首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Animal oocytes undergo a highly conserved developmental arrest in prophase of meiosis I. Often this marks a period of rapid growth for the oocyte and is necessary to coordinate meiotic progression with the developmental events of oogenesis. In Drosophila, the oocyte develops within a 16-cell germline cyst. Throughout much of oogenesis, the oocyte remains in prophase of meiosis I. By contrast, its 15 mitotic sisters enter the endocycle and become polyploid in preparation for their role as nurse cells. How germline cysts establish and maintain these two independent cell cycles is unknown. We demonstrate a role for the p21(CIP)/p27(Kip1)/p57(Kip2)-like cyclin-dependent kinase inhibitor (cki) dacapo in the maintenance of the meiotic cycle in Drosophila oocytes. Our data indicate that it is through the differential regulation of the cki Dacapo that two modes of cell-cycle regulation are independently maintained within the common cytoplasm of ovarian cysts.  相似文献   

2.
The oocyte is the only cell in Drosophila that goes through meiosis with meiotic recombination, but several germ cells in a 16-cell cyst enter meiosis and form synaptonemal complexes (SC) before one cell is selected to become the oocyte. Using an antibody that recognises a component of the SC or the synapsed chromosomes, we have analysed how meiosis becomes restricted to one cell, in relation to the other events in oocyte determination. Although BicD and egl mutants both cause the development of cysts with no oocyte, they have opposite effects on the behaviour of the SC: none of the cells in the cyst form SC in BicD null mutants, whereas all of the cells do in egl and orb mutants. Furthermore, unlike all cytoplasmic markers for the oocyte, the SC still becomes restricted to one cell when the microtubules are depolymerised, even though the BicD/Egl complex is not localised. These results lead us to propose a model in which BicD, Egl and Orb control entry into meiosis by regulating translation.  相似文献   

3.
4.
Morris JZ  Navarro C  Lehmann R 《Genetics》2003,164(4):1435-1446
The Drosophila oocyte develops from a cluster of 16 interconnected cells that derive from a common progenitor. One of these cells, the oocyte, arrests in meiosis. The other cells endoreplicate their DNA and produce mRNAs and proteins that they traffic to the oocyte along a polarized microtubule cytoskeleton shared by the entire cyst. Therefore, Drosophila oogenesis is an attractive system for the study of cell cycle control and cell polarity. We carried out a clonal screen on the right arm of chromosome 3 for female sterile mutations using the FLP-FRT-ovo(D) system to identify new genes required for early oogenesis. We identified alleles of oo18 RNA binding protein (orb) and Darkener of apricot (Doa), which had previously been shown to exhibit oogenesis defects. We also identified several lethal alleles of the male sterile mutant, bobble (bob). In addition, we identified eight new lethal complementation groups that exhibit early oogenesis phenotypes. We analyzed mutant clones to determine the aspects of oogenesis disrupted by each complementation group. We assayed for the production and development of egg chambers, localization of ORB to and within the oocyte, and proper execution of the nurse cell cycle (endoreplication of DNA) and the oocyte cell cycle (karyosome formation). Here we discuss the identification, mapping, and phenotypic characterization of these new genes: omelet, soft boiled, hard boiled, poached, fried, over easy, sunny side up, and benedict.  相似文献   

5.
Germline cysts are conserved structures in which cells initiating meiosis are interconnected by ring canals. In many species, the cyst phase is of limited duration, but the chordate, Oikopleura, maintains it throughout prophase I as a unique cell, the coenocyst. We show that despite sharing one common cytoplasm with meiotic and nurse nuclei evenly distributed in a 1:1 ratio, both entry into meiosis and subsequent endocycles of nurse nuclei were asynchronous. Coenocyst cytoskeletal elements played central roles as oogenesis progressed from a syncytial state of indistinguishable germ nuclei, to a final arrangement where the common cytoplasm had been equally partitioned into resolved, mature oocytes. During chromosomal bouquet formation in zygotene, nuclear pore complexes clustered and anchored meiotic nuclei to the coenocyst F-actin network opposite ring canals, polarizing oocytes early in prophase I. F-actin synthesis was required for oocyte growth but movement of cytoplasmic organelles into oocytes did not require cargo transport along colchicine-sensitive microtubules. Instead, microtubules maintained nurse nuclei on the F-actin scaffold and prevented their entry into growing oocytes. Finally, it was possible to both decouple meiotic progression from cellular mechanisms governing oocyte growth, and to advance the timing of oocyte growth in response to external cues.  相似文献   

6.
Calcium and meiotic maturation of the mammalian oocyte   总被引:1,自引:0,他引:1  
The role of calcium in the regulation of both the meiotic and mitotic cell cycles has been the subject of considerable investigation in the nonmammalian field. In contrast, the mechanisms for signalling meiotic maturation in the mammalian oocyte are not as well documented nor as clearly defined. In the mammalian oocyte, calcium is associated with both spontaneous and hormone-induced meiotic maturation. A transient release of endogenously stored calcium precedes germinal vesicle breakdown and can override cyclic AMP maintained meiotic arrest; it thus may signal the resumption of meiosis. Additionally, extracellular calcium is apparently required for meiotic progression past metaphase I. The time sequence for meiotic resumption and progression is very varied between species. The timing of cell cycle protein synthesis during meiosis suggests that cyclins may be expressed in oocytes of some species much earlier in their development than in others. A generic model is proposed for the mechanism for triggering meiotic resumption in the mammalian oocyte. In this model, the critical components of meiotic resumption involve the temporal relationship of cyclin synthesis and the subsequent activation of the MPF complex by the calcium signal generated, which accounts for differences among species. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Mammalian oocytes exhibit a series of cell cycle transitions that coordinate the penultimate events of meiosis with the onset of embryogenesis at fertilization. The execution of these cell cycle transitions, at G2/M of meiosis-I and metaphase/anaphase of meiosis I and II, involve both biosynthetic and post-translational modifications that directly modulate centrosome and microtubule behavior. Specifically, somatic cells alter the signal transduction pathways in the oocyte and influence the expression of maturation promoting factor (MPF) and cytostatic factor (CSF) activity through a microtubule-dependent mechanism. The regulation of the oocytes' cell cycle machinery by hormone-mediated somatic cell signals, involving both positive and negative stimuli, ensures that meiotic cell cycle progression is synchronized with the earliest pivotal events of mammalian reproduction.  相似文献   

8.
Unlike somatic cells mitosis, germ cell meiosis consists of 2 consecutive rounds of division that segregate homologous chromosomes and sister chromatids, respectively. The meiotic oocyte is characterized by an absence of centrioles and asymmetric division. Centriolin is a relatively novel centriolar protein that functions in mitotic cell cycle progression and cytokinesis. Here, we explored the function of centriolin in meiosis and showed that it is localized to meiotic spindles and concentrated at the spindle poles and midbody during oocyte meiotic maturation. Unexpectedly, knockdown of centriolin in oocytes with either siRNA or Morpholino micro-injection, did not affect meiotic spindle organization, cell cycle progression, or cytokinesis (as indicated by polar body emission), but led to a failure of peripheral meiotic spindle migration, large polar body emission, and 2-cell like oocytes. These data suggest that, unlike in mitotic cells, the centriolar protein centriolin does not regulate cytokinesis, but plays an important role in regulating asymmetric division of meiotic oocytes.  相似文献   

9.
10.
Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed. RNA interference-mediated PGRMC1 silencing in bGC significantly reduced cell proliferation, with a concomitant increase in the percentage of cells arrested at G2/M phase, which is consistent with an arrested or prolonged M-phase. This observation was confirmed by time-lapse imaging that revealed defects in late karyokinesis. In agreement with a role during late mitotic events, a direct interaction between PGRMC1 and Aurora Kinase B (AURKB) was observed in the central spindle at of dividing cells. Similarly, treatment with the PGRMC1 inhibitor AG205 or PGRMC1 silencing in the oocyte impaired completion of meiosis I. Specifically the ability of the oocyte to extrude the first polar body was significantly impaired while meiotic figures aberration and chromatin scattering within the ooplasm increased. Finally, analysis of PGRMC1 and AURKB localization in AG205-treated oocytes confirmed an altered localization of both proteins when meiotic errors occur. The present findings demonstrate that PGRMC1 participates in late events of both mammalian mitosis and oocyte meiosis, consistent with PGRMC1's localization at the mid-zone and mid-body of the mitotic and meiotic spindle.  相似文献   

11.
The final steps of oogenesis occur during oocyte maturation that generates fertilization-competent haploid eggs capable of supporting embryonic development. Cyclin-dependent kinase 1 (CDK1) drives oocyte maturation and its activity and actions on substrates are tightly regulated. CDC14 is a dual-specificity phosphatase that reduces CDK1 activity and reverses the actions of CDK1 during mitosis. In budding yeast, Cdc14 is essential for meiosis, but it is not known whether its mammalian homolog CDC14A is required for meiosis in females. Here, we report that CDC14A is concentrated in the nucleus of meiotically incompetent mouse oocytes but is dispersed throughout meiotically competent oocytes. During meiotic progression CDC14A has no specific sub-cellular localization except between metaphase of meiosis I (Met I) and metaphase of meiosis II (Met II) when it co-localizes with the central portion of the meiotic spindle. Over-expression of CDC14A generally delays meiotic progression after resumption of meiosis whereas microinjection of oocytes with an antibody against CDC14A specifically delays exit from Met I. Each of these perturbations generates eggs with chromosome alignment abnormalities and eggs that were injected with the CDC14A antibody had an elevated incidence of aneuploidy. Collectively, these data suggest that CDC14A regulates oocyte maturation and functions to promote the meiosis I-to-meiosis II transition as its homolog does in budding yeast.  相似文献   

12.
13.
Mutations in supernova, previously shown to uncouple chromosome replication from segregation during cleavage in Drosophila embryos, also sanctions extra divisions of cystoblasts and spermatoblasts. This leads either to the formation of egg chambers which contain more than fifteen nurse cells or testes which have an excess of spermatocytes. In maturing egg chambers two potential oocytes may be specified in which case they are often ectopically located and connected with surrounding nurse cells by four ring canals. However, a typical oocyte nucleus is not always present and these chambers usually become necrotic and degenerate. The nurse cells are of variable size, but are still interconnected by a system of ring canals. They all possess a polyploid nucleus. Sequestering of maternal mRNA's from the nurse cells into the potential oocyte(s) takes place but there is no localization of this maternal information within the oocyte probably because of defective microtubule assembly. Many spermatocytes fail to complete meiosis so that bundles of spermatids are reduced in size and the males have reduced fertility. It is proposed that this gene is indirectly involved in regulating the timing of mitotic divisions in both cystoblasts and spermatoblasts through its interference with microtubule assembly which is consistent with its role during embryogenesis.  相似文献   

14.
Cyclin B synthesis is required for sea urchin oocyte maturation   总被引:5,自引:0,他引:5  
Sea urchins are members of a limited group of animals in which meiotic maturation of oocytes is completed prior to fertilization. This is different from oocytes of most animals such as mammals and amphibians in which fertilization reactivates an arrested meiotic cycle. Using a recently developed technique for in vitro maturation of sea urchin oocytes, we analyzed the role of cyclin B, the regulatory component of maturation-promoting factor, in the control of sea urchin oocyte meiotic induction and progression. Oocytes of the sea urchin Lytechinus variegatus accumulate significant amounts of cyclin B mRNA and protein during oogenesis. We analyzed cyclin B synthetic requirements in oocytes and early embryos by inhibiting cyclin B synthesis with DNA and morpholino antisense oligonucleotides. Cyclin B synthesis is not necessary for the entry of G2-arrested oocytes into meiosis; however, it is required for the proper progression through meiotic divisions. Surprisingly, mature sea urchin eggs contain significant cyclin B protein following meiosis that serves as a maternal store for early cleavage divisions. We also find that cyclin A can functionally substitute for cyclin B in early embryos but not in oocytes. These studies provide a foundation for understanding the mechanism of meiotic maturation independent of the zygotic cell cycle.  相似文献   

15.
The anterior-posterior axis of Drosophila is established before fertilisation when the oocyte becomes polarised to direct the localisation of bicoid and oskar mRNAs to opposite poles of the egg. Here we review recent results that reveal that the oocyte acquires polarity much earlier than previously thought, at the time when it acquires its fate. The oocyte arises from a 16-cell germline cyst, and its selection and the initial cue for its polarisation are controlled by the asymmetric segregation of a germline specific organelle called the fusome. Several different downstream pathways then interpret this asymmetry to restrict distinct aspects of oocyte identity to this cell. Mutations in any of the six conserved Par proteins disrupt the early polarisation of the oocyte and lead to a failure to maintain its identity. Surprisingly, mutations affecting the control of the mitotic or meiotic cell cycle also lead to a failure to maintain the oocyte fate, indicating crosstalk between the nuclear and cytoplasmic events of oocyte differentiation. The early polarity of the oocyte initiates a series of reciprocal signaling events between the oocyte and the somatic follicle cells that leads to a reversal of oocyte polarity later in oogenesis, which defines the anterior-posterior axis of the embryo.  相似文献   

16.
To investigate the role of the host cytoskeleton in the maternal transmission of the endoparasitic bacteria Wolbachia, we have characterized their distribution in the female germ line of Drosophila melanogaster. In the germarium, Wolbachia are distributed to all germ cells of the cyst, establishing an early infection in the cell destined to become the oocyte. During mid-oogenesis, Wolbachia exhibit a distinct concentration between the anterior cortex and the nucleus in the oocyte, where many bacteria appear to contact the nuclear envelope. Following programmed rearrangement of the microtubule network, Wolbachia dissociate from this anterior position and become dispersed throughout the oocyte. This localization pattern is distinct from mitochondria and all known axis determinants. Manipulation of microtubules and cytoplasmic Dynein and Dynactin, but not Kinesin-1, disrupts anterior bacterial localization in the oocyte. In live egg chambers, Wolbachia exhibit movement in nurse cells but not in the oocyte, suggesting that the bacteria are anchored by host factors. In addition, we identify mid-oogenesis as a period in the life cycle of Wolbachia in which bacterial replication occurs. Total bacterial counts show that Wolbachia increase at a significantly higher rate in the oocyte than in the average nurse cell, and that normal Wolbachia levels in the oocyte depend on microtubules. These findings demonstrate that Wolbachia utilize the host microtubule network and associated proteins for their subcellular localization in the Drosophila oocyte. These interactions may also play a role in bacterial motility and replication, ultimately leading to the bacteria's efficient maternal transmission.  相似文献   

17.
In the nematode Caenorhabditis elegans, sperm entry into the oocyte triggers the completion of meiosis and the establishment of the embryonic anteroposterior (AP) axis. How the early embryo makes the transition from a meiotic to a mitotic zygote and coordinates cell cycle changes with axis formation remains unclear. We have discovered roles for the C. elegans puromycin-sensitive aminopeptidase PAM-1 in both cell cycle progression and AP axis formation, further implicating proteolytic regulation in these processes. pam-1 mutant embryos exhibit a delay in exit from meiosis: thus, this peptidase is required for progression to mitotic interphase. In addition, the centrosomes associated with the sperm pronucleus fail to closely associate with the posterior cortex in pam-1 mutants, and the AP axis is not specified. The meiotic exit and polarity defects are separable, as inactivation of the B-type cyclin CYB-3 in pam-1 mutants rescues the meiotic exit delay but not the polarity defects. Thus PAM-1 may regulate CYB-3 during meiotic exit but presumably targets other protein(s) to regulate polarity. We also show that the pam-1 gene is expressed both maternally and paternally, providing additional evidence that sperm-donated gene products have important roles during early embryogenesis in C. elegans. The degradation of proteins through ubiquitin-mediated proteolysis has been previously shown to regulate the cell cycle and AP axis formation in the C. elegans zygote. Our analysis of PAM-1 requirements shows that a puromycin-sensitive aminopeptidase is also required for proteolytic regulation of the oocyte to embryo transition.  相似文献   

18.
Changes in MPF and MAPK activities during meiotic maturation of goat oocytes were investigated. Detection of MPF activity occurred concomitantly with GVBD, increased at MI, decreased during anaphase-telophase I transition, and increased thereafter in MII oocytes. The appearance of MAPK activity was delayed compared to MPF activity. MAPK activity increased after GVBD and persisted during the MI-MII transition. Whether MAPK was implicated in goat oocyte meiotic competence was also investigated by using oocytes from different follicle size categories that arrest at specific stages of the maturation process (GV, GVBD, MI, and MII). Results indicate that the ability of goat oocytes to resume meiosis is not directly related to the presence of Erk2. The ability to phosphorylate MAPK is acquired by the oocyte during follicular growth after the ability to resume meiosis. GVBD-arrested oocytes exhibited a high level of MPF activity after 27 hr of culture. However, 28% of oocytes from this group contained inactive MAPK, and 72% exhibited high MAPK activity. In addition, 29% of GVBD-arrested oocytes contained a residual interphasic network without recruitment of microtubules around the condensed chromosomes; 71% of GVBD-arrested oocytes displayed recruitment of microtubules near the condensed chromosomes and contained asters of microtubules distributed throughout the cytoplasm. These results indicate that oocytes arrested at GVBD were not exactly at the same point in the meiotic cell cycle progression, and suggest that MAPK could be implicated in the regulation of microtubule organization. The data presented here suggest that in goat oocytes, MAPK is not implicated in the early events of meiosis resumption, but rather in post-GVBD events such as spindle formation and MII arrest. © 1996 Wiley-Liss Inc.  相似文献   

19.
B Suter  R Steward 《Cell》1991,67(5):917-926
In the Drosophila female the product of the germline stem cell, the cystoblast, gives rise to 16 interconnected cystocytes. One of them differentiates into the oocyte, while the 15 others become polyploid nurse cells. Bic-D is required for the differentiation of an oocyte and hence for fertility. Recessive mutations in Bic-D block the oocyte-specific accumulation of its own and other RNAs. Based on its properties and distribution, the Bic-D protein appears to be a component of a cytoskeletal transport or anchoring system. Additional results suggest that the phosphorylation of the Bic-D protein is essential for its accumulation in the pro-oocyte and that this process leads to the gradual localization to the pro-oocyte of factors required for oocyte differentiation.  相似文献   

20.
James Deng 《Steroids》2009,74(7):595-822
Luteinizing hormone (LH) mediates many important processes in ovarian follicles, including cumulus cell expansion, changes in gap junction expression and activity, sterol and steroid production, and the release of paracrine signaling molecules. All of these functions work together to trigger oocyte maturation (meiotic progression) and subsequent ovulation. Many laboratories are interested in better understanding both the extra-oocyte follicular processes that trigger oocyte maturation, as well as the intra-oocyte molecules and signals that regulate meiosis. Multiple model systems have been used to study LH-effects in the ovary, including fish, frogs, mice, rats, pigs, and primates. Here we provide a brief summary of oocyte maturation, focusing primarily on steroid-triggered meiotic progression in frogs and mice. Furthermore, we present new studies that implicate classical steroid receptors rather than alternative non-classical membrane steroid receptors as the primary regulators of steroid-mediated oocyte maturation in both of these model systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号