首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new system for deployment of fungus‐impregnated black cloths was tested against Aedes aegypti. A “PET trap” was placed in a test chamber to evaluate attractiveness to female A. aegypti with black cloths covered in adhesive film or adhesive film only for 24 and 48 hr. Traps with fungus (Metarhizium anisopliae and Beauveria bassiana)‐impregnated black cloths were tested against female mosquitoes for different time periods (3 h to 48 hr) in the chambers. Traps were then tested under intradomicile conditions against sucrose and blood‐fed insects. Experiments were carried out to ascertain the minimum number of PET traps need to be deployed per test room and to test the effect of different periods of exposure to traps. Exposing the insects for 24 and 48 hr to a PET trap with adhesive film + black cloth resulted in higher rates of trapped mosquitoes (38.6% and 68%, respectively) when compared with adhesive film only (6% and 12.6%, respectively). Both fungal species were effective at reducing survival rates when mosquitoes were exposed to traps for 24 hr or 48 hr. Lower exposure times did not significantly alter survival rates when compared to controls. The results showed that five traps or three traps per room were equally effective in reducing mosquito survival rates when testing both fungal species. The results for sucrose‐fed insects showed significant reductions in survival when exposed to M. ansiopliae or B. bassiana for 24, 48 or 120 hr when compared to control survival, with the lowest survival rates seen following 48‐ or 120‐hr exposures. Survival of blood‐fed mosquitoes exposed to fungus‐impregnated traps for 48 hr was not significantly different to the controls; however, longer exposure times significantly reduced survival rates. PET traps could be an effective system for deploying fungus‐impregnated cloths in residences, facilitating cooperation of volunteers and reducing distribution time.  相似文献   

2.
Host seeking by the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is mainly guided by volatile chemicals present in human odours. The skin microbiota plays an important role in the production of these volatiles, and skin bacteria grown on agar plates attract An. gambiae s.s. in the laboratory. In this study, the attractiveness of volatiles produced by human skin bacteria to An. gambiae s.s. was tested in laboratory, semi‐field, and field experiments to assess these effects in increasing environmental complexity. A synthetic blend of 10 compounds identified in the headspace of skin bacteria was also tested for its attractiveness. Carbon dioxide significantly increased mosquito catches of traps baited with microbial volatiles in the semi‐field experiments and was therefore added to the field traps. Traps baited with skin bacteria caught significantly more An. gambiae s.s. than control traps, both in the laboratory and semi‐field experiments. Traps baited with the synthetic blend caught more mosquitoes than control traps in the laboratory experiments, but not in the semi‐field experiments. Although bacterial volatiles increased mosquito catches in the field study, trapping several mosquito vector species, these effects were not significant for An. gambiae s.l. It is concluded that volatiles from skin bacteria affect mosquito behaviour under laboratory and semi‐field conditions and, after fine tuning, have the potential to be developed as odour baits for mosquitoes.  相似文献   

3.
Mosquito‐borne diseases are a pervasive public health problem on a global scale, and effective management of them requires well‐designed surveillance programs for both vectors and pathogens. Mosquito traps are a common component of such programs, and their reach can be expanded by engaging citizen scientists. In this study in a southern Australian city, we compared the mosquito collection efficacy of two types of traps and assessed their suitability for use in citizen science programs. BG Sentinels and BG Gravid Aedes Trap (BG‐GAT) traps both collected Aedes and Culex species in similar proportions, albeit with the former collecting approximately nine times as many mosquitoes. However, BG Sentinels have a greater per unit cost than BG‐GATs and are restricted to deployment near power outlets. Importantly, despite being devised for collection of Aedes (Stegomyia) dengue vectors (such as Aedes aegypti), both traps can be effectively used in temperate climates for collection of a range of mosquito species. These traps could conceivably be used in citizen science programs to enhance the reach of surveillance at reduced cost.  相似文献   

4.
In order to understand the biological significance of flower odour for attraction of mosquitoes, electrophysiological responses to headspace flower odour samples of Silene otites (L.) Wibel were investigated on Culex pipiens pipiens biotype molestus Forskal 1775 and Aedes aegypti L. using coupled gas chromatographic-electroantennographic detection (GC-EAD). No remarkable differences in antennal responses to the odour compounds have been found between these two mosquito species. Further, the behavioural attractiveness of the electrophysiologically active compounds, singly or as multiple odour mixtures, was evaluated with bioassay experiments with C. pipiens molestus. In bioassays, C. pipiens responded to 14 electrophysiologically active compounds in different magnitudes (65–20%) and acetophenone, linalool oxide (pyranoid), phenyl acetaldehyde and phenylethyl alcohol were found as more attractive in comparison to the least attractive compound, hexanol. In two-stimulus choice test, mosquitoes were significantly more attracted to the mixture of the four most attractive compounds compared to the mixture of all 14 compounds. The results of present study confirm that floral odours are attractive cues for mosquitoes.  相似文献   

5.
In East Africa, significant morbidity and mortality are caused by infections spread by Culex quinquefasciatus and Aedes aegypti. Sticky traps have been shown to be effective tools for sampling populations of Aedes mosquitoes and have been found to catch Cx. quinquefasciatus. Thus, they could potentially be used to sample populations of this species. This study compared Sticky ovitraps (SO) and MosquiTraps (MQT) with the CDC Gravid trap (CDC‐GT) for collection of Culex and Aedes mosquito populations in Tanzania. A follow‐up experiment was carried out using traps set for a 24‐h period to accommodate the oviposition habits of Aedes aegypti and Ae. simpsoni s.l. mosquitoes. The results showed that the CDC‐GT caught significantly more Cx. quinquefasciatus and Ae. aegypti than the SO or MQT, but there was no significant difference in the number of mosquitoes caught between the two sticky traps or of Ae. simpsoni s.l. caught among the three trap types. The results suggest that CDC‐GTs are the most appropriate in sampling of Cx. quinquefasciatus. Although CDC‐GTs collected more Ae. aegypti than the sticky traps, the simplicity and cost benefit of sticky traps facilitates large scale studies. All three trap types should be considered for monitoring Aedes mosquitoes.  相似文献   

6.
Aedes albopictus is a vector of arboviruses and filarial nematodes. Originating from Asia, this mosquito has rapidly expanded its geographical distribution and colonized areas across both temperate and tropical regions. Due to the increase in insecticide resistance, the use of environmentally friendly vector control methods is encouraged worldwide. Using methods based on semiochemicals in baited traps are promising for management of mosquito populations. Interestingly, human skin microbiota was shown to generate volatile compounds that attract the mosquito species Anopheles gambiae and Aedes aegypti. Here, we investigated the composition of skin bacteria from different volunteers and the attractive potential of individual isolates to nulliparous Ae. albopictus females. We showed that three out of 16 tested isolates were more attractive and two were more repulsive. We identified dodecenol as being preferentially produced by attractive isolates and 2-methyl-1-butanol (and to a lesser extent 3-methyl-1-butanol) as being overproduced by these isolates compared with the other ones. Those bacterial volatile organic compounds represent promising candidates but further studies are needed to evaluate their potential application for baited traps improvement.  相似文献   

7.
Mosquitoes of both sexes feed on plants to obtain sugar. Nocturnal species probably locate the plants primarily by their volatile semiochemicals that also form the basis for the mosquitoes’ innate plant‐species preferences. To evaluate these olfactory preferences quantitatively, we used a two‐choice wind‐tunnel olfactometer to measure the upwind orientation of Anopheles gambiae Giles, an important vector of malaria in equatorial Africa, toward odor plumes produced by nine plant species common where this mosquito occurs. These plants are reported to induce feeding behaviors in An. gambiae and to produce floral or extrafloral nectar. Results presented here demonstrated that the volatiles of S. didymobotrya, P. hysterophorus, S. occidentalis, and L. camara, in descending order of numbers of mosquitoes responding, were all attractive, compared to a control plant species, whereas D. stramonium, R. communis, S. bicapsularis, T. stans, and T. diversifolia were not. As expected, chromatographic analysis of the headspace of attractive plants whose volatiles were captured by stir‐bar sorptive extraction revealed a wide range of compounds, primarily terpenoids. Once their bioactivity and attractiveness for An. gambiae, alone and in blends, has been firmly established, some of these semiochemicals may have applications in population sampling and control.  相似文献   

8.
Mosquitoes transmit a diverse group of human flaviviruses including West Nile, dengue, yellow fever, and Zika viruses. Mosquitoes are also naturally infected with insect‐specific flaviviruses (ISFs), a subgroup of the family not capable of infecting vertebrates. Although ISFs are not medically important, they are capable of altering the mosquito's susceptibility to flaviviruses and may alter host fitness. Wolbachia is an endosymbiotic bacterium of insects that when present in mosquitoes limits the replication of co‐infecting pathogens, including flaviviruses. Artificially created Wolbachia‐infected Aedes aegypti mosquitoes are being released into the wild in a series of trials around the globe with the hope of interrupting dengue and Zika virus transmission from mosquitoes to humans. Our work investigated the effect of Wolbachia on ISF infection in wild‐caught Ae. aegypti mosquitoes from field release zones. All field mosquitoes were screened for the presence of ISFs using general degenerate flavivirus primers and their PCR amplicons sequenced. ISFs were found to be common and widely distributed in Ae. aegypti populations. Field mosquitoes consistently had higher ISF infection rates and viral loads compared to laboratory colony material indicating that environmental conditions may modulate ISF infection in Ae. aegypti. Surprisingly, higher ISF infection rates and loads were found in Wolbachia‐infected mosquitoes compared to the Wolbachia‐free mosquitoes. Our findings demonstrate that the symbiont is capable of manipulating the mosquito virome and that Wolbachia‐mediated viral inhibition is not universal for flaviviruses. This may have implications for the Wolbachia‐based DENV control strategy if ISFs confer fitness effects or alter mosquito susceptibility to other flaviviruses.  相似文献   

9.
The Northern Territory (NT) of Australia is currently free of the dengue mosquito Aedes (Stegomyia) aegypti (L). However, on 17 February 2004, two Ae. aegypti adults were captured in two routine CO2‐baited encephalitis virus surveillance traps in Tennant Creek, located 990 km south of Darwin in the NT. The detection triggered an immediate survey and control response undertaken by the NT Department of Health and Community Services, followed by a Commonwealth of Australia‐funded Ae. aegypti elimination program. This report details the methods and results of the detection and subsequent elimination activities that were carried out between 2004 and 2006, returning the NT to its dengue vector‐free status. There have been very few successful Ae. aegypti elimination programs in the world. This purposeful mosquito elimination for Australia was officially declared on 5 April 2006.  相似文献   

10.
Monitoring mosquito populations is essential to designing and implementing control strategies. Recent strategies based on releasing biologically modified mosquitoes have increased the need to effectively monitor mosquito abundance. Unfortunately, existing surveillance traps are of limited value due to their high cost and low capture rates. Here, we report the results of experiments designed to evaluate the effectiveness of an acoustic trap prototype. Stimuli synthesized from recordings of Ae. aegypti wingbeat signals and pure tones were evaluated as attractants to males in indoor and semi‐field conditions. Overall, the acoustic trap´s efficacy differed significantly between indoor and semi‐field conditions. After two hours of indoor recapture, ~69% of males were collected from acoustic traps broadcasting pure tones while ~78% of males were collected using synthesized wingbeat signals. Under semi‐field conditions, however, acoustic traps collected less than ~1.7% of the males released. Increasing the intensity of the signals up to 90 dB (SPL re. 20 uPa at 1 m from the trap) did not improve the capture rate under semi‐field conditions. Overall, our results indicate that acoustic signals synthesized from recordings of wingbeats can be used to enhance capture of male Ae. aegypti.  相似文献   

11.
The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock‐down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P<0.05) contact irritant escape responses between treatment and control for all tested compound concentrations, except with the minimum dose of picaridin (P>0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes.  相似文献   

12.
Mosquitoes rely on their gut microbiota for development   总被引:1,自引:0,他引:1  
Field studies indicate adult mosquitoes (Culicidae) host low diversity communities of bacteria that vary greatly among individuals and species. In contrast, it remains unclear how adult mosquitoes acquire their microbiome, what influences community structure, and whether the microbiome is important for survival. Here, we used pyrosequencing of 16S rRNA to characterize the bacterial communities of three mosquito species reared under identical conditions. Two of these species, Aedes aegypti and Anopheles gambiae, are anautogenous and must blood‐feed to produce eggs, while one, Georgecraigius atropalpus, is autogenous and produces eggs without blood feeding. Each mosquito species contained a low diversity community comprised primarily of aerobic bacteria acquired from the aquatic habitat in which larvae developed. Our results suggested that the communities in Ae. aegypti and An. gambiae larvae share more similarities with one another than with G. atropalpus. Studies with Ae. aegypti also strongly suggested that adults transstadially acquired several members of the larval bacterial community, but only four genera of bacteria present in blood fed females were detected on eggs. Functional assays showed that axenic larvae of each species failed to develop beyond the first instar. Experiments with Ae. aegypti indicated several members of the microbial community and Escherichia coli successfully colonized axenic larvae and rescued development. Overall, our results provide new insights about the acquisition and structure of bacterial communities in mosquitoes. They also indicate that three mosquito species spanning the breadth of the Culicidae depend on their gut microbiome for development.  相似文献   

13.
In the container habitats of immature mosquitoes, catabolism of plant matter and other organic detritus by microbial organisms produces metabolites that mediate the oviposition behavior of Aedes aegypti and Aedes albopictus. Public health agencies commonly use oviposition traps containing plant infusions for monitoring populations of these mosquito species, which are global vectors of dengue viruses. In laboratory experiments, gravid females exhibited significantly diminished responses to experimental infusions made with sterilized white oak leaves, showing that attractive odorants were produced through microbial metabolic activity. We evaluated effects of infusion concentration and fermentation time on attraction of gravid females to infusions made from senescent bamboo or white oak leaves. We used plate counts of heterotrophic bacteria, total counts of 4′,6-diamidino-2-phenylindole-stained bacterial cells, and 16S ribosomal DNA (rDNA) polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) to show that changes in the relative abundance of bacteria and the species composition of bacterial communities influenced attraction of gravid A. aegypti and A. albopictus mosquitoes to infusions. DGGE profiles showed that bacterial species composition in infusions changed over time. Principal components analysis indicated that oviposition responses to plant infusions were in general most affected by bacterial diversity and abundance. Analysis of bacterial 16S rDNA sequences derived from DGGE bands revealed that Proteobacteria (Alpha-, Beta-, Delta-, and Gamma-) were the predominant bacteria detected in both types of plant infusions. Gravid A. aegypti were significantly attracted to a mix of 14 bacterial species cultured from bamboo leaf infusion. The oviposition response of gravid mosquitoes to plant infusions is strongly influenced by abundance and diversity of bacterial species, which in turn is affected by plant species, leaf biomass, and fermentation time.  相似文献   

14.
15.
The induction of the naturally occurring phenomenon of RNA interference (RNAi) to study gene function in insects is now common practice. With appropriately chosen targets, the RNAi pathway has also been exploited for insect control, typically through oral delivery of dsRNA. Adapting current methods to deliver foreign compounds, such as amino acids and pesticides, to mosquitoes through sucrose solutions, we tested whether such an approach could be used in the yellow fever mosquito, Aedes aegypti. Using a non‐specific dsRNA construct, we found that adult Ae. aegypti ingested dsRNA through this method and that the ingested dsRNA can be recovered from the mosquitoes post‐feeding. Through the feeding of a species‐specific dsRNA construct against vacuolar ATPase, subunit A, we found that significant gene knockdown could be achieved at 12, 24 and 48 h post‐feeding.  相似文献   

16.
The mosquitoes Aedes aegypti (L.) and Ae. albopictus Skuse are the major vectors of dengue, Zika, yellow fever, and chikungunya viruses worldwide. Wolbachia, an endosymbiotic bacterium present in many insects, is being utilized in novel vector control strategies to manipulate mosquito life history and vector competence to curb virus transmission. Earlier studies have found that Wolbachia is commonly detected in Ae. albopictus but rarely detected in Ae. aegypti. In this study, we used a two‐step PCR assay to detect Wolbachia in wild‐collected samples of Ae. aegypti. The PCR products were sequenced to validate amplicons and identify Wolbachia strains. A loop‐mediated isothermal amplification (LAMP) assay was developed and used for detecting Wolbachia in selected mosquito specimens as well. We found Wolbachia in 85/148 (57.4%) wild Ae. aegypti specimens from various cities in New Mexico, and in 2/46 (4.3%) from St. Augustine, Florida. Wolbachia was not detected in 94 samples of Ae. aegypti from Deer Park, Harris County, Texas. Wolbachia detected in Ae. aegypti from both New Mexico and Florida was the wAlbB strain of Wolbachia pipientis. A Wolbachia‐positive colony of Ae. aegypti was established from pupae collected in Las Cruces, New Mexico, in 2018. The infected females of this strain transmitted Wolbachia to their progeny when crossed with males of Rockefeller strain of Ae. aegypti, which does not carry Wolbachia. In contrast, none of the progeny of Las Cruces males mated to Rockefeller females were infected with Wolbachia.  相似文献   

17.
Garlic (Allium sativum) and its essential oil have long been used for their distinct flavour, therapeutic effects and as a topical and systemic insect repellent. We tested the hypothesis that the yellow fever mosquito, Aedes aegypti L. (Diptera: Culicidae), responds electrophysiologically and behaviourally to specific components of the steam‐distilled essential oil of garlic. In coupled gas chromatographic‐electroantennographic detection analyses of garlic oil, antennae of female Ae. aegypti responded to 14 compounds. Seven of them [diallyl disulphide, diallyl trisulphide, diallyl tetrasulphide, 2‐(2,3‐dithia‐5‐hexenyl)‐3,4‐dihydro‐2H‐thiopyran, 3‐(2,3‐dithia‐5‐hexenyl)‐3,4‐dihydro‐2H‐thiopyran, 6‐methyl‐4,5,8,9‐tetrathiadodeca‐1,11‐diene and 4,5,9,10‐tetrathiatrideca‐1,12‐diene] were isolated or synthesized and tested for their ability to repel host‐seeking female Ae. aegypti. A solution of diallyl trisulphide and diallyl tetrasulphide applied to a human forearm provided protection from female mosquitoes significantly longer than the paraffin oil control. All compounds had mean protection times significantly shorter than an equivalent dose of the ‘gold standard’N,N‐diethyl‐3‐methylbenzamide. Understanding the common moiety in organosulfur compounds that causes repellence could lead to the design of analogues that are more effective than their natural counterparts in repelling mosquitoes.  相似文献   

18.

Background  

The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown.  相似文献   

19.
We evaluated how the presence of sugar sources impacted the distribution of Aedes aegypti in different habitats in Durán , Ecuador. Land cover and normalized difference vegetation index maps were used to guide a random point sampling routine to select study grids (30 m × 30 m) in low vegetation (LV) and high vegetation (HV). Five individual plants, at one home in the LV and HV grid, were treated with a different colored, non‐attractive, 60% sucrose solution to determine mosquito feeding and movement. Sugar alone is not attractive to mosquitoes, so spraying vegetation with a dyed sugar solution can be used for visual determination of sugar feeding. Outdoor collections using BG sentinel traps and indoor collections using aspirators were conducted at the treatment home and with collection points at 20, 40, and 60 m surrounding the treatment home for three consecutive days. A total of 3,245 mosquitoes in two genera, Aedes and Culex, was collected. The proportion of stained Ae. aegypti females was 56.8% (510/898) and 0% for males. For Culex, 63.9% (248/388) females and 36.1% (140/388) males were collected stained. Aedes aegypti and Culex spp. were found up to 60 m stained in both LV and HV grids. Significantly more stained females Ae. aegypti were found inside homes compared to females and males of Culex spp. in both habitats. This study identifies that outdoor sugar feeding is a common behavior of Ae. aegypti and can be targeted as a control strategy in urban habitats in Latin America.  相似文献   

20.
Mosquito‐borne diseases resulting from the expansion of two key vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), continue to challenge whole regions and continents around the globe. In recent years there have been human cases of disease associated with Chikungunya, dengue and Zika viruses. In Europe, the expansion of Ae. albopictus has resulted in local transmission of Chikungunya and dengue viruses. This paper considers the risk that Ae. aegypti and Ae. albopictus represent for the U.K. and details the results of mosquito surveillance activities. Surveillance was conducted at 34 points of entry, 12 sites serving vehicular traffic and two sites of used tyre importers. The most common native mosquito recorded was Culex pipiens s.l. (Diptera: Culicidae). The invasive mosquito Ae. albopictus was detected on three occasions in southern England (September 2016, July 2017 and July 2018) and subsequent control strategies were conducted. These latest surveillance results demonstrate ongoing incursions of Ae. albopictus into the U.K. via ground vehicular traffic, which can be expected to continue and increase as populations in nearby countries expand, particularly in France, which is the main source of ex‐continental traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号