首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hans Peter Getz 《Planta》1991,185(2):261-268
Sucrose uptake into tonoplast vesicles, which were prepared from red beet (Beta vulgaris L.) vacuoles isolated by two different methods, was stimulated by MgATP. Using the same medium as for osmotic disruption of vacuoles, membrane vesicles were prepared from tissue homogenates of dormant red beet roots and separated by high-speed centrifugation through a discontinuous dextran gradient. A low-density microsomal fraction highly enriched in tonoplast vesicles could be further purified from contaminating ER vesicles by inclusion of 5 mM MgCl2 in the homogenization medium. These vesicles were able to transport sucrose in an ATP-dependent manner against a concentration gradient, whereas vesicles from regions of other densities lacked this feature, indicating that ATP stimulation of sucrose uptake took place only at the tonoplast membrane. Sucrose uptake was optimal at pH 7 in the presence of MgATP and could be stimulated by superimposed pH gradients (vesicle interior acidic) in the absence of MgATP, which is consistent with the operation of a sucrose/H+-antiporter at the tonoplast. Tonoplast vesicles, obtained in high yield from tissue homogenates of red beet roots, exhibited sugar-uptake characteristics comparable to those of intact vacuoles; these characteristics included similarities in K m (1.7 mM), sensitivity to inhibitors and specificity for sucrose.Many experiments were carried out at the Experiment Station of the HSPA, Aiea, Hawaii and financed by an NSF grant to Dr. Maretzki and Mrs. M. Thom.  相似文献   

2.
Summary In storage tissue ofBeta vulgaris L., carbonyl cyanidem-chlorophenylhydrazone or cyanide+salicylhydroxamic acid reduce cell electropotentials from about –200 to below –100 mV. The relationship between potential and cellular ATP level is examined during treatment with different concentrations of inhibitiors. At low ATP levels the potential rises sharply with increases in ATP, but above an ATP level of approximately 50% of the uninhibited level the potential changes very little with ATP concentration. A plot of membrane potentialvs.86Pb+ influx or of potentialvs. net K+ uptake indicates that as the level of inhibition is decreased, the potential tends to reach a limit while cation influx and net uptake continue to increase. Resistance measurements, although subject to difficulties of interpretation, indicate no change in conductance with potential, ion flux, or ATP level. Thus the membrane potential should directly reflect electrogenic pump activity, attributed to active uncoupled H+ efflux. K+ uptake can occur against its electrochemical gradient and is attributed to a coupled K+ influx/H+ efflux pump. The results show that the electrogenic pump activity is independent of the K+/H+ exchange rate. Thus electrogenic H+ efflux and K+/H+ exchange may represent different transport systems, or different modes of operation of a single pump with variable stoichiometry.  相似文献   

3.
4.
Effect of petiole anoxia on Phloem transport in squash   总被引:2,自引:1,他引:2       下载免费PDF全文
Translocation of 14C-labeled assimilates in Early Prolific Straightneck squash (Cucurbita melopepo torticollis Bailey) through a 15-centimeter oxygen-deficient zone of the petiole was studied as a function of varying periods of anaerobiosis (N2 atmosphere). Initiation of anaerobic conditions caused an immediate and rapid decline in translocation to about 35 to 45% of the pretreatment rate within 30 to 40 minutes. This inhibition response (first inhibition response) was transient, however, and full recovery to the pretreatment rate occurred during the ensuing 60 to 90 minutes. Following this adaptation response to anaerobic conditions, translocation continued unimpaired for extended periods of time, approaching, and in some cases exceeding, 24 hours. The second inhibition response was permanent and could not be reversed by supplying air during a subsequent 20-hour period.  相似文献   

5.
Summary Poly-L-lysine concentrations (10–6 m) which cause slight leakage of pigment from beet cells completely disrupt the kinetics of*K (labeled) absorption at 25°C in the range 0.01 to 50mm KCl. Lower concentrations of polylysine (10–7 to 10–9 m) interfere with potassium fluxes at both cell membranes, initially increasing efflux across the plasma membrane and decreasing the capacity of the cytoplasm to retain ions during flux experiments at 2°C. At 25°C, these concentrations of polylysine increase*K (labeled) absorption from 0.2mm KCl, but not from 10mm KCl. These responses are discussed in relation to ion transport via the three-compartment in-series model proposed for plant cells. Particular emphasis is placed on the role of the plasma membrane in K transport from solutions of low concentration.  相似文献   

6.
To investigate the factors governing the accumulation of sucroseand amino acids in the taproots of sugar beet, their contentswere measured in the leaves, phloem sap and the taproots ofsugar beet, fodder beet and a hybrid between both, grown oneither 3.0 or 0.5 mM nitrate. In the taproots the contents ofmalate, citrate and inorganic ions were also determined. Forthe high sucrose accumulation in sugar beet as compared to theother varieties three factors were found. (a) In sugar beet,less amino acids and more sucrose are taken up into the phloemthan in fodder beet. (b) In sugar beet, the sucrose and aminoacid syntheses are less sensitive to the nitrate concentrationsthat are required for optimal plant growth than in other varieties.In fodder beet, upon raising the nitrate concentration from0.5 mM to 3 mM, the synthesis and storage of sucrose is decreasedand that of amino acids increased. The corresponding valuesin sugar beet (0.5 mM) are similar to those in fodder beet andare not much affected by an increase of nitrate. (c) The sucroseaccumulation is limited by the accumulation of inorganic ionsin the taproots. The sucrose content in the taproots is negativelycorrelated to the total ion content. Whereas sucrose representstwo-third of all solutes in the taproots of sugar beet, it amountsto only one-third of the solutes in fodder beet taproots. Key words: Amino acids, Beta vulgans L, phloem sap, potassium, sucrose storage, sugar beet, taproots, transport  相似文献   

7.
Ion transport measured as short circuit current (Isc) across the skin of larval frogs is activated by amiloride, acetylcholine, and ATP. In many epithelia, ATP stimulation of Isc involves an increase in intracellular calcium. To define the role of changes in intracellular calcium in ATP stimulation of Isc in larval frog skin, epithelial cells were loaded with calcium by adding 5 μM ionomycin to a 2 mM calcium apical Ringer's solution. Calcium loading had no observable effect on baseline Isc or on stimulation by ATP. Minimizing changes in intracellular calcium by loading the cell with the calcium chelator BAPTA also had no measurable effect on ATP stimulation of Isc. When the apical side was bathed with Ca2+-free Ringer's solution, ionomycin increased Isc up to 15 μA. This increase was partially blocked by 2 mM Ca2+, 2 mM Mg2+, and 10 μM W-7. Other experiments showed that baseline-stimulated and ATP-stimulated Isc were always larger in 2 mM Mg2+ Ringer's compared to 2 mM Ca2+. In dissociated cells bathed in 2 mM Ca2+ Ringer's, ATP had no effect on intracellular calcium as measured by Fluo-LR fluorescence changes. In conclusion, ATP apparently stimulates Isc without concomitant changes in intracellular calcium. This is consistent with a directly ligand-gated receptor at the apical membrane with P2X-like characteristics. Accepted: 21 April 1999  相似文献   

8.
9.
Depletion of energy stores of human red cells decreases the maximum transport capacity, Jm, for glucose transport to a value one-third or less of that found in red cells from freshly drawn blood. There is no change in Km. Hemolysis and resealing of red cells with ATP or ADP reverses the decrease in Jm. The maximum effect occurs at concentrations of ATP in the normal range for red cells, however, there is little effect from ADP concentrations in its normal range in freshly drawn red cells. Hemolysis and resealing with ATP gives an increase in Jm and an increase in differential labeling by photolytic labeling with tritiated cytochalasin B. Most of the activation is lost after a second hemolysis-reseal without ATP but about 25% of the activation remains.  相似文献   

10.
11.
Freshly harvested Halobacterium halobium cells grown in the presence of 0.5 mM Pi took up phosphate with a low apparent Km. Import depended on intracellular ATP levels; sodium and proton (electro)chemical gradients alone were not competent to drive Pi uptake. Although most of the phosphate accumulated as Pi in the cells, efflux of Pi was difficult to achieve.  相似文献   

12.
Alcohols and hydrogen peroxide altered the permeability of membranes of Beta vulgaris root cells. Generally alcohols increased the permeability of membranes without going through an induction period except methanol which required a 10- to 15-hour induction period. The membrane effect of methanol could be inhibited with CaCl2, cholesterol, β-sitosterol, and stigmasterol. Cholesterol was the most effective inhibitor, followed by β-sitosterol and stigmasterol; and at the same concentration, the sterols were more effective than CaCl2, the classic membrane stabilizer.  相似文献   

13.
14.
Abstract.  Titres of ion transport peptide (ITP) and ion transport-like peptide (ITP-L) in the haemolymph of the desert locust Schistocerca gregaria Forskål are investigated using a combination of enzyme-linked immunosorbent assay and reversed-phase high-performance liquid chromatography (HPLC). The estimated circulating levels of these two peptides are used to investigate their putative physiological roles. Haemolymph levels of ITP-L are significantly higher in fed and exercise-stressed locusts than in starved insects, suggesting a role for ITP-L in postfeeding osmoregulation and metabolism associated with stress. The higher titres of ITP-L in the final nymphal stadium could be related to increased levels of ecdysteroids over this same period. In addition detection of ITP-L in the brain and corpus cardiacum of the locust demonstrates for the first time that the ITP-L is expressed in these tissues. Immunoreactivity to antibodies raised against ITP is significantly higher in fed locusts compared with starved insects. However, >95% of this immunoreactivity elutes later than synthetic ITP when separated by HPLC. The results suggest that this more hydrophobic immunoreactivity is neither native ITP nor a metabolic breakdown product of ITP. Haemolymph levels of immunoreactivity to ITP during the last nymphal stadium are similar to ITP-L but, unlike ITP-L, there is no measured increase in immunoreactivity to ITP due to exercise stress.  相似文献   

15.
16.
The ploidy levels of the cells in different organs (leaves, petioles and roots) of red beet (Beta vulgaris L.) plants of different ages, as well as of different in vitro systems (transformed hairy roots, calli derived from leaves and rhizogenic calli), were investigated using flow cytometry. Two callus lines with red and yellow phenotypes, derived by mechanical separation of the morphologically heterogeneous rhizogenic callus, were also examined. All investigated samples experienced several cycles of endoreduplication. The older organs exhibited higher levels of polysomaty than the young ones. The highest degree of endoreduplication was found in old petiole tissue and the lowest in the red callus line (cycle values of 1.81 and 0.55, respectively). Interestingly, the callus derived from leaves did not exhibit a 2Cx peak, but was tetraploid, probably due to genetic instability, which may have been caused by prolonged cultivation under in vitro conditions. Red and yellow calli showed significantly lower polysomaty (cycle values of 0.55 and 0.59, respectively) than the primary rhizogenic callus (cycle value of 1.09). The DNA profiles of the two phenotypes differed, possibly reflecting differences in their metabolism.  相似文献   

17.
18.
Urate transport in human erythrocytes were measured and compared to previous observations by other authors regarding inorganic anions, especially chloride. Conclusions wwere as follows: 1. Urate influx as a function of increasing concentrations showed saturation kinetics. 2. The effects of pH and of several passive anion transport inhibitors such as dinitrofluorobenzene, sodium salicylate, sodium benzoate and phenylbutazone suggest that urate and chloride are transported by different mechanisms. 3. Urate influx seems to depend on intracellular glycolysis. The results obtained on red blood cells after glycolysis inhibition agree with those obtained on ghosts where metabolism does not take place. 4. The large drop in urate influxes into erythrocytes in the presence of a glycolysis inhibitor and of a passive ion transport inhibitor seems to argue in favour of a dual urate transport mechanism, one for passive diffusion and the other connected with glycolysis. 5. The drop in the urate influx into ghosts in the absence of ATP suggests that the latter might intervene in urate transport by human red cell membranes.  相似文献   

19.
When 10?6 M oubain is added to human red cells that have been incubated without glucose for two hours, there is a significant shift in the 31P nuclear magnetic resonances of both phosphate groups of cellular 2,3-diphosphoglycerate, which is not found in control cells incubated with glucose. This means that an effect induced by ouabain on the outside of the red cell membrane is transmitted through the membrane to alter the environment of an intracellular metabolite. Experiments with glycolytic cycle inhibitors have indicated that the intracellular ligand responsible for the resonance shifts is monophosphoglycerate mutase which requires 2,3-diphosphoglycerate as a cofactor for the reaction it catalyzes. To account for this finding a hypothesis is presented that the (Na+ + K+)-ATPase in human red cells is linked to monophosphoglycerate mutase through the agency of phosphoglycerate kinase. Evidence is presented for the existence of phosphoglycerate kinase/monophosphoglycerate mutase in solution. It is shown that this complex can interact with the cytoplasmic face of (Na+ + K+)-ATPase at the outside surface of inside out red cell vesicles, and that this interaction is inhibited when 10?6 M ouabain is contained within the vesicle. Neither monophosphoglycerate mutase nor phosphoglycerate kinase is significantly bound to the inside surface of the intact human red cell, but glyceraldehyde 3-phosphate dehydrogenase is; it is shown that this enzyme also interacts with the cytoplasmic face of the (Na+ + K+)-ATPase and that the interaction is inhibited by 10?6 M ouabain.  相似文献   

20.
The effect of anoxia and substrate removal on cytosolic free calcium (Ca2+i), cell calcium, ATP content, and calcium efflux was determined in cultured monkey kidney cells (LLC-MK2) exposed to 95% N2, 5% CO2 for 60 min. In the control period, the basal Ca2+i level was 70.8 +/- 9.4 nM. During 1 h of anoxia without substrate, ATP content decreased 70%, Ca2+i and calcium efflux increased 2.5-fold, while the total cell calcium did not change. When the cells were perfused again with O2 and 5 mM glucose, the ATP concentration, Ca2+i, and calcium efflux returned to control levels within 15-20 min. In the presence of 20 mM glucose, anoxia did not produce any change in ATP, in Ca2+i or in calcium efflux. An important source of calcium contributing to the rise in Ca2+i induced by anoxia appears to be extracellular because the rate of rise in Ca2+i is proportional to the extracellular calcium concentration, and because La3+ which blocks calcium influx greatly reduces the rise in Ca2+i. Mitochondria appear to control Ca2+i as well since the early rise in Ca2+i cannot be blocked by La3+ during the initial phase of anoxia, and since the mitochondrial inhibitor carbonyl cyanide p-trifluoromethoxyphenylhydrazone increases Ca2+i further during reoxygenation and slows the return of Ca2+i to control levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号