首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in intracellular free Ca2+ concentration [( Ca2+]i) produced by growth factors and mitogens have been studied using aequorin-loaded Swiss 3T3 cells. Decreasing free Ca2+ in the external medium by using EGTA had no significant effect on the increase in [Ca2+]i produced by vasopressin, bradykinin, bombesin or prostaglandin E2, but reduced the increase in [Ca2+]i produced by platelet derived growth factor (PDGF) by 58%, by prostaglandin E1 44% and by prostaglandin F2 alpha 47%. The dihydropyridine Ca2+-channel antagonist nifedipine at 10 microM inhibited the [Ca2+]i response to PDGF by 41% in both the presence of and in the absence of external Ca2+. Methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) pyridine-5-carboxylate (BAY K8644), a Ca2+-channel agonist, at 10 microM produced an increase in [Ca2+]i and decreased the [Ca2+]i response to PDGF by 39%. Nifedipine did not block 45Ca2+ uptake or release by inositol 1,4,5-trisphosphate in saponin-permeabilized Swiss 3T3 fibroblasts but BAY K8644 inhibited 45Ca2+ release by inositol 1,4,5-trisphosphate. The results suggest that the increase in [Ca2+]i caused by PDGF in Swiss 3T3 fibroblasts is due to the influx of external Ca2+ through dihydropyridine sensitive Ca2+ channels, as well as release of internal Ca2+.  相似文献   

2.
Changes in the intracellular concentration of calcium [( Ca2+]i) have been shown to mediate the physiological effects of certain agonists. Ca2+ mobilization occurs through multiple mechanisms which involve both influx and internal release of Ca2+. Prostaglandin F2 alpha (PGF2 alpha) caused a transient mobilization of intracellular Ca2+ in 3T3-L1 fibroblasts. This effect was characterized by fluorescence measurements of trypsin-treated cells loaded with fura-2/AM. In the absence of extracellular Ca2+, the peak amount of Ca2+ mobilized by PGF2 alpha was decreased by 70%, a lag time before the onset of [Ca2+]i increase was observed, and the rate of rise of [Ca2+]i was slowed. Addition of NaF (10 mM) to fura-2-loaded 3T3-L1 cells caused a dose-dependent increase in [Ca2+]i after a brief (approximately 10 s) lag. Maximal effects (approximately 300 nM) were observed at 5-10 mM-NaF. This effect was dependent on the presence of extracellular Ca2+ and appeared to be independent of inositol phosphate production. After reaching a peak at around 40 s after fluoride addition, [Ca2+]i returned to near-baseline within 120 s. This return of [Ca2+]i to near-baseline after fluoride stimulation and the inability of the cells to respond to a subsequent addition of fluoride indicated that the response to fluoride underwent desensitization. Similarly, the pathway used by PGF2 alpha to mobilize Ca2+ underwent desensitization. Exposure of the cells to a maximally effective concentration of fluoride and subsequent addition of PGF2 alpha produced a [Ca2+]i response to PGF2 alpha which was similar in magnitude and kinetics to that seen for PGF2 alpha in the absence of extracellular Ca2+. Conversely, prior exposure of cells to PGF2 alpha diminished the ability of fluoride to mobilize Ca2+. PGF2 alpha also increased inositol phosphate formation, with a time course and dose-response consistent with its ability to increase [Ca2+]i. Prior exposure of cells to fluoride did not change the time course or dose-response characteristics of PGF2 alpha-induced generation of inositol phosphates. These data suggest that PGF2 alpha and fluoride share a common mechanism of activating Ca2+ influx in 3T3-L1 cells.  相似文献   

3.
To characterize the effect that a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY294002, has on cytosolic calcium concentrations ([Ca2+]i), bovine airway smooth muscle cells (BASMC) and cultured human bronchial smooth muscle cells (HBSMC) were loaded with fura 2-AM, imaged as single cells and [Ca2+]i measured ratiometrically. LY294002 (50 microM) increased [Ca2+]i by 294+/-76 nM (P<0.01, n=13) and 230+/-31 nM (P<0.001, n=10) in BASMC and HBSMC, respectively, and increases occurred in the absence of extracellular calcium. In contrast, after pre-treatment with thapsigargin, LY294002 no longer increased [Ca2+]i. This calcium mobilization by LY294002 was associated with a significant functional effect since LY294002 also inhibited calcium transients to carbachol (45+/-23 nM), caffeine (45+/-32 nM), and histamine (20+/-22 nM), with controls of 969+/-190, 946+/-156, and 490+/-28 nM, respectively. Wortmannin, a different PI3-kinase inhibitor, neither increased [Ca2+]i nor inhibited transients. Also, LY294002 increased [Ca2+]i in the presence of wortmannin, U-73122, and xestospongin C. We concluded that LY294002 increased [Ca2+]i, at least in part, by mobilizing intracellular calcium stores and inhibited calcium transients. The effects of LY294002 on [Ca2+]i were not dependent on wortmannin-sensitive PI3-kinases, phospholipase C, or inositol trisphosphate receptors (IP3R). For BASMC and HBSMC, LY294002 has effects on calcium regulation that could be important to recognize when studying PI3-kinases.  相似文献   

4.
The cytoplasmic concentration of ionized Ca2+ [( Ca2+]i) was determined in 3T3-L1 cells during their differentiation from fibroblasts to adipocytes, suspended and loaded with the fluorescent Ca2+ indicators quin2 or indo-1. In undifferentiated fibroblasts, as well as in differentiated adipocytes up to day 9, [Ca2+]i was steady around 170 nM, and it increased significantly only in old adipocytes (day 12). During differentiation, stimulation of glucose uptake by insulin increased from a few percent to severalfold. Stimulation of uptake was already apparent after 10 min of addition of the hormone, and 10 nM insulin produced maximal stimulation in 30 min. Insulin (10(-6) M) added to quin2- or indo-1-loaded, suspended adipocytes had no detectable effect on [Ca2+]i for at least 10 min. In contrast, addition of the general anesthetic halothane increased [Ca2+]i from 172 to 251 nM in 3 min. In EGTA solution, the Ca2+ ionophore ionomycin elicited release of Ca2+ from intracellular stores that resulted in a transient increase in [Ca2+]i. A smaller but measurable Ca2+ release from intracellular stores (increasing [Ca2+]i by 20 nM) resulted upon addition of 20 micrograms/ml phosphatidic acid. In contrast, insulin did not produce any detectable release of Ca2+ from intracellular stores. Incubation of 3T3-L1 adipocytes with insulin in the presence of EGTA (the latter in excess over the Ca2+ concentration of the medium) did not prevent the stimulation of hexose uptake by the hormone, indicating that extracellular Ca2+ does not play a role in the insulin response. Furthermore, incubation of cells with quin2/AM in EGTA medium during exposure to insulin did not prevent stimulation of hexose uptake. Under these conditions it is demonstrated that intracellular quin2 suffices to chelate cytoplasmic Ca2+ even if releasable Ca2+ from intracellular stores were to pour into the cytoplasm. Thus, quin2 effectively lowers [Ca2+]i without impairing insulin action. It is concluded that insulin does not produce changes in [Ca2+]i and that chelating intracellular Ca2+ does not prevent stimulation of hexose uptake by insulin. These results suggest that it is unlikely that changes in [Ca2+]i may play a role in the transduction of information in insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

5.
Single cell [Ca2+], studies were performed in chicken and rat osteoclasts loaded with fura-2 and exposed to a variety of treatments. Under resting conditions, basal [Ca2+]i, was 79.2 +/- 47.3 and 84.3 +/- 65.7 nM (averages +/- S.D.; n = 141 and 126) in the osteoclasts of the two species, respectively. Basal [Ca2+]i was stable in all rat and in approximately 80% of chicken osteoclasts. In the remaining 20%, spontaneous, irregular [Ca2+], fluctuations were observed (amplitude range: 50-200 nm over basal values). Increase of [Ca2+]o over the concentration of the Krebs-Ringer incubation medium (2 mM) induced rises of [Ca2+] in almost all cells investigated. [Ca2+] rises were already appreciable with 0.5 mM [Ca2+]o additions and reached high values with 4 mM additions: 390 +/- 113 and 364 +/- 214 nM [Ca2+], in rat and chicken osteoclasts, respectively (n = 122 and 101). Qualitatively, the responses to [Ca2+]o additions consisted of discrete [Ca2+]i transients, biphasic (an initial spike followed by a plateau), or monophasic (either the spike or the plateau). In a few chicken osteoclasts, the [Ca2+]i increase occurring after [Ca2+]o addition consisted of multiple, irregular fluctuations, similar to those observed in 20% of these cells under resting conditions. In individual osteoclasts subsequently exposed to multiple [Ca2+]o increase pulses, the type of the [Ca2+]i transient (mono- or biphasic) was maintained, and the size was dependent on the magnitude of the [Ca2+]o additions. Effects similar to those of [Ca2+]o were induced by the addition of Cd2+ or Ba2+ (but not La3+ or Mg2+) into the medium. The Cd2+ effect was maintained in part even in a Ca2+-free medium. Of various hormones and factors, parathormone, 1,25-dihydroxyvitamin D3, and prostaglandin E2 were inactive. In contrast, calcitonin was active in rat osteoclasts (which express numerous receptors). [Ca2+]i increases were small (19 +/- 17.9 nM; n = 21) when the hormone was administered alone; they were synergistic (severalfold potentiation) when the hormone was administered before or after [Ca2+]o. The [Ca2+]i effects of calcitonin were mimicked by 8Br-cAMP (31 +/- 26 nM; n = 12) when the nucleotide was administered alone; marked synergism when it was administered in combination with [Ca2+]o. This paper demonstrates for the first time that changes of [Ca2+]i are induced in osteoclasts by treatments with [Ca2+]o and calcitonin and can therefore be involved in intracellular mediation of the physiological effects of these two extracellular signals.  相似文献   

6.
In fura-2-loaded bovine adrenal chromaffin cells, 0.5 microM angiotensin II (AII) stimulated a 185 +/- 19 nM increase of intracellular-free calcium [( Ca2+]i) approximately 3 s after addition. The time from the onset of the response until achieving 50% recovery (t 1/2) was 67 +/- 10 s. Concomitantly, AII stimulated both the release of 45Ca2+ from prelabeled cells, and a 4-5-fold increase of [3H]inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) levels. In the presence of 50 microM LaCl3, or when extracellular-free Ca2+ [( Ca2+]o) was less than 100 nM, AII still rapidly increased [Ca2+]i by 95-135 nM, but the t 1/2 for recovery was then only 23-27 s. In medium with 1 mM MnCl2 present, AII also stimulated a small amount of Mn2+ influx, as judged by quenching of the fura-2 signal. When [Ca2+]o was normal (1.1 mM) or low (less than 60 nM), 1-2 microM ionomycin caused [Ca2+]i to increase 204 +/- 26 nM, while also releasing 45-55% of bound 45Ca2+. With low [Ca2+]o, ionomycin pretreatment abolished both the [Ca2+]i increase and 45Ca2+ release stimulated by AII. However, after ionomycin pretreatment in normal medium, AII produced a La3+-inhibitable increase of [Ca2+]i (103 +/- 13 nM) with a t 1/2 of 89 +/- 8 s, but no 45Ca2+ release. No pretreatment condition altered AII-induced formation of [3H]Ins(1,4,5)P3. We conclude that AII increased [Ca2+]i via rapid and transient Ca2+ mobilization from Ins(1,4,5)P3- and ionomycin-sensitive stores, accompanied (and/or followed) by Ca2+ entry through a La3+-inhibitable divalent cation pathway. Furthermore, the ability of AII to activate Ca2+ entry in the absence of Ca2+ mobilization (i.e. after ionomycin pretreatment) suggests a receptor-linked stimulus other than Ca2+ mobilization initiates Ca2+ entry.  相似文献   

7.
Rat hepatocytes were studied for [Ca2+]i with Fura-2 at the single cell level using a microfluorometer-imaging system which showed that both the number of cells elevating [Ca2+]i and the magnitude of [Ca2+]i increase were directly dependent upon ethanol concentration between 50 mM and 1 M. Peak [Ca2+]i increases ranged from 27 nM with 50 mM ethanol to 57 nM after 1 M ethanol. Ethanol appeared to initiate calcium release from intracellular stores and caused a dose dependent production of inositol(1,4,5) triphosphate (Ins(1,4,5)P3) in hepatocytes. Low concentrations of ethanol (50-100 mM) did not significantly raise Ins(1,4,5)P3 although 300 mM-1 M increased Ins(1,4,5)P3 comparable to that found with vasopressin (5 nM). In summary, physiologic amounts of ethanol raise [Ca2+]i in rat hepatocytes, although at lower levels (50-100 mM) the changes may or may not be related to an Ins(1,4,5)P3 pathway.  相似文献   

8.
We have reported previously that PGE2 evoked an increase in intracellular calcium level ([Ca2+]i) in mouse osteoblastic cells (1). Here, we investigated the effects of PGE1 and PGF2 alpha on cAMP production and [Ca2+]i in comparison with those of PGE2. In osteoblastic clone, MC3T3-E1 cells, PGE1 stimulated cAMP production, but had no effect on [Ca2+]i, whereas PGF2 alpha evoked only [Ca2+]i increase. In contrast, PGE2 not only stimulated cAMP production, but also increased [Ca2+]i. From the Scatchard plot analysis of PGE2 it was confirmed that there were two classes of PGE2 binding sites (Kd value, 9.2 nM; binding site, 29 fmole/mg protein, and Kd value, 134 nM; binding site, 148 fmole/mg protein). As the increase in [Ca2+]i was caused by PGF2 alpha and PGE2, but not by PGE1, we investigated the displacement of [3H]-PGF2 alpha binding. The displacement capacity of unlabeled PGE2 was about 110 of that of PGF2 alpha, while that of PGE1 was very low even at 500-fold excess. These data indicate the possibility that the dual action of PGE2 is mediated by distinct receptor systems.  相似文献   

9.
The regulation of [Ca2+]i in rat pinealocytes was studied using the fluorescent indicator quin2. Pinealocyte resting [Ca2+]i was approximately 100 nM; this rapidly decreased in low Ca2+ medium (approximately 10 microM), indicating there was a high turnover of [Ca2+]i in these cells. Norepinephrine (NE, 10(-6) M) increased [Ca2+]i to approximately 350 nM within 1 min; [Ca2+]i then remained elevated for 30 min. The relative potency of adrenergic agonists was NE greater than phenylephrine much greater than isoproterenol. Phentolamine (10(-6) M) and prazosin (10(-8) M) blocked the effects of adrenergic agonists; in contrast, propranolol (10(-6) M) or yohimbine (10(-6) M) had little or no effect. These observations indicate NE acts via alpha 1-adrenoceptors to elevate [Ca2+]i. The [Ca2+]i response to NE did not occur when [Ca2+]e was reduced to approximately 10 microM by adding EGTA 5s before NE, indicating an increase in net Ca2+ influx is involved rather than mobilization of Ca2+ from intracellular stores. The effect of NE was not blocked by nifedipine (10(-6) M), which did block a K+-induced increase in [Ca2+]i, presumably involving voltage-sensitive channels. Ouabain (10(-5) M) caused a gradual increase in [Ca2+]i; this increase was not blocked by nifedipine. Together these data indicate that pinealocyte [Ca2+]i may be influenced by mechanisms regulated by alpha 1-adrenoceptors, voltage-dependent Ca2+ channels, and perhaps a Na+/Ca2+ exchange mechanism stimulated by ouabain. These studies indicate that the pinealocyte is an interesting model to use to study the adrenergic regulation of [Ca2+]i because of the rapid and prolonged changes in [Ca2+]i produced by alpha 1-adrenoceptor activation.  相似文献   

10.
Changes in intracellular free Ca2+ concentration [( Ca2+]i) were used to study the interaction between mitogens in Swiss 3T3 fibroblasts. Platelet-derived growth factor (PDGF) produced an increase in [Ca2+]i and markedly decreased the increases in [Ca2+]i caused by subsequent addition of bradykinin and vasopressin. If the order of the additions was reversed the [Ca2+]i response to PDGF was not inhibited by bradykinin or vasopressin. Inhibition of protein kinase C by staurosporine or chronic treatment of the cells with phorbol 12-myristate 13-acetate prevented the inhibitory effect of PDGF on the [Ca2+]i response to vasopressin but not bradykinin. PDGF did not decrease the receptor binding of bradykinin and produced only a small decrease in the receptor binding of vasopressin. PDGF decreased the rise in [Ca2+]i caused by the Ca2+ ionophores 4-bromo-A23187 and ionomycin and by a membrane perturbing ether lipid, 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine, both in the presence and absence of external Ca2+. There was no change in cell 45Ca2+ influx caused by PDGF, vasopressin, or bradykinin. 45Ca2+ efflux from cells exposed to PDGF and vasopressin mirrored the changes in [Ca2+]i caused by the agents, that is, PDGF added after vasopressin produced a further increase in 45Ca2+ efflux but vasopressin did not increase 45Ca2+ efflux after PDGF. PDGF but not vasopressin caused an increase in the uptake of 45Ca2+ into an inositol 1,4,5-trisphosphate-insensitive non-mitochondrial store in permeabilized cells. The results suggest that the decreased [Ca2+]i response to mitogens after PDGF represents an action of PDGF at a point beyond the release of intracellular Ca2+ and the influx of external Ca2+, caused by an increase in the rate of removal of cytoplasmic free Ca2+. This increased removal of cytoplasmic Ca2+ by PDGF is not due to the increased export of Ca2+ from the cell but results from increased Ca2+ uptake into non-mitochondrial stores.  相似文献   

11.
Intracellular calcium concentration ([Ca2+]i) governs the contractile status of arteriolar smooth muscle cells (SMC). Although studied in vitro, little is known of SMC [Ca2+]i dynamics during the local control of blood flow. We tested the hypothesis that the rise and fall of SMC [Ca2+]i underlies arteriolar constriction and dilation in vivo. Aparenchymal segments of second-order arterioles (diameter 35 +/- 2 microm) were prepared in the superfused cheek pouch of anesthetized hamsters (n = 18) and perifused with the ratiometric dye fura PE-3 (AM) to load SMC (1 microM, 20 min). Resting SMC [Ca2+]i was 406 +/- 37 nM. Elevating superfusate O2 from 0 to 21% produced constriction (11 +/- 2 microm) that was unaffected by dye loading; [Ca2+]i increased by 108 +/- 53 nM (n = 6, P < 0.05). Cycling of [Ca2+]i during vasomotion (amplitude, 150 +/- 53 nM; n = 4) preceded corresponding diameter changes (7 +/- 1 microm) by approximately 2 s. Microiontophoresis (1 microm pipette tip; 1 microA, 1 s) of phenylephrine (PE) transiently increased [Ca2+]i by 479 +/- 64 nM (n = 8, P < 0.05) with constriction (26 +/- 3 microm). Flushing blood from the lumen with saline increased fluorescence at 510 nm by approximately 45% during excitation at both 340 and 380 nm with no difference in resting [Ca2+]i, diameter or respective responses to PE (n = 7). Acetylcholine microiontophoresis (1 microA, 1 s) transiently reduced resting SMC [Ca2+]i by 131 +/- 21 nM (n = 6, P < 0.05) with vasodilation (17 +/- 1 microm). Superfusion of sodium nitroprusside (10 microM) transiently reduced SMC [Ca2+]i by 124 +/- 18 nM (n = 6, P < 0.05), whereas dilation (23 +/- 5 microm) was sustained. Resolution of arteriolar SMC [Ca2+]i in vivo discriminates key signaling events that govern the local control of tissue blood flow.  相似文献   

12.
The effects of erythropoietin (EPO) on cytosolic free calcium concentration ([Ca2+]i) in platelets of 20 essential hypertensive patients (HT) and of 25 normotensive subjects (NT) were investigated using the fura2 technique. In resting platelets [Ca2+]i were not significantly higher in HT compared to NT (74.3 +/- 7.8 nM vs 59.8 +/- 7.0 nM, mean +/- SEM). Addition of EPO significantly increased [Ca2+]i in HT compared to NT (13.8 +/- 5.3 nM vs 0.9 +/- 1.9 nM, p less than 0.01). EPO increased the amount of calcium in intracellular stores. This was confirmed independently using thrombin-induced changes of [Ca2+]i in a calcium-free medium and using chlorotetracycline as a marker of stored calcium. After preincubation with EPO thrombin-induced changes of [Ca2+]i were significantly lower in HT compared to NT (306.1 +/- 30.0 nM vs 407.7 +/- 35.7 nM, p less than 0.05). In a calcium-free medium after preincubation with EPO thrombin-induced changes of [Ca2+]i were significantly lower in HT compared to NT (54.7 +/- 11.8 nM vs 100.9 +/- 10.5 nM, p less than 0.05) indicating lower storage capacity in HT. It is concluded that elevated response to EPO may provide a powerful tool to evaluate diagnosis and underlying pathophysiological mechanisms in essential hypertension.  相似文献   

13.
14.
Changes in the cytosolic free Ca2+ concentration, [Ca2+]i, have been proposed to mediate the regulation of the secretion of pituitary hormones by hypothalamic peptides. Using an intracellularly trapped fluorescent Ca2+ probe, quin2, [Ca2+]i was monitored in GH3 cells. Somatostatin lowers [Ca2+]i in a dose dependent manner from a prestimulatory level of 120 +/- 4 nM (SEM, n = 13) to 78 +/- 9 nM (n = 5) at 10(-7)M; the effect is half maximal at 2 X 10(-9) M somatostatin. The decrease in [Ca2+]i occurs rapidly after somatostatin addition and a lowered steady state [Ca2+]i is maintained for several minutes. Somatostatin does not inhibit the rapid rise in [Ca2+]i elicited by thyrotropin releasing hormone (TRH) and can still cause a decrease in [Ca2+]i in the presence of TRH (10(-7)M). Concomitantly with its action on [Ca2+]i somatostatin causes hyperpolarization of GH3 cells assessed with the fluorescent probe bis-oxonol. The lowering of [Ca2+]i by somatostatin is however not only due to reduced Ca2+ influx through voltage dependent Ca2+ channels, since it persists in the presence of the channel blocker verapamil. These results suggest that somatostatin may exert its inhibitory action on pituitary hormone secretion by decreasing [Ca2+]i.  相似文献   

15.
Mineralocorticoid receptors have been detected in human mononuclear leukocytes (HML) and a physiological effector mechanism was demonstrated subsequently by which aldosterone is able to prevent the loss of intracellular sodium, potassium and cell water during incubation in an aldosterone-free medium. In the present paper, free intracellular calcium, [Ca2+]i, was measured in HML from normal subjects by Quin-2 and Fura-2 fluorescence after incubation for 1 h at 37 degrees C in RPMI-1640 medium. In fresh HML, [Ca2+]i was 54 +/- 15 nM (Fura-2, mean +/- SD, n = 26). After incubation without aldosterone, [Ca2+]i in HML was 118 +/- 27 nM (Quin-2, n = 11) and 50 +/- 13 nM (Fura-2). After incubation with 1.4 (Fura-2) or 2.8 nM (Quin-2) aldosterone, [Ca2+]i was 139 +/- 38 nM (Quin-2, P less than 0.05 compared with value after incubation without aldosterone) and 57 +/- 11 nM (Fura-2, P less than 0.00001). The Kd-value for dose-response curve was 0.4 nM. The effect of aldosterone was antagonized by N-ethyl-isopropylamiloride, but not by canrenoate, canrenone, cycloheximide and actinomycin D. It was absent in a sodium-free buffer. Corticosterone and hydrocortisone were active as agonists. These results show that aldosterone exerts an effect on the [Ca2+]i in HML in vitro which could be involved in hemodynamic responses to mineralocorticoids if also present in cardiovascular tissues.  相似文献   

16.
The effects of thapsigargin on intracellular Ca2+ concentration ([Ca2+]i) and progesterone production were determined in granulosa cells from the two largest preovulatory follicles of laying hens. [Ca2+]i was measured in cells loaded with the Ca(2+)-responsive fluorescent dye Fura-2. Thapsigargin stimulated a 4.6 +/- 0.2-fold increase in [Ca2+]i from a resting level of 55 +/- 6 nM up to 233 +/- 23 nM (n = 8) in 100% of the cells tested (n = 86). However, two different response patterns were observed. Dependent on the cell populations, a maximally effective concentration of thapsigargin (100 nM) stimulated either a rapid (within 16 +/- 2 s) transient increase in [Ca2+]i or a slowly (99 +/- 20 s) developing and sustained increase in [Ca2+]i. Both [Ca2+]i responses were concentration (0.001-1 microM)-dependent with an EC50 around 40 nM. The transient [Ca2+]i response occurred in the absence of extracellular Ca2+ and was unaffected by pretreating the cells with the Ca2+ channel blockers methoxyverapamil (50 microM) or lanthanum (1 mM). The plateau phase of the sustained [Ca2+]i response returned to resting level in the absence of extracellular Ca2+, but remained elevated in the presence of methoxyverapamil (50 microM) or lanthanum (1 mM). Despite its ability to cause transient or prolonged increases in [Ca2+]i, thapsigargin (0.001-1 microM) did not affect basal or luteinizing hormone-stimulated progesterone production by chicken granulosa cells.  相似文献   

17.
Treatment of bovine chromaffin cells with 40 mM KCl stimulates a 3-fold increase in total methionine enkephalin immunoreactivity (medium plus cells) and a 4-fold increase in proenkephalin mRNA (mRNAenk). These effects of KCl, which are dependent on extracellular calcium, can be blocked by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), although release of methionine enkephalin appears less affected. Using fura-2-loaded chromaffin cells and a dual-excitation wavelength spectrofluorometer, we have examined whether the actions of KCl and TPA on methionine enkephalin synthesis and release can be explained by changes in intracellular free calcium ([Ca2+]i). KCl produced a rapid 600 nM increase in [Ca2+]i from resting levels of approximately 170 nM. Subsequently, [Ca2+]i declined to a new steady-state plateau which was approximately 275 nM higher than the original resting levels. The postdepolarization plateau of [Ca2+]i was reduced by TPA, (-)-(R)-202,791 (a dihydropyridine calcium channel antagonist), and LaCl3 (a nonselective calcium channel blocker). TPA also inhibited potentiation of the KCl-stimulated plateau of [Ca2+]i due to (+)-(S)-202,791, a calcium channel agonist. In contrast, TPA had no effect on resting [Ca2+]i and only slightly inhibited the initial rapid KCl-stimulated increase in [Ca2+]i. The inhibitory effects were maintained for 24 h in the continuous presence of TPA. We conclude 1) that TPA inhibits enkephalin synthesis by inactivating dihydropyridine-sensitive voltage-dependent calcium channels, 2) that these channels alone maintain elevated [Ca2+]i following KCl depolarization, and 3) that sustained elevation in [Ca2+]i is necessary in order to increase enkephalin synthesis in KCl-treated chromaffin cells.  相似文献   

18.
The effects of endothelin on cellular Ca2+ mobilization were examined in cultured rat vascular smooth muscle cells (VSMC). Endothelin (10(-8)M) induced a rapid transient increase of [Ca2+]i from 77 +/- 3 to 104 +/- 5 nM (p less than .05) in VSMC. Preincubation (60 min) with endothelin (2 x 10(-6)M) increased basal [Ca2+]i from 77 +/- 3 to 105 +/- 8 nM (p less than .05). Preincubation with endothelin also enhanced vasopressin (10(-7)M)-stimulated peak levels of [Ca2+]i (528 +/- 20 nM vs 969 +/- 21 nM, p less than .01). Endothelin (10(-7)M) induced an intracellular alkalinization (7.18 +/- 0.03 vs 7.37 +/- 0.04, p less than .01) which was blocked by pretreatment with amiloride. The biphasic effects of endothelin on [Ca2+]i were similar to those of an endogenous inhibitor of Na-K-ATPase that we examined in a previous study. Therefore, we examined the effects of endothelin on Na-K-ATPase in an enzyme preparation from hog cerebral cortex. At high concentrations, endothelin (10(-5)M) inhibited Na-K-ATPase in vitro. Thus, endothelin may exert its vasoconstrictor effects at least in part via alterations of cellular Ca2+ mobilization in VSMC. While the rapid transient increase of [Ca2+]i appears to reflect intracellular Ca2+ mobilization, the sustained effect on [Ca2+]i may be related to an increase of intracellular sodium mediated by inhibition of Na-K-ATPase and/or more likely by stimulation of the Na+/H+-antiport.  相似文献   

19.
The relationship between the concentration of cytosolic free Ca2+ ([Ca2+]i) and secretion of parathyroid hormone (PTH) was investigated in isolated bovine parathyroid cells using the fluorescent Ca2+ indicator, quin 2. Increasing the concentration of extracellular Ca2+ from 0.5 to 2.0 mM caused a 3-fold increase in [Ca2+]i (from 183 +/- 4 to 568 +/- 21 nM) which was associated with a 2-4-fold decrease in secretion of PTH. Decreasing extracellular Ca2+ to about 1 microM caused a corresponding fall in [Ca2+]i to 60-90 nM. Extracellular Ca2+-induced changes in [Ca2+]i were not affected by omission of extracellular Na+. Depolarizing concentrations of K+ (30 mM) depressed [Ca2+]i at all concentrations of extracellular Ca examined, and this was associated with increased secretion of PTH. Ionomycin (0.1 or 1 microM) increased [Ca2+]i at extracellular Ca2+ concentrations of 0.5, 1.0, and 2.0 mM, but inhibited secretion of PTH only at Ca concentrations near the "Ca2+ set point" (1.25 microM). In contrast, dopamine, norepinephrine (10 microM each), and Li+ (20 mM) potentiated secretion of PTH without causing any detectable change in [Ca2+]i. The results obtained with these latter secretagogues provide evidence for a mechanism of secretion which is independent of net changes in [Ca2+]i. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) did not alter [Ca2+]i or secretion of PTH at low (0.5 mM) extracellular Ca2+ concentrations. At 2.0 mM extracellular Ca2+, however, TPA (20 nM or 1 microM) depressed [Ca2+]i and potentiated secretion of PTH. The addition of TPA prior to raising the extracellular Ca2+ concentration reduced the subsequent increase in [Ca2+]i. The results show that the effects of TPA on secretion in the parathyroid cell are not readily dissociated from changes in [Ca2+]i and suggest that some TPA-sensitive process, perhaps involving protein kinase C, may be involved in those mechanisms that regulate [Ca2+]i in response to changes in extracellular Ca2+.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号