °C than at 25 °C.  相似文献   

7.
The susceptibility of the cigarette beetle Lasioderma serricorne (F.) to hypoxia was examined at three different oxygen concentrations (0.5?C0.8, 1.0?C1.3, and 2.0?C2.3?%) and four different temperature/humidity (RH) conditions: 30?°C/75?% RH, 25?°C/75?% RH, 20?°C/43?% RH, and 15?°C/43?% RH. The influence of humidity on mortality was also examined at three humidity levels (21, 43, and 75?% RH) at 1.0?C1.3?% oxygen (O2) and 25?°C. Our results revealed that adult beetles were the most tolerant at 2.0?C2.3?% O2 and that the larvae were the most tolerant at O2 levels <1.0?C1.3?%. Mortality increased with increasing temperatures and decreasing O2 concentrations. At 30?°C, 75?% RH, and 0.5?C0.8?% O2, the 99?% lethality (LT99) of larvae was 6.9?days; however, it increased to 20?days when the temperature was decreased to 25?°C or when O2 levels were increased to 1.0?C1.3?%. Humidity also influenced mortality of both larval and adult beetles. LT99 values for larvae at 25?°C and 1.0?C1.3?% O2 were 24.0, 44.6, and 50.2?days at 21, 43, and 75?% RH, respectively. Results of this study indicate that a controlled atmosphere (CA) with reduced oxygen levels (<0.5?C0.8?% O2) represents an effective measure for disinfesting stored tobacco as an alternative to conventional phosphine fumigation at temperatures >30?°C.  相似文献   

8.
Low temperature mortality of the peach-potato aphid Myzus persicae   总被引:2,自引:1,他引:1  
ABSTRACT.
  • 1 The mean supercooling points of first instar and adult Myzus persicae (Sulzer) maintained at 20°C and cooled at 1°C min?1 were ?26.6 and ?25.0°C respectively.
  • 2 The LT50 (temperature) of the same age groups drawn from the same population and cooled at the same rate were ?8.1 and ?6.9°C, indicating extensive pre-freeze mortality in M.persicae under laboratory conditions.
  • 3 Acclimation at 10 and 5°C did not affect supercooling but depressed the LT50 of both first instars and adult aphids.
  • 4 Freezing of leaves during feeding did not increase mortality above that expected from the direct effects of low temperature.
  • 5 The level of cold in different winters can be expressed in terms of the total number of frost days, and the frequency of abnormally cold days. Winter temperatures differ markedly in a vertical profile from the soil to the soil or grass surface, and then to the air (and foliage) above.
  • 6 The time of the first record of M.persicae in suction trap samples is correlated with January and February temperatures except in the west of England and Wales. Further north December and January temperatures are relatively more important.
  • 7 Winter temperatures and the resultant aphid mortality is a primary determinant of the timing of the spring migration.
  相似文献   

9.
Abstract

In this study, Metarhizium anisopliae TR 106 and Beauveria bassiana TR 217 was tested against fourth instar larvae of Thaumetopoea pityocampa. The LT50 and LT90 of 1?×?106 concentration of M. anisopliae against T. pityocampa were 3.60 and 4.11 for direct application, while these were 2.87 and 3.60?days, respectively in leaves application. The LT50 and LT90 of the 1?×?108 concentration of the same isolate were 2.50 and 2.95?days for direct application, and 2.98 and 3.74?days for leaves application. The LT50 of insect and leaves application for 1?×?106 of B. bassiana were 3.75 and 3.49?days, respectively. The LT90 of same concentration for insect application was 4.48?days, while LT90 for leaves application was 4.63?days. Similarly, LT50 of insect and leaves application for 1?×?108 of B. bassiana were 3.03 and 3.31?days, while LT90 were 3.68 and 4.29?days, respectively. Approximate 100% mycosis was observed in all treatments.  相似文献   

10.
Quantitative changes in total leaf soluble proteins, proline, carbohydrate content, chlorophyll fluorescence, guaiacol peroxidase (POD) and catalase (CAT) activities were determined in a less cold-hardy (LCH) spring cv. Kohdasht (LT50 = −6°C), a semi cold-hardy (SCH) facultative cv. Azar 2 (LT50 = −15°C), and a cold-hardy (CH) winter cv. Norstar (LT50 = −26°C) of wheat (Triticum aestivum L.) exposed to 4°C for 9 weeks. Seedlings were grown in a controlled growth room for 14 days at 20°C and then transferred to 4°C (experimental day 0) for 63 days (cold treatment); otherwise they were maintained continuously at 20°C (control treatment). The samples were harvested 0, 2, 21, 28, 42, and 63 days after exposure to 4°C. The results showed significant low temperature (LT)-induced accumulation of total soluble proteins, proline, and carbohydrates and elevation in activities of CAT and POD in leaves of SCH and CH winter cultivars rather than in LCH spring cultivar. In contrast, the chlorophyll fluorescence (F v/F m) declined during LT treatment irrespective of cultivar. The results suggest that developmental traits such as vernalization requirement of wheat affects on cold-tolerance expression system of plants.  相似文献   

11.
The susceptibility of Heliothis armiger larvae of different ages to a commercial nuclear polyhedrosis virus (NPV), Elcar, was determined by bioassay. The median lethal dosage (LD50) increased 150-fold during the first week of larval life at 25°C, i.e., during development to early fourth instar, but daily feeding rate and thus potential virus acquisition also increased. A linear relationship was determined between log LD50 and larval length, indicating that larval length constitutes a useful index for estimating the susceptibility of larval populations. Median lethal times (LT50s) were similar for larvae tested at ages of 0 to 7 days and ranged from 3.6 to 8.0 days at 30°C. The amount of virus produced in a single, infected neonate was equivalent to 1.4 × 106 LD50s for neonates, a 900,000-fold increase on the dose supplied. The data support the practice of directing the NPV against neonates, but, on the basis of larval susceptibility alone, the age of larvae at treatment may not always be critical.  相似文献   

12.
Over winter, alpine plants are protected from low-temperature extremes by a blanket of snow. Climate change predictions indicate an overall reduction in snowpack and an earlier thaw; a situation which could expose the tips of shrubs which extend above the snowpack to freezing events in early spring, and cause foliar frost damage during the onset of physiological activity. We assessed the photosynthetic responses of freezing-damaged shrub leaves from an assay of freezing temperatures in the Snowy Mountains in south-eastern Australia, using chlorophyll fluorometery ex situ. We sampled leaves that were exposed early during the spring thaw and leaves that were buried in snow for up to two extra weeks, from four evergreen shrub species at monthly intervals following the period of snowmelt. Freezing resistance (estimated from LT50) was poorest at the earliest spring sampling time, in both exposed above-snow and protected below-snow foliage in all species. Protected foliage in early spring had lower freezing resistance than exposed foliage, but not significantly so. By the third sampling time, freezing resistance was significantly better in the lower protected foliage (LT50 of ? 14) compared with the upper exposed foliage (LT50 of ? 10) in one species. Over the course of spring, freezing resistance improved significantly in all species, with LT50 values of between ? 10 and ? 15 °C by the third sampling time, which is lower than the minimum air temperatures recorded at that time (> ? 5 °C). The results indicate that the dominant evergreen shrub species in this area may only be susceptible to freezing events very early in spring, before a period of frost-hardening occurs after snowmelt. Later in spring, these alpine shrubs appear frost hardy, thus further perpetuating the positive feedbacks surrounding shrub expansion in alpine areas.  相似文献   

13.
Laboratory studies were conducted to determine the susceptibility of various larval instars of Heliothis zea to different spore doses of Nomuraea rileyi at constant and variable temperatures. The fungus was most effective at 20° and 25°C, with a mortality of 80% and 71%, respectively. At 15°C the disease progressed very slowly with larval mortality occurring in 12–28 days post-treatment. Conversely, at temperature ranges above 15°C, the mortality of the larvae occurred in 6–12 days. Three different combinations of variable temperatures included 20–30°, 25–30°, and 20–35°C, but mortality did not exceed 46%. Larvae in the third to fifth instars were more susceptible to infection than were those in the first and second instars.  相似文献   

14.
Abstract Chill‐susceptible insects are able to improve their survival of acute cold exposure over both the short term (i.e. hardening at a relatively severe temperature) and longer term (i.e. acclimation responses at milder temperatures over a longer time frame). However, the mechanistic overlap of these responses is not clear. Four larval stages of four different strains of Drosophila melanogaster are used to test whether low temperature acclimation (10 °C for 48 h) improves the acute cold tolerance (LT90, ~2 h) of larvae, and whether acclimated larvae still show hardening responses after brief exposures to nonlethal cold or heat, or a combination of the two. Acclimation results in increased cold tolerance in three of four strains, with variation among instars. However, if acclimation is followed by hardening pre‐treatments, there is no improvement in acute cold survival. It is concluded that short‐term thermal responses (e.g. hardening) may be of more ecological relevance to short‐lived life stages such as larvae, and that the mechanisms of low temperature hardening and acclimation in D. melanogaster may be antagonistic, rather than complementary.  相似文献   

15.
The objectives of this study were to examine temperature-dependent development, diapause and cold tolerance of Gratiana graminea Klug (Chrysomelidae), a candidate biological control agent of tropical soda apple, Solanum viarum Dunal (Solanaceae). Immature development was examined at six constant temperatures ranging from 15°C to 30°C. Diapause induction was determined by exposing adults to either long or short photoperiods at 20°C and cold tolerance was assessed by exposing adults to 0°C. G. graminea completed development at temperatures ranging from 20°C to 30°C. Linear regression estimated a lower temperature threshold of 11.7°C and 312 degree-days were required to complete development. Diapause was induced when adults were exposed to short photoperiods (10:14 L:D h) at 20°C. The lethal times for diapausing adults of G. graminea at 0°C (LT50?=?19?days, LT90?=?41?days) were two times higher compared to Gratiana boliviana Spaeth, a biological control agent already established in south and central Florida, USA. The presence of diapause and the greater cold tolerance suggest that G. graminea may establish and perform better than G. boliviana in northern Florida.  相似文献   

16.
Thermal requirements of larval weatherfish Misgurnus fossilis were investigated in terms of growth, survival and aerobic performance. Growth and survival of M. fossilis larvae acclimated to five temperatures (11, 15, 19, 23 and 27° C) were measured over 25 days. In the upper temperature treatments (19, 23 and 27° C), survival of larvae was stable throughout the entire rearing period (>75%), whereas 11 and 15° C resulted in severe declines in survival (to <10%). Growth of larvae (expressed as dry mass and total length) was highest at 19 and 23° C, but significantly decreased at 27° C. Routine metabolic rate of 3 days post‐hatch larvae was estimated as oxygen consumption rate (?O2) during acute exposure (30 min to 1 h) to seven temperatures (11, 15, 19, 23, 27, 31 and 35° C). Larval oxygen uptake increased with each consecutive temperature step from 11 to 27° C, until a plateau was reached at temperatures >27° C. All larvae of the 35° C regime, however, died within the ?O2 measurement period. M. fossilis larvae show greater than expected tolerance of high temperatures. On the other hand, low temperatures that are within the range of likely habitat conditions are critical because they might lead to high mortality rates when larvae are exposed over periods >10 days. These findings help to improve rearing conditions and to identify suitable waters for stocking and thus support the management of re‐introduction activities for endangered M. fossilis.  相似文献   

17.
Temperature and salinity tolerances were determined for larval California grunion, Leuresthes tenuis (Ayres), and compared with previous data for Gulf of California grunion, L. sardina (Jenkins & Evermann). Larvae of similar age and acclimation history showed little interspecific difference in thermal tolerance, as measured by half-hour LT50 values for 20–30 day old late postlarvae acclimated at various temperatures, and by upper and lower incipient lethal temperatures for 18°C-acclimated prolarvae. The upper incipient lethal temperature differed by 1 deg.-C (32°C for L. tenuis, 31°C for L. sardina), while the lower incipient lethal temperature for the 18°C acclimated prolarvae of both species was 7.5°C. L. tenuis larvae were much less euryhaline than L. sardina, with incipient lethal salinities of 4.2–41 %. for prolarvae and 8.6–38 %. for 20-day-old postlarvae; comparable values for L. sardina are 4–67.5 %. and 5–57.5 %. Both species show a decrease in temperature and salinity tolerance with age. The larvae of these disjunct congeners show a significant physiological divergence in euryhalinity but not in overall temperature tolerance. These tolerances are discussed in relation to the respective geographic ranges and behavioral responses of the two species.  相似文献   

18.
The yellow peach moth, Conogethes punctiferalis (Guenée), a multivoltine species that overwinters as diapausing larvae, is one of the most serious insect pests on maize in China. Effect of photoperiod and temperature on larval diapause was examined under empirical laboratory conditions. Short‐day treatments caused larval diapause at 25°C, and the critical photoperiod was between 12 and 13 h (or 12 h 51 min) light per day. No sensitive instar was identified for diapause induction under alternated short‐ (L : D 11 : 13 h) and long‐day (L : D 14 : 10 h) treatments at different larval stages. However, accumulative treatment of three instars and 10 d under short‐day treatment was required for the induction of 50% larval diapause. All larvae entered diapause at 20°C, whereas less than 3% did so at 30°C, irrespective of the long‐ or short‐day treatment. Furthermore, under the short‐day treatment, more than 90% of larvae went into diapause with temperatures ≤ 25°C, but less than 17% did so at 28°C. In contrast, under the long‐day treatment, less than 19% of larvae went into diapause with temperatures ≥ 23°C. The forward shift (5°C) of critical temperature under the long‐day regime demonstrated the compensatory effect of temperature and photoperiod on diapause induction. In conclusion, C. punctiferalis had a temperature‐dependent type I photoperiodic diapause response; there was no sensitive instar for diapause determination, but the photoperiodic accumulation time countermeasures both of the short‐day cycles and the number of instars exposed, and the photoperiodic diapause response, was a temperature‐compensated phenomenon.  相似文献   

19.
Winter wheat is sown in the autumn and harvested the following summer, necessitating the ability to survive subfreezing temperatures for several months. Autumn months in wheat-growing regions typically experience significant rainfall and several days or weeks of mild subfreezing temperatures at night, followed by above-freezing temperatures in the day. Hence, the wheat plants usually are first exposed to potentially damaging subfreezing temperatures when they have high moisture content, are growing in very wet soil, and have been exposed to freeze-thaw cycles for a period of time. These conditions are conducive to freezing stresses and plant responses that are different from those that occur under lower moisture conditions without freeze-thaw cycles. This study was conducted to investigate the impact of mild subfreezing temperature and a freeze-thaw cycle on the ability of 22 winter wheat cultivars to tolerate freezing in saturated soil. Seedlings that had been acclimated at +4°C for 5 weeks in saturated soil were frozen to potentially damaging temperatures under three treatment conditions: (1) without any subzero pre-freezing treatment; (2) with a 16-h period at ?3°C prior to freezing to potentially damaging temperatures; and (3) with a freeze-thaw cycle of ?3°C for 24 h followed by +4°C for 24 h, followed by a 16-h period at ?3°C prior to freezing to potentially damaging temperatures. In general, plants that had been exposed to the freeze-thaw cycle survived significantly more frequently than plants frozen under the other two treatments. Plants that had been exposed to 16 h at ?3° (without the freeze-thaw cycle) before freezing to potentially damaging temperatures survived significantly more frequently than plants that were frozen to potentially damaging temperatures without a subzero pre-freezing treatment. These results indicated that cold-acclimated wheat plants actively acclimate to freezing stress while exposed to mild subfreezing temperatures, and further acclimate when allowed to thaw at +4°C for 24 h. The cultivar Norstar had the lowest LT50 (temperature predicted to be lethal to 50% of the plants) of the 22 cultivars when frozen with either of the subzero pre-freezing treatments, but several cultivars had lower LT50 scores than Norstar when frozen without a subzero pre-freezing treatment. We conclude it may be possible to improve winterhardiness of wheat grown in saturated soil by combining the ability to effectively respond to mild subzero pre-freezing temperatures with a greater ability to withstand freezing to damaging temperatures without a subzero pre-freezing exposure.  相似文献   

20.
Bioassay of a nucleopolyhedrosis virus of the gypsy moth, Porthetria dispar   总被引:1,自引:0,他引:1  
The pathogenicity of an American isolate of the nucleopolyhedrosis virus of Porthetria dispar was studied. Laboratory data on third-instar larvae showed that mortality was directly related to virus concentration. The computed LD50 was 1,729 PIBs/larva or 72 PIBs/mg larval body weight. The LT50's for 2.5 × 106, 2.5 × 105, 2.5 × 104, 5 × 103, and 2.5 × 103 PIBs/larva were 8.1, 9.9, 11.3, 12.2, and 13.1 days, respectively. Approximately 37 and 60% of the total larval mortality occurred during the third- and fourth-instar, respectively. The periods to pupation and the pupal weights of survivors apparently were not affected by virus concentration. Moth emergence from surviving pupae was not reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号