首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The specificity of snake venom phospholipase A2(PLA2) towards a number of phospholipid (PL) substrates, e. g., phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) organized in Triton X-100 mixed micelles, liposomes and proteoliposomes was studied. PC was shown to be more rapidly hydrolyzed in micelles. For other PLs, the rate of hydrolysis decreased in the following sequence: PC greater than PI greater than PE greater than PG. The incorporation into micelles of a non-hydrolyzable by PLA2 sphinogomyelin which, similar to PC, has a choline group, resulted in an increase of PLA2 specificity towards PL that are known to be devoid of this group: PE greater than PI greater than PG greater than PC. Quite a different picture was observed in bilayer liposomal structures: PI congruent to PE greater than PC greater than PG. The incorporation of cytochrome P-450 into liposomes caused the acceleration of PE and PG hydrolysis. The course of the PLA2-catalyzed hydrolysis in model membrane structures seems to be governed primarily by the supramolecular organization and localization of the substrate in the bilayer, but not by its chemical structure.  相似文献   

2.
We have shown previously that a nuclear phosphatidylinositol (PI) 4-kinase activity was present in intact nuclei isolated from carrot suspension culture cells (Daucus carota L.). Here, we further characterized the enzyme activity of the nuclear enzyme. We found that the pH optimum of the nuclear-associated PI kinase varied with assay conditions. The enzyme had a broad pH optimum between 6.5–7.5 in the presence of endogenous substrate. When the substrate was added in the form of phosphatidylinositol/phosphatidylserine (PI/PS) mixed micelles (1 mM PI and 400 μM PS), the enzyme had an optimum of pH 6.5. In comparison, the pH optimum was 7.0 when PI/Triton X-100 mixed micelles (1 mM PI in 0.025 %, v/v final concentration of Triton X-100) were used. The nuclear-associated PI kinase activity increased 5-fold in the presence of low concentrations of Triton X-100 (0.05 to 0.3 %, v/v); however, the activity decreased by 30 % at Triton X-100 concentrations greater than 0.3 % (v/v). Calcium at 10 μM inhibited 100 % of the nuclear-associated enzyme activity. The Km for ATP was estimated to be between 36 and 40 μM. The nuclear-associated PI kinase activity was inhibited by both 50 μM ADP and 10 μM adenosine. Treatment of intact nuclei with DNase, RNase, phospholipase A2 and Triton X-100 did not solubilize the enzyme activity. Based on sensitivity to calcium, ADP, detergent, pH optimum and the product analysis, the nuclear-associated PI 4-kinase was compared with previously reported PI kinases from plants, animals and yeast.  相似文献   

3.
We have shown previously that the phospholipase A (PLA) activity specific for phosphatidic acid (PA) in porcine platelet membranes is of the A(1) type (PA-PLA(1)) [J. Biol. Chem. 259 (1984) 5083]. In the present study, the PA-PLA(1) was solubilized in Triton X-100 from membranes pre-treated with 1 M NaCl, and purified 280-fold from platelet homogenates by sequential chromatography on blue-Toyopearl, red-Toyopearl, DEAE-Toyopearl, green-agarose, brown-agarose, polylysine-agarose, palmitoyl-CoA-agarose and blue-5PW columns. In the presence of 0.1% Triton X-100 in the assay mixture, the partially purified enzyme hydrolyzed the acyl group from the sn-1 position of PA independently of Ca(2+) and was highly specific for PA; phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) were poor substrates. The enzyme exhibited lysophospholipase activity for l-acyl-lysoPA at 7% of the activity for PA hydrolysis but no lipase activity was observed for triacylglycerol (TG) and diacylglycerol (DG). At 0.025% Triton X-100, the enzyme exhibited the highest activity, and PA was the best substrate, but PE was also hydrolyzed substantially. The partially purified PA-PLA(1) in porcine platelet membranes was shown to be different from previously purified and cloned phospholipases and lipases by comparing the sensitivities to a reducing agent, a serine-esterase inhibitor, a PLA(2) inhibitor, a Ca(2+)-independent phospholipase A(2) inhibitor, and a DG lipase inhibitor.  相似文献   

4.
We have shown previously that the phospholipase A (PLA) activity specific for phosphatidic acid (PA) in porcine platelet membranes is of the A1 type (PA-PLA1) [J. Biol. Chem. 259 (1984) 5083]. In the present study, the PA-PLA1 was solubilized in Triton X-100 from membranes pre-treated with 1 M NaCl, and purified 280-fold from platelet homogenates by sequential chromatography on blue-Toyopearl, red-Toyopearl, DEAE-Toyopearl, green-agarose, brown-agarose, polylysine-agarose, palmitoyl-CoA-agarose and blue-5PW columns. In the presence of 0.1% Triton X-100 in the assay mixture, the partially purified enzyme hydrolyzed the acyl group from the sn-1 position of PA independently of Ca2+ and was highly specific for PA; phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) were poor substrates. The enzyme exhibited lysophospholipase activity for l-acyl-lysoPA at 7% of the activity for PA hydrolysis but no lipase activity was observed for triacylglycerol (TG) and diacylglycerol (DG). At 0.025% Triton X-100, the enzyme exhibited the highest activity, and PA was the best substrate, but PE was also hydrolyzed substantially. The partially purified PA-PLA1 in porcine platelet membranes was shown to be different from previously purified and cloned phospholipases and lipases by comparing the sensitivities to a reducing agent, a serine-esterase inhibitor, a PLA2 inhibitor, a Ca2+-independent phospholipase A2 inhibitor, and a DG lipase inhibitor.  相似文献   

5.
We have investigated the action and substrate specificity of phospholipase A2 (EC 3.1.1.4) purified from cobra venom (Naja naja naja) toward intact and Triton-solubilized human erythrocytes, toward ghost membranes, and toward extracted ghost lipids in mixed micelles with Triton X-100. We have found that: (i) phospholipids in the outer surface of intact erythrocytes are extremely poor substrates for the phospholipase, (ii) phospholipids in ghost erythrocyte membranes and in Triton-solubilized erythrocytes are suitable substrates for the enzyme, (iii) in these latter systems which contain a mixture of lipids, phosphatidylethanolamine is preferentially hydrolyzed, whereas in model studies on individual phospholipid species in mixed micelles with Triton, phosphatidylcholine is the preferred substrate of the enzyme, and (iv) the preferential hydrolysis of phosphatidylethanolamine is also observed for extracted ghost lipid mixtures in mixed micelles. These results demonstrate a dependence of phospholipase A2 activity on the ghosting procedure and a dependence of substrate specificity on the presence of other lipids. The relevance of these findings to the interpretation of membrane lipid asymmetry studies utilizing phospholipases is considered in detail.  相似文献   

6.
The phosphatidylcholine-hydrolyzing phospholipase C, so-called "phospholipase C" (PLC), was isolated from the culture of Bacillus cereus strain IAM 1208. The amino-acid composition and partial N-terminal sequence of the purified enzyme were in good agreement with those expected from the nucleotide sequence for a PLC of strain ATCC 10987 [Johansen et al. (1988) Gene 65, 293-304]. The chain-length dependence of kinetic parameters for the PLC-catalyzed hydrolysis of monodispersed short-chain phosphatidylcholines (diCNPC, N = 3-6) was studied by a pH-stat assay method at 25 degrees C, pH 8.0, and ionic strength 0.2 in the presence of saturating amounts of Zn2+ (0.1 mM). The result was compared with those for snake venom phospholipases A2 [Teshima et al. (1989) J. Biochem. 106, 518-527]. It was found that the interaction of the PLC with the head group of the substrate molecule is very important for the binding. The pH dependences of kinetic parameters for the hydrolysis of monodispersed diC5PC and mixed micelles of diC16PC with Triton X-100 were also studied under the same conditions. An ionizable group, whose pK value is perturbed from 7.77 to 8.30 by substrate binding, was found to be essential to the catalysis. This group was tentatively assigned to His 14 on the basis of the results on X-ray crystallographic and chemical modification studies [Hough et al. (1989) Nature 338, 357-360 and Little (1977) Biochem. J. 167, 399-404].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The interaction of rat brain cytidylate cyclase with some phospholipids such as L-alpha-phosphatidylcholine (PC), L-alpha-phosphatidylserine (PS), L-alpha-phosphatidylethanolamine (PE) and L-alpha-phosphatidic acid (PA) was studied. Cytidylate cyclase activity of Triton X-100 - solubilized fraction was inhibited by PS, PE and PA, but not with PC. The addition of PC to the incubation mixture containing PS, PE or PA dose - dependently reversed the inhibition of enzyme activity by these phospholipids. Phospholipids showed similar effect on the intact membrane - bound enzyme. PC could reactivate the enzyme which was inactivated by deoxycholate treatment, suggesting that PC may be an important factor to reconstitute an active conformation of the enzyme. These findings indicate that cytidylate cyclase could be regulated by phospholipids constituting its microenvironment of the membrane.  相似文献   

8.
We identified a unique phospholipase A (PLA) with relatively low heparin affinity, which was distinguishable from the heparin-binding secretory PLA2s, in rat, mouse, and bovine brains and testes. The partially purified enzyme was Ca2+-independent at neutral pH but Ca2+-dependent at alkaline pH. It predominantly hydrolyzed phosphatidic acid (PA) in the presence of Triton X-100 and phosphatidylethanolamine (PE) in its absence. When rat brain-derived endogenous phospholipids were used as a substrate, the enzyme released saturated fatty acids in marked preference to unsaturated ones. Consistent with this observation, the enzyme hydrolyzed sn-1 ester bonds in the substrates about 2,000 times more efficiently than sn-2 ones, thereby acting like PLA1. The enzyme also exhibited weak but significant sn-1 lysophospholipase activity. On the basis of its limited tissue distribution, substrate head group specificity and immunochemical properties, this enzyme appears to be identical to the recently cloned PA-preferring PLA1.  相似文献   

9.
Purified acidic (pI 4.9), neutral (pI 6.9), and basic (pI 8.7) phospholipase A2 from Agkistrodon halys blomhofii showed characteristically different patterns of hemolysis and phospholipid hydrolysis of intact human erthyrocytes. Acidic and neutral enzymes were nonlytic in the early periods of incubations with intact erythrocytes whereas the basic enzyme caused immediate hemolysis (5–8%). Under nonlytic conditions acidic and neutral enzymes hydrolyzed only phosphatidyl choline (PC) (20 and 50%, respectively), whereas basic enzyme hydrolyzed not only PC (60%) but nearly 15% of the phosphatidylethanolamine (PE). Both PC and PE were hydrolyzed significantly when the three phospholipases A2 were incubated individually with erythrocyte lysate or hypotonic ghosts (sealed or unsealed). The order of substrate preference for acidic and neutral enzymes was always PC > PE. On the contrary basic enzyme exhibited the property of substrate specificity reversal. It hydrolyzed PC faster than PE when the membranes were sealed whereas PE hydrolysis was faster than PC hydrolysis in unsealed membranes. Interestingly only the basic enzyme showed activity in the absence of Ca2+ and in the presence of 0.5 mm EDTA. Phospholipase C (Bacillus cereus or Clostridium perfringens) did not show the property of substrate specificity reversal although their ability to hydrolyze PC and PE was different. In general this study demonstrates the unique activity patterns of three physically different pure phospholipases A2 on human erythrocyte membranes which could be of value in selectively modifying membrane phospholipids. In addition it also throws an important light on the fact that results obtained with phospholipases should be interpreted with caution particularly as regards the localization of phospholipids in membranes.  相似文献   

10.
A 74-kDa protein (adseverin) derived from adrenal medulla severs actin filaments and nucleates actin polymerization in a Ca2(+)-dependent manner but does not form an EGTA-resistant complex with actin monomers, which is different from the gelsolin-actin interaction. The dissociation of gelsolin-actin complexes by phosphatidylinositol 4,5-bisphosphate (PIP2) and the inhibitory effect on actin filament severing by gelsolin was recently reported. This study shows that the activity of adseverin is inhibited not only by PIP2 but also by some common phospholipids including phosphatidylinositol (PI) and phosphatidylserine (PS). Other phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) showed no effect. The addition of PC or PE to PI diminished the inhibitory effect of PI. Triton X-100 and neomycin were also found effective in suppressing the effect of PI, suggesting that the arrangement of polar head groups is important in exerting the inhibitory effect. Ca2(+)-dependent binding of adseverin to PS liposomes but not to PC or PE liposomes was observed by a centrifugation assay.  相似文献   

11.
Protoplasts prepared from Bacillus subtilis by lysozyme digestion lysed in the presence of pure pancreatic phospholipase A(2). The phospholipids cardiolipin, phosphatidylethanolamine, phosphatidylglycerol and lysylphosphatidylglycerol, which are present in the membrane, are degraded by phospholipase A(2) only after removal of the cell wall, giving free fatty acids and lyso derivatives. The four phospholipids are hydrolyzed equally well at a given enzyme concentration. Differences in the phospholipid composition of the protoplasts were obtained by variations in the growth medium, time of harvesting, and preincubation time with lysozyme. The extent of hydrolysis appeared to depend on the initial phospholipid composition. A relative increase in acidic phospholipids in the membrane facilitated the action of phospholipase A(2), whereas the rate of hydrolysis was diminished when protoplasts were tested which contained a relatively high amount of positively charged phospholipid. Pure phospholipase C from B. cereus preferentially hydrolyzed phosphatidyl-ethanolamine in the B. subtilis membrane. More than 80% of this phospholipid was converted into diglyceride, whereas only 30% of the cardiolipin was hydrolyzed. Such a loss of phospholipids, however, was not followed by lysis of the protoplasts. Liposomes were prepared from the lipid extracts of B. subtilis and incubated with both phospholipases. The hydrolysis pattern of the phospholipids in these model membrane systems was identical to the hydrolysis pattern of the phospholipids in the protoplast membrane. Phospholipase A(2) hydrolyzed all the phospholipids in the liposomes equally well, whereas phospholipase C preferentially degraded phosphatidylethanolamine.  相似文献   

12.
Endoglycoceramidase catalyzes the hydrolysis of the linkage between oligosaccharides and ceramides of various glycosphingolipids. We found that a bacterial strain Corynebacterium sp., isolated from soil, produced endoglycoceramidase both intracellularly and extracellularly. The intracellular enzyme bound to the cell membrane was solubilized with 1% Triton X-100 and purified to homogeneity about 170-fold with 60% recovery. The molecular mass of the enzyme was approximately 65 kDa. The enzyme is most active at pH 5.5-6.5 and stable at pH 3.5-8.0. Various neutral and acidic glycosphingolipids were hydrolyzed by the enzyme in the presence of 0.1% Triton X-100. Ganglio- and lacto-type glycosphingolipids were readily hydrolyzed, but globo-type glycosphingolipids were hydrolyzed slowly.  相似文献   

13.
Purification of phosphatidylethanolamine N-methyltransferase from rat liver   总被引:5,自引:0,他引:5  
Phosphatidylethanolamine (PE) N-methyltransferase catalyzes the synthesis of phosphatidylcholine by the stepwise transfer of methyl groups from S-adenosylmethionine to the amino head group of PE. PE N-methyltransferase was solubilized from a microsomal membrane fraction of rat liver using the nonionic detergent Triton X-100 and purified to apparent homogeneity. Specific activities of PE N-methyltransferase with PE, phosphatidyl-N-monomethylethanolamine (PMME), and phosphatidyl-N,N-dimethylethanolamine (PDME) as substrates were 0.63, 8.59, and 3.75 mumol/min/mg protein, respectively. The purified enzyme was composed of a single subunit with a molecular mass of 18.3 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methylation activities dependent on the presence of PE, PMME, and PDME and the 18.3-kDa protein co-eluted when purified PE N-methyltransferase was subjected to gel filtration on Sephacryl S-300 in the presence of 0.1% Triton X-100. All three methylation activities eluted with a Stokes radius 2.1 A greater than that determined for pure Triton micelles (molecular mass difference of 27.4 kDa). Two-dimensional analysis of PE N-methyltransferase employing nonequilibrium pH gradient gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the enzyme is composed of a single isoform. Analysis of enzyme activity using PE, PMME, and PDME at various Triton X-100 concentrations indicated the enzyme follows the "surface dilution" model proposed for other enzymes that act at the surface of mixed micelle substrates. Initial velocity data for all three lipid substrates (at fixed concentrations of Triton X-100) were highly cooperative in nature. Hill numbers for PMME and PDME ranged from 3 at 0.5 mM Triton to 6 at 2.0 mM Triton. All three methylation activities had a pH optimum of 10. These results provide evidence that a single membrane-bound enzyme catalyzes all three methylation steps for the conversion of PE to phosphatidylcholine.  相似文献   

14.
On the membrane surface of the human platelet, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were hydrolyzed to different extents by the snake venom phospholipases A2 of varying pI values. The susceptibility of platelet phospholipids to basic phospholipase A2 of Naja nigricollis (pI 10.6) has been reported (Wang et al. (1986) Biochim. Biophys. Acta 856, 244-258). The susceptibilities of platelet phospholipids to acidic phospholipase A2 of Naja naja atra (pI 5.2) and to neutral phospholipase A2 of Hemachatus haemachatus (pI 7.3) were investigated in this study. In gel-filtered platelets, acidic phospholipase A2 hydrolyzed 35% PC and 10% PE, while neutral phospholipase A2 hydrolyzed 18% PC and 3% PE. In thrombin-induced shape-changed platelets, acidic phospholipase A2 hydrolyzed 20% PC and 10% PE, while neutral phospholipase A2 hydrolyzed 15% PC and 6% PE. In thrombin-activated platelets, acidic phospholipase A2 hydrolyzed 25% PC and 7% PE, while neutral phospholipase A2 hydrolyzed 25% PC and 10% PE. Sequential lipid hydrolysis experiments showed that basic phospholipase A2 of Naja nigricollis could hydrolyze the remaining PC and PE in the membrane previously treated with the neutral enzyme. The results may mean that: the PC and the PE domains exist on the platelet membrane surface; and the lipid domains on the membrane surface of resting platelets are rearranged by thrombin.  相似文献   

15.
Phospholipase C was purified from a crude preparation derived from Cl. perfringens utilizing a one-step polypreparative electrophoresis procedure. The purified enzyme has a molecular weight of 46,500 ± 500 and is essentially free of proteolytic and phospholipase A enzymatic activities. It exhibited the following substrate specificity: PC ≥ SM > PS > PI, lyso PC. PE was hydrolyzed when PC was present.Treatment of brain microsomes with purified phospholipase C reduced membrane phospholipids by 69%. All phospholipids were attacked including PE. PC was reduced to 4% and all other phospholipids to 23–43% of their control levels. Total fatty acid composition of brain microsomes was not affected by phospholipase C action.  相似文献   

16.
Membrane-bound and cytosolic phosphatidylinositol (PI)-specific phospholipases C in murine thymocytes have been partially purified and characterized. The membrane-bound enzyme was extracted from microsomes with sodium cholate and purified by sequential column chromatographies on Sephadex G-100, heparin-Sepharose CL-6B, and Sephadex G-100. The cytosolic enzyme was purified from the cytosol by sequential column chromatographies on Sephadex G-100 and FPLC-Mono S. Specific activities of the membrane-bound enzyme and the cytosolic enzyme increased more than 1,800- and 1,400-fold, respectively, compared with those of microsomes and the cytosol. The molecular weights of the both enzymes were estimated to be about 70,000 by gel filtration. These purified enzymes also hydrolyzed phosphatidylinositol 4,5-bisphosphate (PIP2). At neutral pH and low Ca2+ concentrations, the membrane-bound enzyme hydrolyzed PIP2 in preference to PI and showed higher activity than the cytosolic enzyme. These activities were also affected differently by various lipids. For PIP2 hydrolysis, all lipids investigated except lysophosphatidylcholine enhanced the activity of the membrane-bound enzyme, while phosphatidylcholine (PC) and phosphatidylserine (PS) did not significantly affect the activity of the cytosolic enzyme. PC, PE, and PS inhibited the activities of the membrane-bound and cytosolic enzymes for PI hydrolysis. The physiological implications of these results are discussed.  相似文献   

17.
Human serum carboxylesterase (EC 3.1.1.1), purified by affinity chromatography on trimethylammonium anilinium-Sepharose, hydrolyzed the short-chain fatty acid ester tributyrin (40 mumol/mg protein per h), but scarcely hydrolyzed the long-chain fatty acid ester triolein (less than 0.2 mumol/mg protein per h). Phospholipids enhanced triolein hydrolysis by carboxylesterase to various extents, cardiolipin causing the most enhancement (2.5 mumol/mg protein per h). Phosphatidylserine and phosphatidylinositol also enhanced carboxylesterase-catalyzed hydrolysis of triolein (450-980 nmol/mg protein per h). The optimal pH for tributyrin hydrolysis was pH 8.0, but the pH range for triolein hydrolysis was broad, being pH 4.5-7.5. The rates of hydrolyses of monoolein, diolein and triolein by carboxylesterase in the absence and presence of 100 micrograms/ml cardiolipin were 3.9, 0.5 and 0.2 mumol/mg esterase per h and 2.0, 0.6 and 4.0 mumol/mg protein per h, respectively. Thus, on addition of cardiolipin, triolein hydrolysis was enhanced, but tributyrin hydrolysis was reciprocally decreased. Triton X-100 (0.1%) and NaCl (1.0 M) decreased triolein hydrolysis, but did not decrease tributyrin hydrolysis. Mercaptoethanol decreased triolein hydrolysis, but not tributyrin hydrolysis. These results suggest that cardiolipin modifies the interaction of carboxylesterase with substrates in such a way as to facilitate its interaction with a hydrophobic substrate, and that disulfide bonding might be involved in the substrate recognition site.  相似文献   

18.
The bovine heart F0F1-ATPase preparation (Serrano, R., Kanner, B., and Racker, E. (1976) J. Biol. Chem. 251, 2453-2461) has been further delipidated. The lipid-deficient preparation contained 2.5 mol of cardiolipin, 1 mol of phosphatidylcholine (PC), and 1 mol of phosphatidylethanolamine (PE) per mol of F0F1. When reconstituted with asolectin the delipidated preparation exhibited an activity of 13 mumol of ATP hydrolyzed/min/mg of protein which was 88% oligomycin-sensitive. The phospholipids in this preparation were analyzed by 31P NMR spectroscopy to determine if they were immobilized by the enzyme (rendered NMR-invisible). The PC and PE were below the limits of detection under the conditions utilized and the cardiolipin was NMR-invisible until the enzyme was denatured by addition of either 1% sodium dodecyl sulfate or 8 M urea. Addition of cardiolipin to the delipidated preparation and subsequent analysis by NMR spectroscopy revealed that approximately 4 mol of cardiolipin were immobilized per mol of F0F1 ATPase. The enzyme appears to have high affinity for cardiolipin exclusively, since PC (a prominent inner membrane lipid), phosphatidyl serine (an acidic phospholipid), and phosphatidyl glycerol (the precursor to cardiolipin) were not immobilized (rendered NMR-invisible) when added to the delipidated preparation.  相似文献   

19.
A kinetic scheme is proposed for the action of cobra venom phospholipase A2 on mixed micelles of phospholipid and the nonionic detergent Triton X-100, based on the "dual phospholipid model." (formula; see text) The water-soluble enzyme binds initially to a phospholipid molecule in the micelle interface. This is followed by binding to additional phospholipid in the interface and then catalytic hydrolysis. A kinetic equation was derived for this process and tested under three experimental conditions: (i) the mole fraction of substrate held constant and the bulk substrate concentration varied; (ii) the bulk substrate concentration held constant and the Triton X-100 concentration varied (surface concentration of substrate varied); and (iii) the Triton X-100 concentration held constant and the bulk substrate concentration varied. The substrates used were chiral dithiol ester analogs of phosphatidylcholine (thio-PC) and phosphatidylethanolamine (thio-PE), and the reactions were followed by reaction of the liberated thiol with a colorimetric thiol reagent. The initial binding (Ks = k1/k-1) was apparently similar for thio-PC and thio-PE (between 0.1 and 0.2 mM) as were the apparent Michaelis constants (Km = (k-2 + k3)/k2) (about 0.1 mol fraction). The Vmax values for thio-PC and thio-PE were 440 and 89 mumol min-1 mg-1, respectively. The preference of cobra venom phospholipase A2 for PC over PE in Triton X-100 mixed micelles appears to be an effect on k3 (catalytic rate) rather than an effect on the apparent binding of phospholipid in either step of the reaction.  相似文献   

20.
Interaction with phospholipids of a membrane thiol peptidase [referred to as trigger peptidase (TPase), T. Miyakawa et al. (1987) J. Bacteriol. 169, 1626-1631] that plays a key role in the signalling of a lipopeptidyl mating pheromone at the cell surface of pheromone-target cell (mating type a) of Rhodosporidium toruloides was studied. The activity of highly purified TPase which requires phospholipids was restored by reconstitution of the enzyme into liposomes prepared with phospholipids extracted from the yeast cell. The presence of Ca2+ was essential for both the reconstitution process and the catalytic reaction of TPase. Triton X-100 mixed micelles containing phospholipids also activated the enzyme. The specificity and stoichiometry of activation by phospholipids was investigated by determination of TPase in the presence of mixed micelles that contained defined classes and numbers of phospholipid molecules in the Triton X-100 micelles. It was demonstrated that TPase is activated by mixed micelles containing 2-6 molecules of phosphatidylserine or phosphatidylethanolamine. Other phospholipids of the membranes of this organism, such as phosphatidylcholine and phosphatidylglycerol, had little effect on activation, indicating that the amino group of the phospholipids may be required for the function of TPase. Direct evidence for the interaction of TPase and Triton X-100/phosphatidylserine mixed micelles was obtained by molecular sieve chromatography on Sephacryl S-200. These data established that a phospholipid bilayer is not a requirement for TPase activation, and that the purified enzyme can be activated by a relatively small number of phospholipid molecules of specific classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号