首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultures of ts BN75, a temperature-sensitive mutant of BHK 21 cells, show a gradual biphasic drop in [3H]thymidine incorporation together with an accumulation of cells having a G2 DNA content when incubated at 39.5 degrees. However, when higher (41 degrees - 42 degrees) nonpermissive temperatures were used, the major block was in S-phase DNA synthesis. The cultures of ts BN75 shifted to 42 degrees at the start of the S phase, cell-cycle progress was arrested in the middle of S, while under these conditions wild-type BHK cells underwent at least one cycle of DNA synthesis. When ts BN75 cells growth-arrested at high temperature with a G2 DNA content were shifted to the permissive temperature (33.5 degrees C), the restart of DNA synthesis preceded the appearance of mitotic cells. These data suggest that the ts defect of ts BN75 cells might affect primarily the S phase of the cycle rather than the G2 phase.  相似文献   

2.
Friend erythroleukemia cells, thermosensitive for growth, have been isolated by a novel selection procedure employing hypoxanthine, aminopterin and bromodeoxyuridine (HAB) with near-visible light. This reagent eliminates both wild-type cells replicating at the non-permissive temperature of 39 °C and cells lacking thymidine kinase activity unable to incorporate bromodeoxyuridine (BUdR), the lethal constituent of HAB. Clones growth arrested at the non-permissive temperature have a temperature-sensitive defect in progression through G1 of the cell cycle. At permissive temperatures these clones have a karyotype similar to that of wild-type cells and are inducible for synthesis of hemoglobin. Clones which have survived the selection by means of an extended generation time are almost tetraploid at permissive temperatures, are larger than wild-type cells and are inducible for hemoglobin synthesis. At 39 °C these cells are defective in accurate mitotic division. This results in a population of cells heterogeneous in size, having chromosome complements ranging from less than the mouse diploid number to approx. 150 chromosomes/ cell. In the latter giant cells, not all nuclei are in mitosis at any one time. Such cells may be defective in cytokinesis.The two distinct classes of ts variant obtained should be useful for
1. 1. the study of whether induction of hemoglobin synthesis is cell-cycle dependent;
2. 2. mapping the chromosomes important in controlling accurate mitotic division.
  相似文献   

3.
A temperature-sensitive (ts) mutant of the BHK21 cell line derived from golden hamsters, tsBN462 has a mutation in the gene encoding the largest subunit of the TFIID complex, TAFII250/p230/CCG1, and arrests in the G1 phase at the nonpermissive temperature, 39.5°C. We found that tsBN462 cells underwent apoptosis following growth arrest at 39.5°C, suggesting a role for CCG1 as a repressor of apoptosis. By electron microscopic observation, tsBN462 cells at 39.5°C showed characteristic features of apoptosis. Apoptosis was not suppressed by expression of Bc1-2 or the adenovirus E1B 19 kDa protein. Cell death was suppressed completely by expression of wild-type CCG1 and partially by wild-type p53, a growth suppressor protein. Cell cycle arrest induced by p53 may help survival of tsBN462 cells at 39.5°C. Apoptosis was accelerated in SV40 large T antigen-transformed tsBN462 cells at 39.5°C where SV40 large T antigen formed a complex with p53, implying that the apoptosis of tsBN462 cells at 39.5°C occurred in a p53-independent manner. Our results suggest that CCG1/TAFII250 is required for the expression of factors regulating apoptosis.  相似文献   

4.
A temperature-sensitive mutant, designated ts85, was isolated from a mouse mammary carcinoma cell line, FM3A. The ts85 cells grew at 33 °C (permissive temperature) with a doubling time of 18 h, which was almost the same as with wild-type cells, whereas the cell number scarcely increased at all at 39 °C (non-permissive temperature). When the ts85 cells were shifted from 33 to 39 °C, their DNA synthesis fell to below 1% of the initial value in 14 h. RNA or protein synthesis, however, was maintained at the initial levels for at least 14 h at 39 °C. Cytofluorometric analysis of asynchronous cultures and studies with synchronous cultures suggested that the bulk of the cells cultured at 39 °C for 12–18 h were arrested in late S and G2 phases. Electron microscopic observations revealed that chromatin was abnormally condensed into fragmented and compact forms, particularly around nucleoli, in about 80% of cells of an asynchronous culture incubated at 39 °C for 16 h. Cells in mitosis were not detected in such cultures and nuclear membrane and nucleoli were still intact. Such abnormal chromosome condensation was not observed in the ts85 cells at 33 °C or in wild-type cells at either temperature. Since these findings suggest that a ts gene product of ts85 cells is necessary for chromosome condensation, ts85 cells may represent a useful tool for establishing the mechanisms of chromosome condensation. The interrelationship between abnormal chromosome condensation and reduction in DNA synthesis of the ts85 cells is discussed.  相似文献   

5.
Vero cells were infected with the ts-045 strain of vesicular stomatitis virus, and the cells were incubated at 39°C to accumulate the mutant G glycoprotein in the ER as a misfolded aggregate. Cycloheximide was added to the culture medium 3.5 h after infection to prevent further protein synthesis, and the temperature was lowered to 10, 15, or 31°C. At these temperatures, the mutant G glycoprotein correctly folds and oligomerizes. Immunofluorescence light microscopy showed that the G glycoprotein was exported to the Golgi complex at 31°C and to the intermediate compartment (IC) at 15°C, but no export was observed at 10°C. However, incubations at 10°C followed by shift to 15 or 31°C resulted in the normal transfer of the glycoprotein to the IC and the Golgi, respectively. Immunoelectron microscopical analysis confirmed all these results, but showed also that the glycoprotein was frequently clustered in the ER at 10°C. Conventional electron microscopy showed that the morphology of the ER, IC, and Golgi complex remained essentially unchanged at all temperatures. The only significant difference detectable in cells incubated at 10°C was the increased number of partially coated ER protrusions, longer than those detected at higher temperatures. These results demonstrate that the transport toward the Golgi complex of G glycoprotein can be arrested at a step preceding the entry into the IC, thus suggesting that ER and IC are separate stations in the exocytic pathway.  相似文献   

6.
Random and synchronous V79 cells were shifted from 37.5 °C to temperatures between 29 ° and 41 °C. Intermitotic time determinations of random cultures showed an increase in generation time and a broadening in the distribution of generation times in cells whose cycle spanned the temperature shift, but only a slight increase in generation time after one generation at temperatures between 34 °–40 °C. At 33.5 °C and below there was a stepwise increase in generation time. When cells grown at non-standard temperatures were allowed to habituate for 48 h at the altered temperature prior to analysis, the increase in median intermitotic time was slightly less in comparison to analyses done after only one generation following the temperature step. The Q10 for cell division of cells growing at temperatures from 34 ° to 40 °C was between 1.15 and 1.26, suggesting that the mammalian cell cycle is temperature compensated over a limited (6–7 °C) temperature span. Mammalian cells in culture appear to have the same capacity for temperature compensation in their cell cycle as do unicellular eukaryotes. The fact that cycle time at lower temperatures increases in a discrete manner is taken as evidence for a quantal clock.  相似文献   

7.
S Handeli  H Weintraub 《Cell》1992,71(4):599-611
The ts41 mutation of Chinese hamster cells was first isolated and characterized by Hirschberg and Marcus (1982) who showed that at nonpermissive temperature, cells accumulate up to 16C equivalents of DNA. Here we show that the mutation is recessive and at nonpermissive temperature, cells replicate their genome normally, but instead of going on into G2, M, and G1, they pass directly into a second S phase. Entry into a second S phase does not require serum nor is it inhibited by G2 checkpoints or mitotic inhibitors. Temperature-shift experiments suggest that the ts41 gene product participates in two functions in the cell cycle: entry into mitosis and inhibition of entry into S phase. The ts41 mutation seems to define a class of cell cycle mutant that couples the sequential events of DNA replication and mitosis.  相似文献   

8.
A temperature-sensitive mutant (TSF-1) of Chlamydomonas reinhardii which exhibits altered regulation of tubulin synthesis has been isolated. This mutant grows equally well at permissive (25 °C) and non-permissive (36 °C) temperatures but possesses flagella only at 25 °C. As with wild-type cells, when flagella are detached by ‘pH shock’ at 25 °C there is a rapid regeneration of flagella and a marked induction of tubulin synthesis, the major flagellar protein. However, if flagella are removed at 25 °C and the cells immediately placed at 36 °C, there is little or no flagellar regeneration or tubulin induction. If these flagella-less cells are maintained at 36 °C and subsequently shifted back to 25 °C, there is a rapid initiation of both flagellar outgrowth and tubulin synthesis.An additional temperature-sensitive phenotype exhibited by TSF-1 when shifted from 25 to 36 °C is a spontaneous detachment of flagella. Associated with the loss of flagella is limited (but perhaps repeated) flagellar regeneration and a marked increase in tubulin synthesis. Interestingly, ‘pH shock’ treatment at 30 or 60 min after the shift to 36 °C results in a rapid de-induction of tubulin synthesis. This complements the observation that flagellar excision by ‘pH shock’ just prior to a shift to 36 °C results in little or no tubulin induction. Taken together these results suggest that two independent pathways for tubulin induction may be operable in TSF-1.The short response times observed in both the shift-up and shift-down experiments demonstrate that the conditional process involved responds very rapidly to both positive and negative temperature changes and, moreover, indicate that this process may be intimately associated with the regulation of both flagellar regeneration and flagellar tubulin synthesis.  相似文献   

9.
NRK cells infected with a temperature-sensitive Kirsten sarcoma virus (ts371 KSV) are transformed at 36 degrees C, but are untransformed at 41 degrees C which inactivates the abnormally thermolabile oncogenic p21Ki product of the viral Ki-ras gene. At 41 degrees C, tsKSV-infected NRK cells were arrested in G0/G1 when incubated in serum-free medium, but could then be stimulated to transit G1, replicate DNA, and divide by adding serum at 41 degrees C or dropping the temperature to a p21-activating 36 degrees C without adding serum. When quiescent cells at 41 degrees C were stimulated to transit G1 in serum-free medium by activating p21 at 36 degrees C and then shifted back to the p21-inactivating 41 degrees C in the mid-S phase, they continued replicating DNA but could not transit G2. Reactivating p21 in the G2-arrested cells by once again lowering the temperature to 36 degrees C stimulated a rapid entry into mitosis. By contrast, while serum-stimulated quiescent G0 cells at 41 degrees C replicate DNA and divide, serum did not induce G2-arrested cells to enter mitosis, indicating that serum growth factors may trigger events in the G1 phase that ultimately determine G2 transit. These observations made with the viral ras product suggest that cellular ras proto-oncogene products have a role in G2 transit of normal cells.  相似文献   

10.
The temperature-sensitive S. cerevisiae mutant alg1-1, defective in the N-glycosylation of proteins, shows a first cycle arrest at the non-permissive temperature of 36 °C. The cell number increases by 50% and the absorbance approximately doubles. The budding index of 0.4 at 26 °C drops to 0.15 and DNA synthesis quickly comes to a halt at 36 °C. When the temperature is lowered again, budding and DNA synthesis start after a lag of 2–3 h; α-factor prevents both these processes in cells of mating type a. In addition, cells arrested at 26 °C in G1 with α-factor also do not start budding at the non-permissive temperature after removal of α-factor. The results support recent findings obtained with tunicamycin and suggest that at least one glycoprotein is required for G1-S phase transition in yeast.  相似文献   

11.
Cytoplasmic regulation of two G1-specific temperature-sensitive functions   总被引:4,自引:0,他引:4  
G J Jonak  R Baserga 《Cell》1979,18(1):117-123
tsAF8 and ts13 cells are temperature-sensitive (ts) mutants of BHK cells that specifically arrest, at nonpermissive temperature, in the G1 phase of the cell cycle. These two mutants can complement each other. Both cell lines can be made quiescent by serum deprivation (G0). When subsequently stimulated by serum, they can enter S phase at 34 degrees C but not at 39.5 degrees-40.6 degrees C. We have used these mutants to determine whether the nucleus is needed during the G0 leads to S transition for the expression of the G1 ts functions. For this purpose, we fused cytoplasts of G0-tsAF8 with whole ts13 cells in G0, and cytoplasts of G0-ts13 with whole tsAF8 cells in G0. Serum stimulation at the nonpermissive temperature induced DNA synthesis in both types of such fusion products. No DNA synthesis was induced by serum stimulation at the nonpermissive temperature in fusion products constructed between either G0-tsAF8 cytoplasts and whole G0-tsAF8 cells or G0-ts13 cytoplasts and whole G0-ts13 cells. These results demonstrate that the information for these two ts functions, which are required for entry of serum-stimulated cells into the S phase, are already present in the cytoplasm of G0 cells--that is, before serum stimulation commits them to the transition from the nonproliferating to the proliferating state.  相似文献   

12.
Temperature shifts from 22 to 32 °C perturb one of the systems responsible for mitosis triggering in the plasmodia of Physarum (Myxomycetes). In order to determine if the same regulatory mechanism could also be involved in some other cell cycle events, the effects of temperature shifts on the peak of thymidine kinase (EC 2.7.1.21, ATP : thymidine 5′-phosphotransferase) synthesis have been studied. At 22 °C, the increase in thymidine kinase (tdk) activity begins shortly before mitosis and is thus always associated with the end of the G2 phase, the mitosis and the beginning of the S phase. The consequences of temperature shifts depend upon their position in the cell cycle. In all cases, a peak of tdk occurs concomitantly with the 32 °C mitosis. But, when the temperature shift is applied 90-15 min before the control metaphase at 22 °C, another peak of tdk is observed at 32 °C in absence of mitosis, but at the same time as the control mitosis at 22 °C. These results indicate that the increase in the synthesis of tdk is controlled by the heat-sensitive regulatory system which plays a role in the onset of mitosis and S phase. We further suggest that the increase in the synthesis of tdk and the triggering of mitosis are both controlled by the amount of a heat-sensitive effector. But the former takes place when the amount of the effector reaches a critical value lower than the value necessary to trigger mitosis.  相似文献   

13.
The use of a temperature switch to control the growth and productivity of temperature-sensitive (ts) mutants was investigated to extend the productive life span of recombinant Chinese hamster ovary (CHO) cells in batch culture. Bromodeoxyuridine was used at 39 degrees C to select mutagenized CHO-K1 cells, which resulted in the isolation of 31 temperature-sensitive mutants that were growth inhibited at 39 degrees C. Two of these mutants were successfully transfected with the gene for tissue inhibitor of metalloproteinases (TIMP) using glutamine synthetase amplification, and a permanent recombinant cell line established (5G1-B1) that maintains the ts phenotype.Continuous exposure to the nonpermissive temperature (npt) of 39 degrees C led to a rapid decline in cell viability. However, a temperature regime using alternating incubations at 34 degrees C and 39 degrees C arrested the 5G1-B1 cells while retaining a high cell viability for up to 170 h in culture. The specific production rate of the growth-arrested cells was 3-4 times that of control cultures maintained at a constant 34 degrees C over the crucial 72-130-h period of culture, which resulted in a 35% increase in the maximum product yield. Glucose uptake and lactate production both decreased in arrested cells. Flow cytometric analysis indicated that 5G1-B1 cells arrested in the G(1) or G(0) phase of the cell cycle, and no major structural damage was caused to these cells by the alternating temperature regime.These results demonstrate that growth-arrested ts CHO cells have increased productivity compared to growing cultures and maintain viability for longer periods. The system offers the prospect of enhancing the productivity of recombinant mammalian cells grown in simple batch fermentors. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
Normal human diploid cells, TIG-1, ceased to proliferate at about the 62 population doubling level (PDL). Transformed clones isolated from TIG-1 cells infected with wtSV40 and those with tsA900 SV40 cultured at 34 °C were subcultured up to about 80 PDL. When the culture temperature of tsA SV40-transformed cells was shifted from 34 to 39.5 °C at 51 PDL, the growth curve of these transformed cells changed to that of normal young cells. When shifted to 39.5 °C after 62 PDL, cells immediately reached the end of their proliferative lifespan even under such favourable conditions for growth as low cell density in fresh medium. Growth of wtSV40-transformed cells did not change markedly at either temperature. These findings suggest that the clock of aging progresses in transformed cells as in normal cells, around 62 PDL being the senescent state in both cases, and that T-antigen of the tsA mutant of SV40 supports the extension of the lifespan of human cells only at the permissive temperature.  相似文献   

15.
A temperature-sensitive (ts) mutant, designated tsFT210, was isolated from a mouse mammary carcinoma cell line, FM3A. The tsFT210 cells grew normally at 33 degrees C (permissive temperature), but more than 80% of the cells were arrested at the G2 phase at 39 degrees C (non-permissive temperature) as revealed by flow-microfluorimetric analysis. DNA replication and synthesis of other macromolecules by this mutant seemed to be normal at 39 degrees C for at least 10 h. However, in this mutant, hyperphosphorylation of H1 histone from the G2 to M phase, which occurs in the normal cell cycle, could not be detected at the non-permissive temperature. This suggests that a gene product which is temperature-sensitive in tsFT210 cells is necessary for hyperphosphorylation of H1 histone and that this gene product may be related to chromosome condensation.  相似文献   

16.
We reported that: (i) 3Y1tsF121 cells, a temperature-sensitive (ts) mutant of rat 3Y1 fibroblasts, are reversibly arrested either in the G1 or in the G2 phase, at the nonpermissive temperature. (ii) Cells retain the ability to resume proliferation at the permissive temperature after prolonged arrest in the G1 phase (for 5 days), whereas they lose it after prolonged arrest in the G2 phase (over 24 h). (iii) The G1 arrest is overcome at the nonpermissive temperature by the addition of fresh serum (H. Zaitsu and G. Kimura (1984) J. Cell. Physiol. 119, 82; (1985) J. Cell. Physiol. 124, 177). In the present study, the G2 arrest was overcome by exposing the cells to fresh serum, at the nonpermissive temperature. The G2 arrest occurred only at a higher cell density than that of the G1 arrest. The efficiency of the overcome was higher in the case of the G2 arrest than in case of the G1 arrest. When cells synchronized at the G1/S border by aphidicolin at the permissive temperature were released from the block, they divided in the absence of serum, at the permissive temperature. Even if they had passed through the previous G2 phase in a very high concentration of fresh serum at the permissive temperature, mitotic cells did not enter the S phase in the absence of serum, even at the permissive temperature. When the cells arrested in the G1 phase (not in G0) due to the ts defect were incubated in the absence of serum at the permissive temperature, only 34% entered the S phase and only 15% divided. These results suggest that (i) the ts defect in 3Y1tsF121 limiting cellular proliferation in both the G1 and the G2 phases is probably due to a single mutational event, and is a serum-requiring event. (ii) Preparation of the serum-requiring event which is required for the G2 traverse is completed in the G1 phase, under ordinary conditions. (iii) However, cells are able to fulfill the serum-requiring event in the G2 phase as well as in the G1 phase when the preparation is below the required level. (iv) The commitment to DNA synthesis is not necessarily a commitment to cell division. (v) Cells are arrested in the G1 phase more safely and more effectively than in the G2 phase, by the serum-related mechanism.  相似文献   

17.
We have investigated the expression of growth-regulated genes in tsJT60 cells, a temperature-sensitive (ts) mutant of Fischer rat cells, which, on the basis of its kinetic behavior, can be classified as a G0 mutant. It grows normally at 34 degrees C and also at 39.5 degrees C if shifted to the higher temperature during exponential growth. However, if the cell population is first made quiescent by serum deprivation, subsequent stimulation by serum induces the cells to enter S phase at 34 degrees C but not at 39.5 degrees C. A panel of growth-regulated genes was used that included three protooncogenes (c-fos, c-myc, and p53), several genes that are induced in G0 cells stimulated by growth factors (beta-actin, 2A9, 2F1, vimentin, JE-3, KC-1, and ornithine decarboxylase), and an S-phase gene (histone H3). The expression of these growth-regulated genes was studied in both tsJT60 cells and its parental cell line, rat 3Y1 cells. All the genes tested, except histone H3, are similarly induced when quiescent tsJT60 cells are stimulated by serum at either permissive or restrictive temperatures. These results raise intriguing questions on the nature of quiescence and the relationship between G0 and G1 in cells in culture.  相似文献   

18.
tsJT16 is a cell cycle temperature-sensitive (ts) mutant from a Fischer rat cell line. When it is growth-stimulated from G0 phase it enters S phase at the permissive temperature (34 degrees C) but not at the nonpermissive temperature (40 degrees C). It induces a nuclear labile protein, p70, when it is stimulated from G0 phase at 34 degrees C, but not at 40 degrees C. In growing cell cycle it progresses through the S, G2 and M phases at both temperatures but fails to pass through G1 phase at 40 degrees C. Here we described that p70 was synthesized neither in the randomly growing cycle nor in the G1 phase synchronously progressing from M phase. The cells synchronized at early G1 phase by culturing in serum-free medium for 7.5 h from G1/S boundary induced c-fos and c-myc following serum addition, but under the same condition p70 was not synthesized. These results indicate that the synthesis of p70 is not required for progression of the G1 phase of the growing cycle and can be used as an exclusive marker of G0-S transition.  相似文献   

19.
A derivative of theEscherichia coliEnterococcus faecalisshuttle vector pAM401 was isolated by mutagenesis in anE. colimutator strain. This plasmid, designated pAM401ts, was more than an order of magnitude less stable at 38°C than at 30°C in theE. faecalishost strain JH2-2. TheE. faecalisplasmid pAD1-encodedparstability locus was cloned onto pAM401ts, and its effects on plasmid stability and host cell viability were assessed. It was found thatparstabilized pAM401ts at 38°C but also caused a substantial drop in cell viability three to four generations after a temperature shift from 30 to 38°C. After a maximum viability drop of 94%, culture growth recovered as plasmid-free cells began to accumulate. Provision of excess RNAII, the putativeparantidote,in transattenuated cell killing. These characteristics support a postsegregational killing mechanism forpar-mediated plasmid stabilization.  相似文献   

20.
The process by which fetal lung epithelial cells differentiate into type 1 and type 2 cell is largely unknown. In order to study lung epithelial cell proliferation and differentiation we have infected 20-day fetal lung epithelial cells with a retrovirus carrying a temperature-sensitive SV40 T antigen (T Ag) and isolated several immortalized fetal epithelial cell lines. Cell line 20-3 has characteristics of lung epithelial cells including the presence of distinct lamellar bodies, tight junctions, keratin 8 and 18 mRNA, HFH8, and T1α mRNA and low levels of surfactant protein A mRNA. At 33°C 20-3 grows with a doubling time of 21 h. At 40°C the majority of cells cease to proliferate. Growth arrest is accompanied by significant morphological changes including an increase in cell size, transition to a squamous phenotype that resembles type 1 cells, and an increase in the number of multinucleated cells within the population. Greater than 95% of the cells incorporate [3H]thymidine into DNA at 33°C whereas at 40°C label incorporation drops to less than 20%. When shifted down to 33°C 40% of the cells remain terminally growth arrested. In addition, cells plated at 40°C have a reduced ability to form colonies when replated at 33°C. Treatment with TGF-β increases the percentage of cells that terminally growth arrest to greater than 80%. Growth arrest is accompanied by an increase in the levels of c-jun, jun D, cyclin D1, C/EBP-β, transglutaminase type II, and retinoblastoma (Rb) mRNA and an induction of p105, the hypophosphorylated, growth regulatory form of Rb. Evaluation of Rb mRNA in fetal lung indicates that it is induced 2.5-fold between 17 and 21 days of gestation. These studies indicate that 20-3 terminally growth arrests in culture at the nonpermissive temperature and that it may be useful in studying changes in gene expression that accompany terminal growth arrest during lung development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号