首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In some parasitic Hymenoptera the dying caterpillars remain attached or close to the parasitoid cocoons. It has been suggested that the caterpillars act as ‘bodyguards’ for the vulnerable cocoons and therefore protect them against predators and/or hyperparasitoids (the ‘usurpation hypothesis’). This hypothesis has been demonstrated in associations where the caterpillars remain active and/or aggressive after parasitism. However, in other associations the caterpillars are so physiologically depleted after parasitism that they are unable to physically defend the cocoons and instead sit atop them in a moribund state. In this study a generalist predator, the spined soldier bug, Podisus maculiventris Say (Hemiptera: Pentatomidae), was provided with cocoons of the gregarious endoparasitoid Cotesia glomerata L. and the solitary endoparasitoid Microplitis mediator Haliday (both Hymenoptera: Braconidae), in turn attended by their hosts, Pieris brassicae L. (Lepidoptera: Pieridae) and Mamestra brassicae L. (Lepidoptera: Noctuidae), respectively. Cotesia glomerata produces broods of up to 40 cocoons and the dying caterpillars sit atop the cocoons where they exhibit little response to physical stimuli. Previous studies reported that dying P. brassicae caterpillars were ineffective bodyguards against two species of hyperparasitoids. In both associations, the dying host caterpillars were significantly preferred as food by P. maculiventris over the parasitoid cocoons. However, in absence of caterpillars, the bugs readily attacked the C. glomerata cocoons. Alternatively, the survival of M. mediator was very low, irrespective of whether a caterpillar was present or not. Caterpillars attacked by M. mediator are several times smaller than those attacked by C. glomerata. Consequently, the predators ran out of food much more quickly in the former and switched from one prey to the other. We show that in some host–parasitoid associations the dying caterpillars provide more visually apparent or nutritionally superior prey, rather than acting as bodyguards.  相似文献   

2.
Trade-offs amongst life history traits is a major theme in evolutionary biology. Parasitoid wasps are important biological control agents and make excellent organisms to examine trade-offs in fitness related traits such as size, development rate and survival. Here, we examined trait-related trade-offs in 2 solitary endoparasitoids developing in different stages (or instars) of the same caterpillar host, the cabbage moth Mamestra brassicae. Microplitis mediator is a small specialist parasitoid that attacks first (L1) to third (L3) instars of M. brassicae; Meteorus pulchricornis is a larger highly generalized parasitoid that attacks L1–L4 instars of the same host species. When developing in early host instars (e.g. L1–L2), both parasitoids differently traded-off size against development time. In M. mediator, adult body mass was smaller in wasps developing in L1 than in L2 and L3 hosts, whereas development time was unaffected by instar. By contrast, adult body mass in M. pulchricornis was smaller and development time longer when developing in L1 and L2 than in L3 and L4 instars. Periodic starvation of M. brassicae caterpillars parasitized by M. pulchricornis further reduced adult mass and extended development time of wasps in L2 (but not L4) hosts. Maximum egg load in M. pulchricornis (but not M. mediator) was correlated with adult female body size. Our results imply that rapid development time is more important than body size for fitness in both species, although in M. pulchricornis both development time and adult size are traded off in determining the optimal phenotype. Developing a better understanding of association-specific patterns of development in parasitoids can assist in the optimization of mass rearing of these insects for biological control.  相似文献   

3.
Insect pathogenic viruses and parasitoids represent distinct biological entities that exploit a shared host resource and have similar effects in suppressing host populations. This study explores the interactions between the ectoparasitoid Euplectrus plathypenae (Hymenoptera: Eulophidae) and the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) in larvae of S. exigua (Lepidoptera: Noctuidae). Parasitoid progeny failed to complete development in hosts that had been infected prior to parasitism. However, infection of S. exigua fourth instars at 48 h post‐parasitism had no significant effects on the survival of parasitoid progeny. Larval and pupal development times of E. plathypenae that survived on virus‐infected S. exigua did not differ significantly from that of parasitoids on healthy hosts. Virus‐induced mortality and the production of occlusion bodies were very similar in parasitized and non‐parasitized S. exigua. The virus was genetically stable over three passages in parasitized and unparasitized hosts. These results suggest that applications of SeMNPV‐based insecticides are unlikely to disrupt pest control exerted by the parasitoid E. plathypenae in biological pest control programs as long as virus applications are timed not to coincide with parasitoid releases.  相似文献   

4.
The diet breadth of insect herbivores influences their response to variation in plant quality, and these bitrophic interactions have implications for the higher‐level trophic interactions between herbivores and their natural enemies. In this comparative study, we examined the role of host plant species and plant secondary chemistry on the potential interactions between three species of nymphaline caterpillars and their natural enemies. The caterpillar species (all Lepidoptera: Nymphalidae) varied in their degree of specialization: the buckeye, Junonia coenia Hübner, is a specialist on plants that contain iridoid glycosides (IGs); the white peacock, Anartia jatrophae L., feeds on plants in five families, some of which contain IGs and some of which do not; and the painted lady, Vanessa cardui L., is a generalist, feeding on plants in at least 15 families. Each species was reared on leaves of an introduced host plant, Plantago lanceolata L. (Plantaginaceae), which produces two IGs, aucubin and catalpol, and on another plant species that is a common host plant. These alternate host plants were Plantago major L. (Plantaginaceae) for J. coenia, Bacopa monnieri (L.) Pennell (Plantaginaceae) for A. jatrophae, and Malva parviflora L. (Malvaceae) for V. cardui. We examined growth, sequestration, and immune response of these caterpillars on the different host plant species. Junonia coenia developed more rapidly and sequestered higher IG concentrations when reared on P. lanceolata, whereas both other species grew more slowly on P. lanceolata. Host plant did not influence immune response of J. coenia or A. jatrophae, whereas V. cardui immune response was weaker when reared on P. lanceolata. Junonia coenia was most efficient at IG sequestration and A. jatrophae was least efficient, when all three species were reared on P. lanceolata. These results indicate that diet breadth may play an important role in structuring tritrophic interactions, and this role should be further explored.  相似文献   

5.
Many parasites alter host behaviour to enhance their chance of transmission. Recently, the ecdysteroid UDP‐glucosyl transferase (egt) gene from the baculovirus Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) was identified to induce tree‐top disease in L. dispar larvae. Infected gypsy moth larvae died at elevated positions (hence the term tree‐top disease), which is thought to promote dissemination of the virus to lower foliage. It is, however, unknown whether egt has a conserved role among baculoviruses in inducing tree‐top disease. Here, we studied tree‐top disease induced by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in two different host insects, Trichoplusia ni and Spodoptera exigua, and we investigated the role of the viral egt gene therein. AcMNPV induced tree‐top disease in both T. ni and S. exigua larvae, although in S. exigua a moulting‐dependent effect was seen. Those S. exigua larvae undergoing a larval moult during the infection process died at elevated positions, while larvae that did not moult after infection died at low positions. For both T. ni and S. exigua, infection with a mutant AcMNPV lacking egt did not change the position where the larvae died. We conclude that egt has no highly conserved role in inducing tree‐top disease in lepidopteran larvae. The conclusion that egt is a ‘gene for an extended phenotype’ is therefore not generally applicable for all baculovirus–host interactions. We hypothesize that in some baculovirus–host systems (including LdMNPV in L. dispar), an effect of egt on tree‐top disease can be observed through indirect effects of egt on moulting‐related climbing behaviour.  相似文献   

6.
In natural populations of insect herbivores, genetic differentiation is likely to occur due to variation in host plant utilization and selection by the local community of organisms with which they interact. In parasitoids, engaging in intimate associations with their host during immature development, local variation may exist in host quality for parasitoid development. We compared the development of a gregarious endoparasitoid, Cotesia glomerata L. (Hymenoptera: Braconidae), collected in The Netherlands, in three strains and three caterpillar instars (L1–L3) of its main host, Pieris brassicae L. (Lepidoptera: Pieridae). Hosts had been collected in The Netherlands and France, and were reared in the laboratory for one generation. We also used an established Dutch laboratory strain that had not been exposed to parasitoids for at least 24 generations. Parasitoid survival to adulthood was inversely correlated with host instar at parasitism. Adult parasitoid body mass was largest when hosts were parasitized as L1 and smallest when hosts were parasitized as L3, whereas egg‐to‐adult development time was quickest on L3 hosts and slowest on L1 hosts. Higher survival and faster development of C. glomerata on French L2 hosts also showed that there is variation in host‐instar‐related suitability. Many L2 and most L3 caterpillars that were parasitized exhibited signs of pathogen infection and perished within a few days of parasitism, whereas this never happened when hosts were parasitized as L1 or in non‐parasitized control caterpillars. Our results reveal that, irrespective of the host strain, L1 hosts are optimally synchronized with C. glomerata development. By contrast, the high precocious mortality of L3 larvae may be due to stress‐induced regulation by the parasitoid in order to ‘force’ its developmental program into synchrony with the developing parasitoid larvae. Our results underscore a potentially important role played by pathogens in mediating herbivore–parasitoid interactions that are host‐instar‐dependent in their expression.  相似文献   

7.
The successful development of parasitoids of herbivores depends on the quality of their host, which is often affected by the host plant. Therefore, a parasitoid’s oviposition decisions will directly depend on the host, but also on plant quality. Here, we investigated the direct effects of host species and the indirect effects of the host’s food plant on the oviposition decisions and performance of the gregarious ectoparasitoid Euplectrus platyhypenae Howard (Hymenoptera: Eulophidae). With a series of no‐choice experiments, we determined the oviposition and performance of the parasitoid on: (1) two caterpillar species, fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), and velvet armyworm, Spodoptera latifascia Walker, reared on maize (Zea mays L., Poaceae), (2) the same caterpillars reared on maize, bean (Phaseolus vulgaris L., Fabaceae), or squash (Cucurbita pepo L., Cucurbitaceae) leaves, and (3) S. latifascia caterpillars reared on leaves of wild and cultivated lima bean, Phaseolus lunatus L. All these insects and plants originate from Mesoamerica where they have coexisted for thousands of years in the traditional agricultural system known as Milpa in which maize, beans, and squash are planted together. We found that the preferred and best combination of host and host plant for parasitoid performance was S. frugiperda on maize. Parasitoids laid larger clutches, had higher survival, and more females and larger adults emerged from S. frugiperda reared on maize. However, when both caterpillar species were reared on squash, S. latifascia was the better host. Contrary to the literature, S. frugiperda was not able to develop on bean plants. Results from the lima bean experiment showed that parasitoid performance was best when S. latifascia was reared on leaves of cultivated compared to wild lima bean. These findings are discussed in the context of mixed cropping in which the ability of generalist parasitoids to switch among hosts and host plant species could be advantageous for pest management.  相似文献   

8.
Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and Microplitis pallidipes are both used as biocontrol agents of the beet armyworm (Spodoptera exigua). However, it has not been determined how beet armyworms respond when these agents interact. Here, we studied the effects of M. pallidipes on virus multiplication and transmission using quantitative detection of SeMNPV. Our results indicated that parasitoids promoted virus multiplication in caterpillars (105 copies per caterpillar) and that it was more advantageous when the M. pallidipes oviposited one day prior to infection with NPV. Interestingly, SeMNPV was transmitted by M. pallidipes in four ways. Transmission efficiency was higher for parasitoids whose body surfaces were contaminated with NPV, and for parasitoids ovipositing on NPV-infected caterpillars, than for those emerging from NPV-infected caterpillars, or feeding on mixtures of honey, water and NPV. Our study reveals that parasitoids do affect the proliferation and transmission of NPV in caterpillars and suggests that M. pallidipes could be used to strengthen the effectiveness of SeMNPV as a biocontrol agent.  相似文献   

9.
Females of myrmecophilous butterflies tend to oviposit in plants visited by ant species that engage in stable associations with its larvae. In Banisteriopsis malifolia, caterpillars are attended by the same ants that feed on extrafloral nectaries. A conflict may arise when both the plant and caterpillars compete for ant attention, and ants are assumed to forage on the highest quality resource. By attending caterpillars, ants can be indirectly detrimental to plant fitness because florivorous larvae feed intensively until pupation. In this study, we specifically investigated (i) whether the occurrence of facultative myrmecophilous Synargis calyce (Riodinidae) caterpillars in B. malifolia was based on ant species (Camponotus blandus or Ectatomma tuberculatum) and abundance; (ii) the monopolization of ants by the butterfly larvae and (iii) the florivory rates incurred by the caterpillars on inflorescences. The abundance of S. calyce was six‐fold greater in plants with C. blandus, compared to E. tuberculatum treatments. Caterpillars monopolized up to 50% of C. blandus on the plants, indicating that the resources offered by S. calyce were more attractive to ants than extrafloral nectaries. Florivory by riodinids incurred losses of almost 60% of flower buds. Myrmecophilous riodinids exploited an ant–plant mutualism by attracting aggressive ants that become larvae bodyguards. Thus, this ecological interaction is potentially detrimental to B. malifolia, since the ants, which can provide protection against herbivores, shift to provide defence for one of these herbivores.  相似文献   

10.
Plant‐insect herbivore‐entomopathogen interactions are one of the hot topics in biological control and humoral immunity, and biochemical metabolism are important responses of herbivores to pathogen infection. Entomopathogens are key biocontrol agents of caterpillars, but how plants affect the responses of caterpillars to these organisms is not well understood. We studied hormonal immunity (lysozyme and phenoloxidase activities) and biochemical metabolism (total protein and lipid contents) of Beauveria bassiana‐infected beet armyworm (Spodoptera exigua) larvae that feed on five different host plants (soya bean, Chinese cabbage, edible amaranth, water convolvulus and pepper). Results indicated that plant species differentially affected lysozyme and phenoloxidase activity and lipid content, but had no effect on protein content of pathogen‐infected caterpillars. Both lysozyme and phenoloxidase activities were generally higher in entomopathogen‐infected larvae that feed on edible amaranth or water convolvulus compared with the other three plants from days 1 to 5 after treatment. Plant species did not affect in regular changes during the 5 days in the lipid content of infected or non‐infected caterpillars. Our study reveals that plants fail to affect the biochemical metabolism but plants can mediate the humoral immunity of caterpillars to defend against pathogens. This study provides insight into plant‐mediated effects on the response of herbivores to pathogens.  相似文献   

11.
Organisms can either evade winter's unfavourable conditions by migrating or diapausing, or endure them and maintain their activities. When it comes to foraging during winter, a period of scarce resources, there is strong selective pressure on resource exploitation strategy. Generalist parasitoids are particularly affected by this environmental constraint, as their fitness is deeply linked to the profitability of the available hosts. In this study, we considered a cereal aphid–parasitoid system and investigated (1) the host–parasitoid community structure, host availability, and parasitism rate in winter, (2) the influence of host quality in terms of species and instars on the fitness of the aphid parasitoid Aphidius rhopalosiphi De Stefani‐Perez (Hymenoptera: Braconidae: Aphidiinae), and (3) whether there is a detectable impact of host fidelity on parasitism success of this parasitoid species. Host density was low during winter and the aphid community consisted of the species Rhopalosiphum padi L. and Sitobion avenae Fabricius (both Hemiptera: Aphididae), both parasitized by A. rhopalosiphi at non‐negligible rates. Aphidius rhopalosiphi produced more offspring when parasitizing R. padi compared with S. avenae, whereas bigger offspring were produced when parasitizing S. avenae. Although aphid adults and old larvae were significantly larger hosts than young larvae, the latter resulted in higher emergence rates and larger parasitoids. No impact of host fidelity on emergence rates or offspring size was detected. This study provides some evidence that winter A. rhopalosiphi populations are able to take advantage of an array of host types that vary in profitability, indicating that host selectivity may drop under winter's unfavourable conditions.  相似文献   

12.
Plants in nature have inducible defences that sometimes lead to targeted resistance against particular herbivores, but susceptibility to others. The metabolic diversity and genetic resources available for maize (Zea mays) make this a suitable system for a mechanistic study of within‐species variation in such plant‐mediated interactions between herbivores. Beet armyworms (Spodoptera exigua) and corn leaf aphids (Rhopalosiphum maidis) are two naturally occurring maize herbivores with different feeding habits. Whereas chewing herbivore‐induced methylation of 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one glucoside (DIMBOA‐Glc) to form 2‐hydroxy‐4,7‐dimethoxy‐1,4‐benzoxazin‐3‐one glucoside (HDMBOA‐Glc) promotes caterpillar resistance, lower DIMBOA‐Glc levels favour aphid reproduction. Thus, caterpillar‐induced DIMBOA‐Glc methyltransferase activity in maize is predicted to promote aphid growth. To test this hypothesis, the impact of S. exigua feeding on R. maidis progeny production was assessed using seventeen genetically diverse maize inbred lines. Whereas aphid progeny production was increased by prior caterpillar feeding on lines B73, Ki11, Ki3 and Tx303, it decreased on lines Ky21, CML103, Mo18W and W22. Genetic mapping of this trait in a population of B73 × Ky21 recombinant inbred lines identified significant quantitative trait loci on maize chromosomes 1, 7 and 10. There is a transgressive segregation for aphid resistance, with the Ky21 alleles on chromosomes 1 and 7 and the B73 allele on chromosome 10 increasing aphid progeny production. The chromosome 1 QTL coincides with a cluster of three maize genes encoding benzoxazinoid O‐methyltransferases that convert DIMBOA‐Glc to HDMBOA‐Glc. Gene expression studies and benzoxazinoid measurements indicate that S. exigua ‐induced responses in this pathway differentially affect R. maidis resistance in B73 and Ky21.  相似文献   

13.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

14.
Many parasites manipulate host behaviour to enhance parasite transmission and survival. A fascinating example is baculoviruses, which often induce death in caterpillar hosts at elevated positions (‘tree-top’ disease). To date, little is known about the underlying processes leading to this adaptive host manipulation. Here, we show that the baculovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) triggers a positive phototactic response in S. exigua larvae prior to death and causes the caterpillars to die at elevated positions. This light-dependent climbing behaviour is specific for infected larvae, as movement of uninfected caterpillars during larval development was light-independent. We hypothesize that upon infection, SeMNPV captures a host pathway involved in phototaxis and/or light perception to induce this remarkable behavioural change.  相似文献   

15.
Spongospora subterranea, which causes powdery scab of potato, infects a diverse range of plant species. Crop rotation as a powdery scab management tool will be compromised if pathogen hosts exist between potato crops. Opium poppy (Papaver somniferum) and pyrethrum (Tanacetum cinerariifolium) are important crops within intensive vegetable production rotations in NW Tasmania. Measurements of S. subterranea soil inoculum within a commercial field showed pathogen amounts were substantially elevated following an opium poppy crop, which suggested host status. In glasshouse testing, opium poppy and pyrethrum were confirmed as hosts of S. subterranea, with opium poppy the more susceptible of the two. Both species were less susceptible than tomato, a known host. Observations of early growth suggested inoculation impacts on all three plant species, although at 16 (tomato and opium poppy) or 26 (pyrethrum) weeks postinoculation, only tomato had significantly reduced shoot and root development. The role of rotation crops in inoculum persistence and the possible role of S. subterranea as a minor pathogen of nonpotato crops are discussed.  相似文献   

16.
The Asian citrus psyllid, Diaphorina citri Kuwayama, is the most economically important and difficult to manage citrus pest in Florida due to its role as vector of huanglongbing or citrus greening disease. Spread of the disease is a function of dispersal patterns and thus influenced by availability of suitable hosts. Young leaves of citrus or related plants are required for reproduction, but in their absence, secondary hosts may provide needed resources to enhance survival. Therefore, survivorship on and preference for three abundant weed species was investigated. The suitability of potential secondary host plants Bidens alba (L.), DC, Ludwigia octovalvis (Jacqu.) P. H. Raven, and Eupatorium capillifolium (Lam.) Small was compared to a reproductive host, Murraya paniculata (L.) Jack, in no‐choice tests by assessing survivorship of D. citri adults confined to these plants in cages. Preference was evaluated by choice tests where D. citri adults were released into cages containing all three secondary hosts alone or with M. paniculata. Both B. alba and E. capillifolium increased D. citri survivorship by twofold compared to starvation conditions with only water available. Choice trials revealed no difference in initial selection between true and secondary hosts; however, the true host was favoured over time. This result suggested that hosts were selected initially by sight, and only later by taste and/or smell. While secondary hosts are unable to support reproduction or long‐term survival, these findings establish the ability of D. citri to use secondary hosts that are ubiquitous in Florida citrus groves as temporary reservoirs for food and moisture when ideal host conditions are scarce or absent.  相似文献   

17.
Parasites are one of the strongest selective agents in nature. They select for hosts that evolve counter‐adaptive strategies to cope with infection. Helminth parasites are special because they can modulate their hosts’ immune responses. This phenomenon is important in epidemiological contexts, where coinfections may be affected. How different types of hosts and helminths interact with each other is insufficiently investigated. We used the three‐spined stickleback (Gasterosteus aculeatus) – Schistocephalus solidus model to study mechanisms and temporal components of helminth immune modulation. Sticklebacks from two contrasting populations with either high resistance (HR) or low resistance (LR) against S. solidus, were individually exposed to S. solidus strains with characteristically high growth (HG) or low growth (LG) in G. aculeatus. We determined the susceptibility to another parasite, the eye fluke Diplostomum pseudospathaceum, and the expression of 23 key immune genes at three time points after S. solidus infection. D. pseudospathaceum infection rates and the gene expression responses depended on host and S. solidus type and changed over time. Whereas the effect of S. solidus type was not significant after three weeks, T regulatory responses and complement components were upregulated at later time points if hosts were infected with HG S. solidus. HR hosts showed a well orchestrated immune response, which was absent in LR hosts. Our results emphasize the role of regulatory T cells and the timing of specific immune responses during helminth infections. This study elucidates the importance to consider different coevolutionary trajectories and ecologies when studying host‐parasite interactions.  相似文献   

18.
The main purpose of this study was to determine the insecticidal activity of mixtures of Bacillus thuringiensis crystalline toxins and plant substances that could contribute to create a new bioinsecticide of high efficiency. We decided to determine the toxicity of crystals of B. thuringiensis MPU B9 isolate, azadirachtin (NeemAzal), mustard oil and their mixtures against lepidopteran pests: Cydia pomonella, Spodoptera exigua and Dendrolimus pini. The interaction of the components in mixtures against insects was evaluated and their utility in plant protection was assessed. The crystals and plant substances showed synergistic effect against all insect species. The occurrence of synergism between two components depended on the ratio of their concentration in mixtures. Slight amount of one of the components added to the mixture led to enhanced toxicity of the preparation. The supplementation of mustard oil with B. thuringiensis toxins from up to 0.3% of the mixture resulted in more than twofold higher observed mortality of L1 larvae of D. pini in comparison with expected mortality. The beneficial insecticidal effect of the mustard oil and crystals mixture was also noted when crystals comprised up to 1.3% and from 7 to 20% against L1 caterpillars of C. pomonella and L3 larvae of S. exigua, respectively. The insecticidal efficient effect was achieved when mixture of B. thuringiensis crystals and azadirachtin was used against the three species of lepidopteran pests. The combinations in which components interacted synergistically against caterpillars are potentially useful for making a new bioinsecticide for controlling lepidopteran pests in plant protection.  相似文献   

19.
Aphids are the most common vector of plant viruses, and their feeding behavior is an important determinant of virus transmission. Positive effects of global change on aphid performance have been documented, but effects on aphid behavior are not known. We assessed the plant‐mediated behavioral responses of a generalist aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), to increased CO2 and nitrogen when feeding on each of three host species: Amaranthus viridis L. (Amaranthaceae), Polygonum persicaria L. (= Persicaria maculosa Gray) (Polygonaceae), and Solanum dulcamara L. (Solanaceae). Via a family of constrained Markov models, we tested the degree to which aphid movements demonstrate preference among host species or plants grown under varying environmental conditions. Entropy rates of the estimated Markov chains were used to further quantify aphid behavior. Our statistical methods provide a general tool for assessing choice and quantitatively comparing animal behavior under different conditions. Aphids displayed strong preferences for the same host species under all growth conditions, indicating that CO2‐ and N‐induced changes in plant chemistry have minimal effects on host preference. However, entropy rates increased in the presence of non‐preferred hosts, even when preferred hosts were available. We conclude that the presence of a non‐preferred host species affected aphid‐feeding behavior more than changes in plant leaf chemistry when plants were grown under elevated CO2 and increased N availability.  相似文献   

20.
Bt cotton (Cry1Ac) has been commercially grown in China since 1997, saving China's cotton production from attack by Bt‐target pests and also tremendously reducing pesticide usage. In recent years, however, Bt cotton, with 4.2 million ha of cultivation, has suffered from a secondary target pest, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). In China, growers have even had to re‐adopt conventional pesticides to control the pest, and this practice has already caused serious pesticide residue. In order to clarify the sublethal effects of chemical pesticide, the responses of a Bt‐susceptible and a Bt‐tolerant (Bt10) S. exigua strain to three treatment combinations were examined, including Bt toxin, sublethal chlorpyrifos, and Bt + sublethal chlorpyrifos. The susceptible and the Bt10 strain responded differently to dual pressure. Bt toxin + sublethal chlorpyrifos treatment lowered larval mortality and stimulated population increase of the susceptible S. exigua, whereas it delayed growth and development of the Bt10 strain. Under dual pressure, although larvae of the Bt10 strain developed faster than larvae of the susceptible strain, the Bt10 population experienced higher larval mortality, prolonged pupal duration, decreased pupal weight, decreased emergence rate, and shortened adult longevity. Compared with the susceptible strain, the Bt10 strain was deleteriously affected by sublethal chlorpyrifos. The Bt‐tolerant/resistant S. exigua population was more vulnerable to chemical pesticides like chlorpyrifos regardless of whether it was exposed to Bt toxin or not. Our study provides a reference for increasing the efficacy of control of S. exigua in Bt‐cotton planting areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号