首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is a significant pest of managed honeybees in the USA and eastern Australia. The beetle damages hives by feeding on hive products and leaving behind fermented wastes. The beetle is consistently associated with the yeast Kodamaea ohmeri (Etchells & Bell) Yamada et al. (Saccharomycetales: Metschnikowiaceae), and this yeast is the presumed agent of the fermentation. Previous work has noted that the small hive beetle is attracted to volatiles from hive products and those of the yeast K. ohmeri. In this study, we investigated how the volatile compounds from the fermenting hive products change depending upon the source of the hive material and also how these volatiles change through time. We used gas chromatography–mass spectrometry and choice‐test behavioural assays to investigate these changes using products sampled from apiaries across the established range of the beetle in eastern Australia. The starting hive products significantly affected the volatile composition of fermenting hive products, and this composition varied throughout time. We found 61.7% dissimilarity between attractive and non‐attractive fermenting hive products, and identified individual compounds that characterise each of these groups. Eleven of these individual compounds were then assessed for attractiveness, as well as testing a synthetic blend in the laboratory. In the laboratory bioassay, 82.1 ± 0.02% of beetles were trapped in blend traps. These results have strong implications for the development of an out‐of‐hive attractant trap to assist in the management of this invasive pest.  相似文献   

2.
Recent studies have shown that honey bees, bumble bees, and some meliponine bee species of the genera Trigona, Meliponula, and Dactylurina are hosts of the small hive beetle (SHB) Aethina tumidaMurray (Coleoptera: Nitidulidae), a pest of honey bee colonies in various regions of the world. Olfaction has been implicated in SHB infestations of honey bee and bumble bee colonies. We used olfactometer bioassays to investigate responses of adult male and female SHBs to odors from intact colonies and separate hive components (pot honey, pot pollen, cerumen, and propolis) of three African meliponine bee species, Meliponula ferruginea (Lepeletier) (black morphospecies), M. ferruginea (reddish brown morphospecies), and Meliponula bocandei (Spinola) (Hymenoptera: Apidae). Although both sexes of the beetle strongly preferred intact colony, pot honey, and pot pollen odors, there was no evidence of attraction to propolis and cerumen odors from the three meliponine bee species. Both sexes of SHB also strongly preferred odors from honey bees, Apis mellifera L. (Hymenoptera: Apidae), over odors from the three meliponine bee species. Our results provide substantial evidence of the host potential of African meliponine bees for the SHB, and we discuss this complex association of the SHB with species within the Apidae family.  相似文献   

3.
Weak and small honey bee colonies are supposed to be more susceptible to infestations by the small hive beetle [Aethina tumida, small hive beetle (SHB)]. To test this, we established 24 nucleus colonies [12 with and 12 without previous SHB removal (= screening)]. Four weeks later, we compared beetle numbers and the occurrence of SHB reproduction to the corresponding full‐sized colonies. Full‐sized colonies with no screening were infested with significantly more SHBs than all other groups (mean ± standard deviation = 46.9 ± 26.7). Regardless of this, none of the full‐sized colonies showed damage or evidence of SHB reproduction. In contrast, five nucleus colonies collapsed and SHB larvae were found in an additional seven colonies. Our study demonstrates that SHB infestation levels which are harmless to full‐sized colonies may have a negative impact on small nucleus colonies.  相似文献   

4.
The leaf beetle Ambrostoma quadriimpressum Motschulsky (Coleoptera: Chrysomelidae) is distributed in China, Siberia, and elsewhere in northeastern Asia. This pest feeds only on buds and leaves of elm trees (Ulmaceae) and inhibits elm trees sprouting, increasing the risk of damage and destruction by other pests. We investigated selected plant compounds that could be used for the development of semiochemical‐based push‐pull methods for the control of this elm pest. Electroantennogram (EAG), Y‐tube olfactometer, and wind tunnel bioassays were conducted to test the electrophysiological and behavioral response of A. quadriimpressum to nine individual volatiles and five essential oils. Individual volatiles and essential oils were selected based on their activity against insects in previous studies. The individual volatiles and essential oils were dissolved in dichloromethane and adsorbed by filter paper. Using a pipette, odor stimuli were delivered as 0.5‐s puffs of air into a continuously humidified air stream in the odor delivery tube at 400 ml per min. Ambrostoma quadriimpressum adults display strong EAG responses to l mol l?1 isoeugenol, (1R)‐(+)‐α‐pinene, 1% pepper oil (derived from the pericarp of Piper chinense Miq.), and peppermint oil [derived from the aerial parts of Mentha haplocalyx (Briq.)] compared to the control. In behavioral assays conducted using a Y‐tube olfactometer and a wind tunnel, adult beetles were attracted by (1R)‐(+)‐α‐pinene but repelled by 0.1% pepper oil. The results provide a basis for the development of a ‘push‐pull’ strategy to manage A. quadriimpressum.  相似文献   

5.
The chemical diversity of Zanthoxylum zanthoxyloides growing wild in Senegal was studied according to volatile compound classes, plant organs and sample locations. The composition of fruit essential oil was investigated using an original targeted approach based on the combination of gas chromatography (GC) and liquid chromatography (LC) both coupled with mass spectrometry (MS). The volatile composition of Zzanthoxyloides fruits exhibited relative high amounts of hydrocarbon monoterpenes (24.3 – 55.8%) and non‐terpenic oxygenated compounds (34.5 – 63.1%). The main components were (E)‐β‐ocimene (12.1 – 39%), octyl acetate (11.6 – 21.8%) and decanol (9.7 – 15.4%). The GC and GC/MS profiling of fruit essential oils showed a chemical variability according to geographical locations of plant material. The LC/MS/MS analysis of fruit oils allowed the detection of seven coumarins in trace content. The chemical composition of fruit essential oils was compared with volatile fractions of leaves and barks (root and trunk) from the same plant station. Hexadecanoic acid, germacrene D and decanal were identified as the major constituents of leaves whereas the barks (root and trunk) were dominated by pellitorine (85.8% and 57%, respectively), an atypic linear compound with amide group. The fruit essential oil exhibited interesting antimicrobial activities against Staphylococcus aureus and Candida albicans, particularly the alcohol fraction of the oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号