首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract In the present study, the importance of diet in terms of fecundity is compared for three species of the carabid genus Amara (Coleoptera: Carabidae), using an insect diet, two types of seed diet (Capsella bursa‐pastoris, Stellaria media) and a mixed diet. It is expected that the species of carabid studied have different food requirements for reproduction. Diet affects reproduction performance and egg production significantly. A mixed diet and both single‐seed diets are suitable for reproduction in Amara aenea (DeGeer) because a higher proportion of the females reproduce and lay significantly more eggs than on a purely insect diet. Females of Amara familiaris (Duftschmid) do not reproduce unless provided with seeds of S. media. Seeds of C. bursa‐pastoris or a mixed diet are equally suitable diets for reproduction of Amara similata (Gyllenhal); a diet of insects or seeds of S. media is unsuitable. The results support the hypothesis that the species under investigation have specific food requirements, suggesting that seed feeding has evolved to different degrees in particular species: A. aenea is omnivorous, whereas A. familiaris and A. similata specialize on the seed of a particular plant species or family. This resource partitioning facilitates co‐occurrence of carabid species.  相似文献   

2.
Artificial diets have been developed to sustain the mass rearing of a wide range of arthropod natural enemies, with varying success. In some cases, such diets can be optimized using insect‐derived materials, such as haemolymph. In this study, we examined the effect of supplementing haemolymph of the black soldier fly, Hermetia illucens, to a basic artificial diet for the phytoseiid mite Amblyseius swirskii. The survival, development and reproduction of the predatory mite were assessed when fed on artificial diets composed of honey, sucrose, tryptone, yeast extract and egg yolk, supplemented with 5%, 10%, or 20% of H. illucens pre‐pupal haemolymph. Developmental time from larva to adult was shorter for males and females offered artificial diets supplemented with 20% haemolymph vs. the basic diet. The oviposition rate and total fecundity of females reared on the basic diet were substantially lower than those of females supplied with the enriched diets. The intrinsic rate of increase was highest on the diet containing 20% haemolymph, followed by those containing 10% and 5% haemolymph. In a subsequent diet‐switching experiment, mites fed on the basic diet in their juvenile stages were switched upon adulthood to diet enriched with different concentrations of H. illucens haemolymph. The females that were fed with the enriched diets from the adult stage on had higher oviposition rates and fecundities than those maintained on the basic diet, but their reproductive parameters were not significantly affected by the concentration of the haemolymph in the artificial diet. In conclusion, supplementing artificial diets with black soldier fly haemolymph significantly improved their nutritional value for A. swirskii. Our findings indicate the potential of using H. illucens as a cheap source for haemolymph in artificial diets, as the fly can be cost‐effectively produced at a large scale on organic waste materials.  相似文献   

3.
Edible insects are advocated as sustainable and healthy food and feed. However, commercially produced insects are often low in n‐3 fatty acids and have suboptimal n‐6/n‐3 ratios. A certain amount and proportion of these FAs is required to optimize human health. Flaxseed oil consists primarily (57%) out of alpha‐linolenic acid. An experiment was conducted to quantify the effect of flaxseed oil provision on fatty acid composition and to determine the quantity needed to attain a beneficial n‐6/n‐3 ratio. Three species were used in the experiment: house crickets (Acheta domesticus [L.]), lesser mealworms (Alphitobius diaperinus [Pfanzer]) and black soldier flies (Hermetia illucens [L.]). These were provided with either a control diet or a diet enriched with 1%, 2%, or 4% flaxseed oil during their larval/nymphal stage. Fatty acid profiles of diets and insects were determined via GC‐MS. The three species had distinct fatty acid profiles on all four diets, but responded similarly to flaxseed oil addition. For each percent added to the diet, the alpha‐linolenic acid content of the insects increased by 2.3%–2.7%. Four percent addition increased the n‐3 fatty acid content 10–20 fold in the three species and thereby strongly decreased n‐6/n‐3 ratios from 18–36 to 0.8–2.4. A ratio below 5 is considered optimal for human health and was achieved by 2% flaxseed oil inclusion for house crickets and lesser mealworms, and at 1% inclusion for black soldier flies. Adding a source of n‐3 fatty acids to insect diets can thus improve the nutritional quality of insects.  相似文献   

4.
Based on the hypothesis that matching diets of intraguild (IG) predator and prey indicate strong food competition and thus intensify intraguild predation (IGP) as compared to non‐matching diets, we scrutinized diet‐dependent mutual IGP between the predatory mites Neoseiulus cucumeris and N. californicus. Both are natural enemies of herbivorous mites and insects and used in biological control of spider mites and thrips in various agricultural crops. Both are generalist predators that may also feed on plant‐derived substances such as pollen. Irrespective of diet (pollen or spider mites), N. cucumeris females had higher predation and oviposition rates and shorter attack latencies on IG prey than N. californicus. Predation rates on larvae were unaffected by diet but larvae from pollen‐fed mothers were a more profitable prey than those from spider‐mite fed mothers resulting in higher oviposition rates of IG predator females. Pollen‐fed protonymphs were earlier attacked by IG predator females than spider‐mite fed protonymphs. Spider mite‐fed N. californicus females attacked protonymphs earlier than did pollen‐fed N. californicus females. Overall, our study suggests that predator and prey diet may exert subtle influences on mutual IGP between bio‐control agents. Matching diets did not intensify IGP between N. californicus and N. cucumeris but predator and prey diets proximately influenced IGP through changes in behaviour and/or stoichiometry.  相似文献   

5.
Diet quality influences organismal fitness within and across generations.For herbivorous insects,the transgenerational effecets of diet remain relatively underexplored.Usinga3×3×2 factorial experiment,we evaluated how N enrichment in parental diets of Neolemd abbreviata(Larcordaire)(C oleoptera:Chrysomelidae),a biological control agent for Tradescantia fluminensis Vell.(Commelinaceae),may influence life history and performance of Fi and F2 offspring under reciprocal experiments.We found limited transgenerational effects of foliar nitrogen variability among life-history traits in both larvae and adults.Larval weight gain and mortality were responsive to parental diet contrary to feeding damage,pupal weight and duration taken to pupate.There were significant parental diet x test interactions in larval feeding damage,weight gain,pupal weight and time to pupation.Generally,offspring from parents under high N plants performed better even under low N test plants.Adult traits including oviposition selection,feeding weight and longevity did not respond to the efects of parental diet nor its interaction with test diet as was the case in the larval stage.However,the main efects of test diet were more important in determining adult performance in both generations suggesting limited sensitivity to parental diet in the adult stage.Our results show conflicting responses to parental diet between larvae and adults ofthe same generation among an insec species with both actively feeding larual and adult life stagee These tranegeneratinonal efferte,or lack thereof,may have implications on the field performance of N.abbrevita under heterogencous nutritional landscapes.  相似文献   

6.
We used bioassays to investigate the effect of Bowman‐Birk and Kunitz‐type soybean proteinase inhibitors on two artificial diets (diets 1 and 2) which are commonly used to feed laboratory colonies of larvae of the moth Diatraea saccharalis, monitoring food intake and utilization, and larval development and mortality. Diet 1 was less nutritious, with a low protein content and reduced mineral and essential amino acid (e.g., cysteine, lysine, and methionine) content, while diet 2 was richer and more complete. When proteinase inhibitors were incorporated into the artificial diets, the effects on larval development were significantly greater for those larvae fed diet 1, with the chronic ingestion of proteinase inhibitors reducing the level of trypsin‐like activity in the midgut of larvae fed this diet. Larvae fed diet 2 also showed a reduced level of tryptic activity in the midgut, but this was less marked than for diet 1. These results indicate that despite their inhibitory effect on midgut enzymes, the effectiveness of proteinase inhibitors is directly dependent on the quality of the diet. The different effects seen on insect biology when proteinase inhibitors are added to rich or poor diets suggests that the role of anti‐nutritional proteins in the control of insects might not be adequately addressed by bioassays based on the incorporation of inhibitors into artificial diets.  相似文献   

7.
Diet selection based on the level of proline in an insect's host plant has been observed for a number of phytophagous insects, but few studies have examined potential differences in feeding preferences between males and females. The level of proline among an insect's host plants, particularly in drought-stressed plants, can be highly variable and often is positively correlated with soluble nitrogen levels. Additionally, proline is known to participate in a number of physiological functions in insects. We tested the effect of proline as a feeding stimulant in reproductively active grasshoppers using the graminivorous Ageneotettix deorum and the generalist, but mostly graminivorous, Phoetaliotes nebrascensis. Feeding preference tests using diets with representative free amino acid and sucrose levels but varying proline levels (zero, normal and 3 x normal) were examined. The feeding preference exhibited by both species was sex-specific, although the sex-specific response was more pronounced in P. nebrascensis than in A. deorum. Females of both species displayed preferences for diets high in proline. Males of neither species exhibited a preference for proline when responses were averaged over all treatment levels. However, within specific treatment combinations, male A. deorum preferred diets with high proline over diets with zero proline. These results suggest that diet selection for specific nutrients may vary between males and females because of differences in their physiological status and, possibly, differences in the nutritional requirements associated with reproduction. These results also suggest that subtle shifts in the concentration of individual nutrients within an insect's host plant may greatly influence insect feeding patterns.  相似文献   

8.
The value of three cereal aphid species as food for a generalist predator   总被引:4,自引:0,他引:4  
The value of the cereal aphid species Metopolophium dirhodum (Wlk.), Sitobion avenae (F.) and Rhopalosiphum padi (L.) as prey for the linyphiid spider Erigone atra (Bl.) was assessed. Fecundity of females was determined for spiders fed on eight experimental diets: three single‐species aphid diets, a mixed diet of all three aphid species, three mixed diets with each aphid species in combination with fruit flies Drosophila melanogaster (Meig.), and pure D. melanogaster as a high quality comparison diet. The development and survival of first‐instar juveniles fed on three diets of single aphid species, and on a diet of Collembola were compared with those subjected to starvation. Prey value for adult females was assessed by egg production, hatching success and offspring size. In pure diets all three aphid species were of low value to the spiders, causing a rapid decline in egg production and supporting no growth of significance of first‐instar juveniles. No difference in value of aphid species of single‐species aphid diets was found in the fecundity experiment, while a ranking of aphid species of M. dirhodum > R. padi > S. avenae was revealed in the survivorship experiment. A mixed‐aphid diet was not found to be advantageous compared with single‐species aphid diets, and no advantage of including aphids in mixed diets with fruit flies was found. Metopolophium dirhodum and R. padi were neutral in mixed diets, while a diet of S. avenae and fruit flies caused reduced egg production compared with the pure diet of fruit flies, revealing a toxic effect of S. avenae on the spider. The value‐ranking of aphid species in mixed diets was similar to that of single‐species diets. A similar ranking of aphid species was found for different fitness parameters (fecundity of adult females and development of juveniles). A ranking of aphids by offspring size of mothers on aphid‐only diets was S. avenae > M. dirhodum > R. padi. All aphid‐fruit fly diets resulted in larger offspring than a diet of only D. melanogaster, with the overall largest offspring being produced on the diet of M. dirhodum and fruit flies.  相似文献   

9.
Orius species are important biological control agents of thrips in protected crops. Rearing conditions in mass production facilities may affect their performance in the crop when searching for the target prey. The aim of this study was to evaluate and compare the search behaviour and orientation towards prey of two Orius species, O. laevigatus (Fieber) and O. insidiosus (Say) that have been reared in the laboratory under different conditions, with wild (field‐collected) individuals. Adult predator females were placed in a Y‐tube olfactometer and offered a choice between the odours released by plants of different species (cotton, common bean, sweet pepper and cucumber), which were either non‐infested or infested with Frankliniella occidentalis (Pergande) adults.O. laevigatus and O. insidiosus responded to odours from thrips‐infested plants and these responses were influenced by the origin of the colonies. A larger percentage of laboratory‐reared O. laevigatus females (42%) did not made a choice between thrips‐infested or clean plants, compared with wild individuals (17%). Of those females that did respond to plant odours, a smaller percentage of laboratory‐reared O. laevigatus females (34%) responded to the odours from thrips‐infested plants compared with wild insects (76%). No significant differences were found inO. insidiosus females that did not make a choice between thrips‐infested or clean plants (14% for wild vs. 17% for lab individuals). Also, no significant differences were found between O. insidiosus females that selected thrips‐infested plants at the corresponding proportion of wild (75%) and laboratory‐reared (70%) individuals. We propose that the olfactometer test could be a complementary evaluation aspect to the already developed quality criteria for performance of mass‐reared Orius predators.  相似文献   

10.
A defining feature of the nutritional ecology of plant sap‐feeding insects is that the dietary deficit of essential amino acids (EAAs) in plant sap is supplemented by EAA‐provisioning microbial symbionts in the insect. Here, we demonstrated substantial variation in the nutritional phenotype of 208 genotypes of the pea aphid Acyrthosiphon pisum collected from a natural population. Specifically, the genotypes varied in performance (larval growth rates) on four test diets lacking the EAAs arginine, histidine and methionine or aromatic EAAs (phenylalanine and tryptophan), relative to the diet containing all EAAs. These data indicate that EAA supply from the symbiotic bacteria Buchnera can meet total aphid nutritional demand for only a subset of the EAA/aphid genotype combinations. We then correlated single nucleotide polymorphisms (SNPs) identified in the aphid and Buchnera genomes by reduced genome sequencing against aphid performance for each EAA deletion diet. This yielded significant associations between performance on the histidine‐free diet and Buchnera SNPs, including metabolism genes predicted to influence histidine biosynthesis. Aphid genetic correlates of performance were obtained for all four deletion diets, with associations on the arginine‐free diet and aromatic‐free diets dominated by genes functioning in the regulation of metabolic and cellular processes. The specific aphid genes associated with performance on different EAA deletion diets are largely nonoverlapping, indicating some independence in the regulatory circuits determining aphid phenotype for the different EAAs. This study demonstrates how variation in the phenotype of associations collected from natural populations can be applied to elucidate the genetic basis of ecologically important traits in systems intractable to traditional forward/reverse genetic techniques.  相似文献   

11.
The use of chemically defined artificial diets has allowed researchers to examine questions within nutritional ecology about how macronutrients affect life‐history traits and resource‐based trade‐offs. Using a chemically defined diet, it is possible to manipulate both the total nutritional content and the ratio of macronutrients (i.e., proteins, carbohydrates, or lipids) within the diet. Studies using the geometric framework have made use of these diets to examine lifespan, fecundity, and immune responses. Here, we develop an artificial diet suitable for rearing lepidopteran larvae. We created diets with three proportions of non‐nutritive material (30, 50, and 70% indigestible cellulose) relative to protein and carbohydrate macronutrients, and compared these to standard wheat bran laboratory diet. We then examined the effects of variable nutrient content on lifespan and development time in Plodia interpunctella Hübner (Lepidoptera: Pyralidae). The artificial diets supported development (almost) as well as bran‐based laboratory diets. Total nutrient content affected development time: females that fed on the diet with the highest nutrient content took the longest time to reach eclosion. We also found evidence to support dietary restriction, with larvae receiving the fewest nutrients having the longest lifespan as adults. These findings are indicative of the usefulness of this diet as a tool to further investigate the effects of nutrient content and macronutrient imbalance on resource‐based trade‐offs and life‐history traits.  相似文献   

12.
The slender loris (Loris tardigradus) is a rare, nocturnal prosimian found only in the tropical rainforest of southern India and Sri Lanka. Little is known about their diet, though it is assumed that insects comprise a majority of their wild diet. Based on this assumption, captive lorises are offered a variety of insects or insect life stages; the species of insect or the life stage is often determined by what is easiest to buy or rear. Captive lorises at the Duke Lemur Center (DLC) were offered the opportunity to choose which life stage of mealworms (Tenebrio molito), superworms (Zophobus morio), or waxworms (Galleria mellonella) they preferred. The DLC captive lorises did not select the largest life stages of any insect offered. They preferred the larvae stage to the adult stage in all three insect species, and males and females had different insect species and life stage preferences. Zoo Biol 30:189–198, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
We estimated the relative contribution of fruits and insects as sources of dietary protein in two species of Neotropical frugivorous bats (Artibeus jamaicensis and Sturnira lilium) using stable carbon and nitrogen isotope analyses. An insectivorous species (Pteronotus parnellii) was also included for comparison. We found constant patterns in stable carbon and nitrogen isotope composition in blood that separated the two species of frugivorous bats from the insectivorous bat. When we used these isotopic values (combined with those of dietary fruits and insects) to estimate the percent contribution of fruits and insects to the diet of the bats, we obtained different results, depending on assumptions and model adopted. We tested models using both 8“N and 8′3C results simultaneously and separately and further used diet‐tissue fractionation factors of 3%o for nitrogen and 1 and 3.5%o for carbon. We found that a carbon‐based model with a diet‐blood enrichment factor of 3.5%o produced the most parsimonious results. The model estimated that A. jamaicensis and S. lilium obtained most of their protein requirements from fruits, whereas P. parnellii fed mostly on insects. No sexual or seasonal variations in the diet of the two frugivorous species were detected. We found no evidence that the diet of sexually active females differed from that of nonsexually active females in the two species of frugivorous bats. We suggest that future studies better define isotopic fractionation between diet and tissues of bats using captive rearing and controlled diets.  相似文献   

14.
The influence of feeding, egg load and stage of ovarian development on the sexual receptivity of some insect species has been reported. This work investigated the effects of different brewer's yeast concentrations in the diet offered to females of West Indian fruit fly, Anastrepha obliqua, on their sexual receptivity. Wild females were fed on artificial diets containing 2.0 g brewer's yeast per 100 mL of water (low‐yeast diet, LY diet), 6.5 g yeast per 100 mL of water (high‐yeast diet, HY diet) or only sucrose (Su diet) and then placed with the males. Female sexual receptivity tests were carried out in acrylic boxes in the laboratory under controlled conditions (temperature, humidity and light). Females fed on the HY diet were more sexually receptive to male courtship than the other females. Additionally, when fed on the same diet (HY diet), those females with higher egg load were more sexually receptive. The data suggest that the ingestion of a protein source is essential for increasing sexual receptivity and that egg load is the most important factor affecting sexual receptivity of A. obliqua females.  相似文献   

15.
An artificial rearing method was designed for the generalist predator, Chrysopa pallens (Rambur). The rearing media were formulated based on, Orius strigicollis diets for feeding larvae, and two diets for adults were prepared with insect source and non‐insect as their main components. Development of the predators was successfully obtained with the diets for both larval and adult stages. The impact of these diets was recorded for growth during the larval stage and oviposition rates by the females. Total development period and mortality rate of, C. pallens were about 26.9 days and 11%, respectively. The females showed better reproduction with average of 2019 eggs over their life span of 89 days when the artificial diet with non‐insect source was provided. On overall basis the life expectancy and fecundity was better when compared with previous findings.  相似文献   

16.
17.
The geometric framework provides a way for understanding the multi‐dimensional nutritional relationships between consumers and their food. We use this approach to further our understanding of the feeding and nutritional ecology of a ubiquitous mixed‐feeding insect herbivore that consumes a variety of host plants spanning a wide range of nutritional composition. Our overall objective was to examine feeding decisions, resulting performance, and post‐ingestive consequences in a common mixed‐feeding insect herbivore, Melanoplus bivittatus (Say) (Orthoptera: Acrididae), when presented with paired diets differing in protein:carbohydrate (p:c) ratio. Intake p:c of M. bivittatus differed among all but two treatments and in many cases was farther than expected from the previously identified p:c intake target for this species. Despite this variability in intake of protein and carbohydrate, we found few effects of the diet treatments on performance or post‐ingestive processing. However, our results suggest that when feeding on high‐quality diets, nutrients consumed in excess may be stored rather than excreted.  相似文献   

18.
We reared larvae of three generalist insect species on plants occurring in their habitats. Individuals of each species were kept either on mixed diets, or on each plant species separately. We measured food plant preference in the mixed-diet group and compared insect performance on single plants to the performance on the mixed diet. For all three insect species, food choice within the mixed-diet groups was non-random and delivered the best overall performance, thus fulfilling the criteria for self-selected diets. When a single diet was as good as the mixed diet for one particular aspect of performance (Adenostyles alliariae and Petasites albus for Miramella alpina; A. alliariae for Callimorpha dominula), it was never the most preferred food plant in the mixed-diet treatment. Whether the benefit achieved by mixing diets is due to nutrient complementation or toxin dilution, we argue that there is no easy way to distinguish between the two hypotheses on the basis of consumption and performance measurements, as has previously been proposed. From the interpretation of utilisation plots, the ANCOVA equivalent of nutritional indices, we were able to gain insight into where in the sequence from ingestion to growth (preingestive, predigestive or postdigestive) single diets caused differences from mixed diets. The elements of this control system which were influenced by single diets varied considerably, both within and between insect species. No food plant was toxic or deterrent to all experimental insect species; a food plant that caused consumption effects (preingestive) for one insect species could be dealt with metabolically (postdigestive) by another; different food plants could cause behavioural effects (preingestive), metabolic effects (postdigestive), or a combination of both effects, all within the same insect species. However, one generality did emerge: once a food was ingested, further growth-relevant effects occurred metabolically (postdigestive) rather than via differential egestion (digestibility). Received: 5 October 1998 / Accepted: 1 March 1999  相似文献   

19.
Longevity is an important life‐history trait for successful and cost‐effective application of the sterile insect technique. Furthermore, it has been shown that females of some species – e.g., Anastrepha ludens (Loew) (Diptera: Tephritidae) – preferentially copulate with ‘old’, sexually experienced males, rather than younger and inexperienced males. Long‐lived sterile males may therefore have greater opportunity to find and mate with wild females than short‐lived males, and be more effective in inducing sterility into wild populations. We explored the feasibility of increasing sterile male lifespan through selection of long‐lived strains and provision of pre‐release diets with added protein, and inoculated with bacterial symbionts recovered from cultures of the gut of wild Anastrepha obliqua (Macquart). Artificial selection for long‐lived A. ludens resulted in a sharp drop of fecundity levels for F1 females. Nevertheless, the cross of long‐lived males with laboratory females produced a female F1 progeny with fecundity levels comparable to those of females in the established colony. However, the male progeny of long‐lived males*laboratory females did not survive in higher proportions than laboratory males. Provision of sugar to A. obliqua adults resulted in increased survival in comparison to adults provided only with water, whereas the addition of protein to sugar‐only diets had no additional effect on longevity. Non‐irradiated males lived longer than irradiated males, and supplying a generic probiotic diet produced no noticeable effect in restoring irradiated male longevity of A. obliqua. We discuss the need to evaluate the time to reach sexual maturity and survival under stress for long‐lived strains, and the inclusion of low amounts of protein and specific beneficial bacteria in pre‐release diets to increase sterile male performance and longevity in the field.  相似文献   

20.
Studies on the susceptibility of F1 neonates of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) collected from chickpea in Delhi and cotton in Punjab, Haryana and Rajasthan in northern India, to Bacillus thuringiensis ssp. kurstaki HD‐73, and the impact of host crop diets on insect susceptibility, were carried out by diet incorporation bioassays. The susceptibility of F1 neonates of H. armigera to Bacillus thuringiensis ssp. kurstaki HD‐73 ranged from twofold (LC50 96 h, 84.5–164.2 µg (ai) l?1) for chickpea to about fivefold (LC50 96 h, 51.1–247.7 µg (ai) l?1) for cotton. The F1 neonates of insects collected from pearl millet were twice as tolerant as those collected from cotton and sunflower at Sirsa to B. thuringiensis ssp. kurstaki HD‐73, suggesting that there was an influence of host crops on insect susceptibility. Insects originally collected from cotton fields at Bhatinda and reared for four generations on a chickpea‐based meridic diet were used to initiate host‐specific colonies of H. armigera. These host‐specific colonies were allowed to complete one generation on meridic diets prepared with different hosts, viz., cabbage, cauliflower, chickpea, green pea, pearl millet, and pigeon pea. Larvae of H. armigera were heaviest on the 15th day, and had a higher growth rate on a pigeon pea‐based diet than all other host diets. The larval period was shorter on chickpea and pigeon pea, with higher percentage pupation than all other host‐diets. The pupal weight of H. armigera was greater on chickpea and pigeon pea diets than on other host diets. The growth and development of larvae was significantly poorer on pearl millet diet than on other host diets. The F1 neonates of H. armigera belonging to cabbage, cauliflower, and pearl millet host‐specific colonies were more susceptible than those belonging to chickpea, green pea, and pigeon pea host‐specific colonies to B. thuringiensis ssp. kurstaki HD‐73, suggesting the importance of proteinaceous nutrients in tolerance. The F1 neonates of the pearl millet colony of H. armigera grown on a chickpea‐diet for 4 days were significantly more tolerant to B. thuringiensis ssp. kurstaki HD‐73 than those reared on the pearl millet‐based diet. These studies show the impact of the host diet of H. armigera on tolerance to B. thuringiensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号