首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of variation in ear temperature on growth and yield of spring wheat   总被引:1,自引:0,他引:1  
Wheat plants were kept in a growth room at 15 oC from 7 days after an-thesis until maturity and their ears were warmed to 20 or 25 oC for various periods. Continuous warming initially increased the growth rate of the ear and decreased that of the stem, but hastened senescence of the ear and decreased final grain yield by decreasing dry weight per grain. Warming the ears increased the movement of 14C and nitrogen to them from the leaves and stem during the early stages of grain growth but decreased it later. Warming the ears for only the first 10 or 20 days also hastened ear senescence; grain yield decreased progressively with increase in duration of the warm period. All effects were greater at 25 than at 20 oC. The effects of changing ear temperature from 15 to 20 oC were independent of the temperature of the rest of the plant. Altering the humidity of the air around the ears by 4–7 mb at constant temperature had no effect on ear growth or senescence. Warming all of the plant except the ears from 15 to 20 oC increased ear growth slightly during early grain growth and decreased it later, irrespective of ear temperature: stem dry weight, leaf area and net photosynthetic rate of flag leaves and green stems were decreased and dark respiration rate of stems was increased.  相似文献   

2.
Cytokinin, auxin and gibberellin-like substances were bio-assayed in extracts from developing ears of wheat plants grown in various conditions. Changes in cytokinin activity along the ears may be related to the earlier flowering in the middle of the ear. Ears on the main stems of plants from which all the tillers had been removed contained less cytokinin than the main-stem ears of normal tillered plants. When grain development was stopped by preventing fertilization of the ovules the ear contained more cytokinin than normal ears. With de-tillered plants, removing flag leaves before anthesis increased cytokinin, gibberellin and auxin in the ears; later removal of flag leaves did not affect cytokinin but decreased gibberellin in the ears. Conversely, removing ears before anthesis did not affect cytokinin or auxin in the flag leaves, but their gibberellin was less than that of flag leaves on intact plants. Treatment of wheat ears with zeatin did not affect grain weight or number per ear which supports the conclusion that the growth substances in the ear may be adequate for normal grain growth.  相似文献   

3.
In a field experiment on barley at Rothamsted with the highmean yield of 49 cwt. of grain per acre, the varieties Proctorand Herta produced 10—15 per cent, more grain than Plumage-Archeron plots that received no nitrogenous fertilizer. When nitrogenwas applied the difference was increased to about 30 per cent.,because the higher nitrogen supply caused the Plumage-Archercrop to lodge and did not increase its yield, while Proctorand Herta remained standing. The three varieties did not differ in leaf-area index nor innet assimilation rate before ear emergence, so that all hadthe same total dry weight. After ear emergence, the leaf-areaindices of Proctor and Plumage-Archer were nearly equal, butthat of Herta was smaller. Assuming that the photosyntheticefficiency of the leaves continued to be the same in all varieties,the higher grain yields of Proctor and Herta cannot be attributedto greater production of dry matter by the leaves, either beforeor after ear emergence. A pot experiment on plants with shadedears confirmed that the dry matter contributed to grain yieldby unit leaf area was nearly equal in all the varieties. The higher grain yield of Proctor and Herta than of Plumage-Archermust therefore have come from additional photosynthesis in partsof the plant other than the leaves, i.e. in the ears themselves.An attempt to demonstrate this directly in a pot experiment,by comparing the grain yields of plants with shaded or withunshaded ears, was unsuccessful because the varieties behaveddifferently in pots; Proctor and Herta produced only about 6per cent, more grain yield than Plumage-Archer, and though thedecrease in grain yield by shading the ears was slightly greaterfor Proctor and Herta, the differences were not significant. The sum of ear sizes (estimated from length and breadth measurements)per m.1 in the field experiment was greater for Proctor andHerta than for Plumage-Archer. Also the distribution of drymatter between developing ears and shoots apparently differedwith variety, so that at ear emergence the dry weight of earsper m.2 was greater in the two higher yielding varieties. Theincreased amount of photosynthetic tissue in the ears of Proctorand Herta, as measured by size or weight, may not wholly explaintheir greater dry-matter production; ears of Herta may alsohave a higher photosynthetic efficiency. No differences in nutrient uptake that could account for thevarietal differences in grain yield were found. Plumage-Archerabsorbed more potassium, and Herta less phosphorus than theother varieties. About a quarter of the final content of nitrogen,and a third of the phosphorus, was absorbed after ear emergence,but the potassium content was nearly maximal at ear emergenceand later decreased. The pot experiment showed that, on the average of all varieties,26 per cent. of the dry matter in the grain at harvest originatedfrom photosynthesis in the ears, including 10 per cent, fromthe awns; 59 per cent, came from photosynthesis in the flag-leaflamina and sheath and peduncle, and 15 per cent, from partsof the shoot below the flag leaf.  相似文献   

4.
Changes in growth-substance contents during growth of wheat grains   总被引:6,自引:0,他引:6  
Samples of developing wheat grains were extracted at weekly intervals from ear emergence until maturity and the growth substances estimated by bioassay. Immature grains contained two cytokinins; one was similar to zeatin and another, with more cytokinin activity, had different properties. Ovules contained only small amounts of growth substances but at the end of anthesis the grains had a maximum content of cytokinin. The gibberellin content increased until 3 wk after anthesis then decreased; their auxin content increased until 4 wk after anthesis but decreased as the grains ripened and lost fresh weight. The husks contained smaller amounts of growth substances than the grains they surrounded. Exudates from young stems contained cytokinins and these may originate in the roots and move to the ears through the stems. The auxin in the grains was identified as indole-3yl-acetic acid and may be derived from the phenols present reacting with tryptophan.  相似文献   

5.
Halving the number of florets per ear of barley shortly afterthe ears emerged increased the dry weight of the rest of theplant. The effect was greatest 17 days after the ears emerged,and until then the increase in weight of the shoot of the plantnearly equalled the decrease in ear weight. Later, when theshoots lost weight, the difference between shoots with 24 or12 florets per ear disappeared, presumably because all the extralabile carbohydrate was lost by respiration. Unshaded plantsor plants with shaded ears or shoots were affected similarly.Removing florets did not affect net assimilation rate althoughit slightly increased the rate of photosynthesis of the flag-leaflamina between 10 and 17 days after the ear emerged. The weight of the rest of the plant was decreased by shadingthe ear. Shading decreased ear weight at all samplings. Theeffect was small, especially when florets were removed. Thus the size of the sink provided by the ear for carbohydrateaffected the movement of carbohydrate from the shoot. This invalidatessome of the methods used to estimate photosynthesis by the ear.  相似文献   

6.
Plants of Plumage Archer barley grown in pots produced moreshoots than did Proctor, but had fewer ears at maturity, becausesome shoots died about 7 days before ear emergence. The numberand position on the plant of the shoots that died were consistentfor particular growing conditions. Shoots that died were notalways the last to be produced. There were no consistent differencesin dry weight, leaf area, nitrogen content, or apex developmentbetween shoots that did and did not survive; nor did removingthree developing ears on older shoots affect the survival ofother shoots. Growth of Plumage Archer plants was not checkedby death of shoots; dry matter, nitrogen, and leaf area wereredistributed so that increase in surviving shoots compensatedfor losses in the dead shoots. The dry-weight ratio of ear to shoot was smaller for Proctorthan for Plumage Archer at ear emergence and anthesis, but atmaturity it was greater for Proctor, both when ears were shadedto prevent them photosynthesizing and when they were unshaded.The varietal difference in ear: shoot dry-weight ratio was reversedbecause the relative growth-rate of ears of Proctor was greaterand because more dry matter was lost from its shoots. Both changesmay have been caused by translocation to the ear of a greaterproportion of the assimilate from the shoots of Proctor thanof Plumage Archer. Leaves of Proctor appeared to be more efficientin producing dry matter for the ear than those of Plumage Archer.  相似文献   

7.
Material from four fertilizer trials on barley in Hampshire was analysed with the principal purpose of comparing the extent to which the potassium content of different plant organs was diagnostic of potassium deficiency. Samples of older leaf blades and sheaths, young leaves, stems and ears were gathered at the time of ear emergence from each of the 108 plots, and analysed spectrographically for calcium, iron, magnesium, manganese, potassium and sodium.
Differences in composition between plants from the different sites were proportionately greater in the older leaf blades than in the other organs for calcium, the young leaves for manganese and sodium, and the older leaf blades and sheaths for potassium. Differences in sodium and manganese content at the different sites appeared to be related to the differences in potassium status.
Applications of muriate of potash increased the potassium content of all organs except the ears, and decreased the content of magnesium, manganese and sodium, and of iron at one site. The effect of potassium supply on manganese and sodium content was most marked in the young leaves. The proportional increases observed in potassium content as a result of application of muriate of potash were similar at all four sites, in spite of the fact that responses in growth and yield differed greatly.
As between the four sites, the responses to muriate of potash observed in the yields of grain are significantly correlated with the potassium content of the older leaf blades and the stems, and the following tentative limiting values are put forward, above which no increase in grain yield as a result of potassic manuring may be expected:
(a) in the older leaf blades at the time of ear emergence 0.92% potassium in dry matter, (b) in the stems at the time of ear emergence 1–01 % potassium in dry matter.  相似文献   

8.
THORNE  G. N. 《Annals of botany》1961,25(1):29-38
To distinguish between the effects of age and environment onnet assimilation rate (E) of barley (var. Brant) grown in theopen in pots at Ottawa, E was measured outdoors (treatment N)and on similar plants transferred to a constant environmentfor the 2 weeks during which E was determined (treatment T).During June and July, E of treatment N decreased by 77 per cent.;for treatment T this fall increased to 90 per cent, of the initialvalue. E and average day and night temperatures were greaterin the constant environment than outdoors in early June, andin July they were greater outdoors. Incident light energy wasalways greater outdoors. Thus, the fall in E with age was partiallymasked outdoors by an increase caused by the improvement inenvironmental conditions during the experiment. Plants grown continuously in the constant environment had lowerE, greater leaf area and dry weight, and ears emerged earlierthan plants of similar age that had been transferred for 2 weeksto the constant environment from outdoors. E of plants growncontinuously in the constant environment decreased with time,both when the pots were moved away from the light panel to maintaina constant light intensity at the base of the youngest leafand when the pots remained stationary so that the plants grewtowards the lights. After ears emerged, E for treatments N and T was measured onplants whose ears were shaded to prevent them photosynthesizing.Photosynthesis in the ear accounted for 19 per cent, of thefinal ear dry weight during the first 2 weeks after emergence,12 per cent, during the 3rd and 4th, and 3 per cent, duringthe 5th and 6th weeks. Shading had no effect on weight of plantparts other than ears and had similar effects outdoors and inthe constant environment.  相似文献   

9.
Sublethal doses of metribuzin applied to wheat plants at the stage of ear emergence increased endogenous gibberellin levels in the ears. The activation of hormonal systems in connection with “chemical stress” is briefly discussed.  相似文献   

10.
The presence of awns doubled the net photosynthetic rate of wheat ears and also increased the proportion of 14CO2 assimilated by the ear that moved to the grain. The effect of water supply on photosynthesis and movement of assimilates was greater for leaves than ears, so that drought increased the proportion of assimilate contributed by ear photosynthesis to grain filling from 13% to 24% in the awnless ears, and from 34% to 43% in the awned ears. 14C assimilated by the ears was most important to the economy of the upper spikelets and to the distal florets in each spikelet, whereas flag leaf assimilate went mainly to the spikelets in the lower half of the ear, and to the proximal florets. Awns increased grain yield in the dry but not in the irrigated treatment, despite the large contribution of awned ears to grain filling. Either the supply of assimilate did not limit grain yield when water supply was not limiting, or there were compensating disadvantages to awns. However, they did not seem to have any adverse effect on the development of the upper florets, nor did they reduce grain number per ear.  相似文献   

11.
Vegetative plants of Poa pratensis L. cv. Holt (origin 69°N) raised in short days gave large and significant increases in plant dry weight, plant height and leaf area upon exposure to continuous light, compared with 8-h short days, at essentially identical daily inputs of radiant energy (8-h summer daylight ± low intensity extension). For example, by the fourth harvest (after 26, 34 and 46 days at 21, 15 and 9°C, respectively), the dry weights of plants in long days were 81, 163 and 195% greater than those of the corresponding short-day controls at the respective temperatures. Plant leaf areas in long days were between two and four times as large as control values by the end of the experiment. This was mainly due to increased leaf length caused by long-day stimulation of cell extension and division. However, the photoperiod did not affect the partitioning of assimilates amongst leaves, culms and stolons. Most of these effects could also be brought about by exogenous gibberellin application to plants in short days. However, in contrast to the effect of long days, gibberellin treatment also induced stem internode elongation even in these vegetative plants. Examination by standard growth analysis procedures revealed that the observed increases in relative growth rate were due primarily to increased net assimilation rate followed, several days later, by increases in leaf area ratio when newly-emerged leaves began to constitute a significant proportion of the leaf area. It is concluded that these reactions are of great adaptive significance for growth at the marginal temperatures prevailing at high latitudes.  相似文献   

12.
M. Aslam  L. A. Hunt 《Planta》1978,141(1):23-28
Co2 exchange and transpiration rates of the flag leaves of four spring wheat (Triticum aestivum L.) cultivars, namely Glenlea, Neepawa, Opal and Kolibri, were compared using infra-red gas-analysis technique. The plants were grown in a controlled environment under an 18-h photoperiod, with day and night temperatures of 20 and 15° C, respectively. The time course of the CO2-exchange rate (CER) of the flag leaf differed among cultivars. CER began to decrease rapidly some 2 weeks after ear emergence in Glenlea, Neepawa and Kolibri, but only after 4 weeks in Opal. The decline in CER of Glenlea, Neepawa and Opal was continuous throughout the period of grain development whereas in Kolibri CER was maintained at a constant level between the 4th and 6th weeks after ear emergence. The transpiration rates of the flag leaves of the 4 cultivars did not change markedly until 6–7 weeks after ear emergence, indicating that the reduction in CER was not primarily a response to increased stomatal resistance to the diffusion of CO2. Removing the ear of the main shoot of intact plants failed to depress CER of the subtending flag leaf until 5 weeks after ear removal. Removing the ears of all the tillers of plants in which all but 3 tillers had been removed at ear emergence did not depress CER until 4 weeks after ear emergence, but removal of the ear of the main shoot of plants where all the tillers had been removed at ear emergence reduced the CER of the flag leaf 2 weeks after ear removal. Removal of tillers at ear emergence had a marked effect on the time course of CER and transpiration rates of the flag leaf. Both CER and transpiration rates of a 4-tiller plant were maintained at a higher level throughout ear development as compared to those of a one-tiller plant. The transpiration rate of the flag leaf of Glenlea increased during the later part of the life of the leaf even for one-tiller plants with no ear, indicating that such a stomatal response may be part of the normal course of leaf aging and not a response to a feedback stimulus from the ear.  相似文献   

13.
A field experiment was carried out with a set of near-isogenicspring wheat lines (cv. Triple Dirk) to determine the influenceof the Rht1 and Rht2 alleles on the partitioning of dry matterbetween the developing stem and the ear. Each line was sampledtwice weekly and dissected into its component above-ground parts.The rate of change of the dry mass of the individual plant organswas expressed as a proportion of the rate of change of the totalplant dry mass. This ratio was used to assess the relative sinkstrengths of the stem and ear during crop growth. The Rht1 andRht2 alleles reduced plant height, but increased grain yield.The greater yield was achieved through a greater grain numberper ear in the Rhtl line, a greater ear number per plant inthe Rht2 line, and a greater allocation of assimilate to thedeveloping ear than to the developing stem in both Rht lines,particularly at the time of maximum stem growth (17 d beforeanthesis). From the earliest stages of detectable ear growthuntil anthesis, the ear masses per unit area of the Rht1 andRht2 lines exceeded that of Triple Dirk (Rht). It was not possibleto determine whether the Rht1 and Rht2 alleles were directlyresponsible for increasing grain number per ear and ear numberper plant, respectively, since the increase in these componentsof yield could equally be explained by a greater partitioningof assimilate to developing ears and tillers caused simply bya reduction in plant height. Triticum aestivum L., wheat Rht genes, stem and ear development, dry matter partitioning, allocation ratio  相似文献   

14.
At 6 days after anthesis, grain numbers in ears of Maris Huntsman and Hobbit winter wheat growing in the field were decreased either by removing the two lower grains in each spikelet (degraining) or by removing the top half of the ear (halving). At maturity, degraining increased the dry weight of the third grains in each spikelet of Maris Huntsman by 11% and of Hobbit by 40%, compared with third grains in intact ears. Halving increased the mean dry weight of all the grains in the lower six spikelets of the ear slightly less; it increased the number of grains in Hobbit but not in Maris Huntsman. The responses to halving in Hobbit were greater with additional nitrogen fertiliser. At 28 days after anthesis in both varieties, degraining increased grain dry weight and the amount of water, reducing sugar, amino acids and total nitrogen in third grains. Effects of halving on these properties of the two lower grains of each spikelet were much less or nil. The increases in nitrogen content of grains at 28 days and at maturity caused by degraining or halving were relatively greater than the increases in dry weight and were similar in the two varieties.  相似文献   

15.
Short hot and dry spells before, or during, silking have an inordinately large effect on maize (Zea mays L.; corn) grain yield. New high yielding genotypes could be developed if the mechanism of yield loss were more fully understood and new assays developed. The aim here was to determine the effects of high temperature (35/27 °C) compared to cooler (25/18 °C) temperatures (day/night). Stress was applied for a 14 d-period during reproductive stages prior to silking. Effects on whole plant biomass, ear development, photosynthesis and carbohydrate metabolism were measured in both dent and sweet corn genotypes. Results showed that the whole plant biomass was increased by the high temperature. However, the response varied among plant parts; in leaves and culms weights were slightly increased or stable; cob weights decreased; and other ear parts of dent corn also decreased by high temperature. Photosynthetic activity was not affected by the treatments. The 13C export rate from an ear leaf was decreased by the high temperature treatment. The amount of 13C partitioning to the ears decreased more than to other plant parts by the high temperature. Within the ear decreases were greatest in the cob than the shank within an ear. Sugar concentrations in both hemicellulose and cellulose fractions of cobs in sweet corn were decreased by high temperature, and the hemicellulose fraction in the shank also decreased. In dent corn there was no reduction of sugar concentration except in the in cellulose fraction, suggesting that synthesis of cell-wall components is impaired by high temperatures. The high temperature treatment promoted the growth of vegetative plant parts but reduced ear expansion, particularly suppression of cob extensibility by impairing hemicellulose and cellulose synthesis through reduction of photosynthate supply. Therefore, plant biomass production was enhanced and grain yield reduced by the high temperature treatment due to effects on sink activity rather than source activity. Heat resistant ear development can be targeted for genetic improvement  相似文献   

16.
To study the importance for final grain size in wheat (Triticum aestivum, L.) of assimilate supply and the storage capacity of the grain, two field experiments were done. In 1976 nitrogen was applied in the range from none to 180 kg ha-1, part of the crop was thinned, and the top halves of some ears of the short variety Hobbit and of the tall variety Maris Huntsman were removed soon after anthesis. In 1977 ears of Maris Huntsman were halved 5 days after anthesis or at 30 days after anthesis when grain volume was maximum. Thinning the crop from 360 to 180 ear-bearing shoots m-2 30 days before anthesis increased the number of grains per ear, except in the absence of nitrogen fertiliser, but did not increase grain size, grain dry weight per ear or total dry weight per culm. Removing the upper half of ears of Hobbit 5 days after anthesis increased dry weight per grain, but when this treatment was applied to Maris Huntsman either 5 days after anthesis in 1976 and 1977, or when grain volume was maximal in 1977, the grains failed to increase in dry weight. Non-grain dry weight of both varieties was increased by halving the ear. In both varieties the maximum volume of grains in halved ears was larger than in intact ears. Grain dry weight increased relatively less than volume after halving the ear of Hobbit, and the decrease in volume up to maturity was greater in halved than intact ears of both varieties. The larger grain volume in halved ears of Maris Huntsman in 1977 was associated with more endosperm cells.  相似文献   

17.
Thermostatically-controlled, electrical soil heating cables were used to examine the effects of subzero temperatures on winter barley growing in plots outdoors. Plants in plots without heating cables were exposed to naturally-occurring subzero temperatures (unheated), while those in corresponding plots with the cables (heated) were protected from such temperatures. Measurements of soil, plant and air temperatures in heated and unheated plots showed that the system can, at least with the temperatures encountered during the measurement periods, prevent plant temperature from falling below the temperature set on the thermostat. A field experiment involving different cultivars and sowing dates showed that subzero temperatures experienced did not significantly affect individual plant grain yield or the number of fertile ears produced per plant. However, small, but statistically significant, effects of naturally-occurring subzero temperatures were found in relation to the number of grains per ear, thousand grain weight and harvest index. The nature of these effects varied, and were dependent upon cultivar and/or sowing date. Subzero temperatures were also responsible for reducing the numbers of established plants in late-sown plots through soil heaving. Possible uses of the soil heating cable system for temperature-related studies in the Gramineae are discussed.  相似文献   

18.
A nutrient culture system supporting stands of barley was used to examine the effect of nitrogen supply on plant development and germination rate. Two contrasting cultivars of barley were grown for two seasons with nitrogen supplied at an optimal rate and at one-third that rate. Mature grain was dissected from ears by grain position; stored until out of dormancy, weighed, and the time from inhibition to germination estimated for different ear positions. A parallel set of samples was analysed for grain nitrogen concentrations. A systematic increase in germination time was observed from the bottom to the top of the ear. This effect was in addition to and of the same order as the effect of grain size on germination time. Although there was significant variation in nitrogen concentration by grain position, these effects were smaller than the variations in grain weight within the ear and were not related to germination rate. These results are discussed in relation to plant development and events at the onset of germination.Keywords: Barley, germination, grain size, ear position, nitrogen.   相似文献   

19.
An increase in atmospheric CO(2) concentration ( [CO(2)]) is generally expected to enhance photosynthesis and biomass. Rice plants (Oryza sativa L.) were grown in ambient CO(2) (AMB) or free-air CO(2)-enrichment (FACE), in which the target [CO(2)] was 200 micromol mol(-1) above AMB. (13)CO(2) was fed to the plants at different stages so we could examine the partitioning of photosynthates. Furthermore, canopy photosynthesis and respiration were measured at those stages. The ratio of (13)C content in the whole plant to the amount of fixed (13)C under FACE was similar to that under AMB at the vegetative stage. However, the ratio under FACE was greater than the ratio under AMB at the grain-filling stage. At the vegetative stage, plants grown under FACE had a larger biomass than those grown under AMB owing to enhancement of canopy photosynthesis by the increased [CO(2)]. On the other hand, at the grain-filling stage, CO(2) enrichment promoted the partitioning of photosynthate to ears, and plants grown under FACE had a greater weight of ears. However, enhancement of ear weight by CO(2) enrichment was not as great as that of biomass at the vegetative stage. Plants grown under FACE did not necessarily show higher canopy photosynthetic rates at the grain-filling stage. Therefore, we concluded that the ear weight did not increase as much as biomass at the vegetative stage owing to a loss of the advantage in CO(2) gain during the grain-filling period.  相似文献   

20.
Co-regulation Of ear growth and internode elongation in corn   总被引:1,自引:0,他引:1  
Ear is the harvest part of corn (Zea mays L.) and we are interested in studying its growth and development in our effort in corn yield improvement. In our current study, we examined the relationship between ear growth and internode characteristics using different approaches. Correlations between stem growth rate and number of ears per plant (prolificacy) were assessed among several genotypes. Internode elongation of 2 genotypes was modified by plant hormones and by population density manipulations. Among the 7 genotypes examined that have different prolificacy levels, there was a general correlation of slower stem elongation at middle growth stages and larger ear number. When the internode elongation was enhanced by application of gibberellic acid (GA), ear growth was suppressed; and when a GA synthesis inhibitor uniconazole was applied at early stages, internode length was reduced and ear growth was promoted in terms of both ear size and visible ear number at silking stage. Higher population density caused longer internodes and fewer ears per plant and the effect of lower density was the opposite. Our results suggested that internode elongation in the middle section of corn plants was linked to suppression of ear development in corn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号