首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The arginine residues at positions 38 and 91 of horse cytochrome c are absolutely conserved throughout eukaryotic evolution. For studies of the functional roles of these residues, we have prepared, by semisynthetic techniques, analogues of cytochrome c in which one or the other of the arginine residues has been modified. The products of modification by adduct formation with pentane-2,4-dione were purified and extensively characterized. In biological tests, the arginine-91-modified cytochrome c showed little difference in behaviour from native horse cytochrome c. Modification of arginine-38, however, led to extensive changes in biological and chemical properties. We also prepared and tested adducts with cyclohexane-1,2-dione and camphorquinone-10-sulphonic acid. The same effects on biological properties were noted irrespective of the nature of the modifying group. We suggest reasons for the differences in sensitivity of the two sites.  相似文献   

3.
1H-n.m.r. studies of horse, tuna, Candida krusei and Saccharomyces cerevisiae cytochromes c showed that each of the proteins contains a similar cluster of residues at the bottom of the protein that assists in shielding the haem from the solvent. The relative positions of the residues forming these clusters vary continuously with temperature, and they change with the change in protein redox state. This conformational heterogeneity is discussed with reference to the conformational flexibility of cytochrome c around residues 57, 59 and 74. Spectroscopic measurements of pKa values for Lys-55 (horse and tuna cytochromes c) and His-33 and His-39 (C. krusei and S. cerevisiae cytochromes c) are in excellent agreement with expectations based on chemical-modification studies of horse cytochrome c. [Bosshard & Zürrer (1980) J. Biol. Chem. 255, 6694-6699] and on the X-ray-crystallographic structure of tuna cytochrome c [Takano & Dickerson (1981) J. Mol. Biol. 153, 79-94, 95-115].  相似文献   

4.
5.
The histidine-selective reagent diethyl pyrocarbonate and dye-sensitized photooxidation have been used to study the functional role of histidines in cytochrome c peroxidase. Of the 6 histidines in cytochrome c peroxidase, 5 are modified by diethyl pyrocarbonate at alkaline pH and 4 by photooxidation. The sixth histidine serves as the proximal heme ligand and is unavailable for reaction. Both modification reactions result in the loss of enzymic activity. However, photooxidized peroxidase retains its ability to react with H2O2 and to form a 1:1 cytochrome c peroxidase-cytochrome c complex. It is, therefore, concluded that the extra histidine modified by diethyl pyrocarbonate is the catalytic site distal histidine, His 52. In the presence of cytochrome c, no enzymic activity is lost by photooxidation and a single histidine, His 181, is protected from oxidative destruction. This finding provides strong support for the hypothetical model of the cytochrome c peroxidase-cytochrome c complex in which His 181 lies near the center of the intermolecular interface where it seems to provide an important link in the electron transfer process.  相似文献   

6.
C/57 black mice were immunized with beef heart cytochrome c oxidase, generating 48 hybrid cell lines that secrete antibodies against the different subunits of the enzyme. Immunoblot analysis showed reactions with 7 of the 13 subunits. Among the monoclonal antibodies produced, only those to subunit II gave significant inhibition; these inhibited the enzyme activity completely and prevented cytochrome c binding to the enzyme. Epitope mapping studies indicate that a peptide including residues 200-227 reacts with the antibody, suggesting that the C-terminus of the protein is essential for the binding of this antibody. The carboxyl modifying reagent 1-ethyl-3-[3-(trimethylammonio)propyl]carbodiimide (ETC) was chosen to investigate further the relationship between antibody and cytochrome c binding domains. ETC caused 50% inhibition of the enzyme activity with a first-order time during the first 20 min; a slower reaction over 3 h resulted in 90% inhibition. Cytochrome c binding to the oxidase was inhibited to a similar extent as cytochrome c oxidation, and protection against both effects was afforded by the presence of cytochrome c during ETC modification. Anion-exchange of FPLC of the modified forms of cytochrome oxidase revealed extensive inhomogeneity, indicating random derivatization of a number of different carboxyls even during the first-order reaction, and precluding identification of carboxyl residues related to a specific phase of the reaction. Cytochrome c and the subunit II-specific antibody protected against radioactive labeling of subunit II by ETC in the presence of [14C]glycine ethyl ester, demonstrating that the antibody and cytochrome c occupy significant and overlapping areas on the subunit II surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Structural role of the tyrosine residues of cytochrome c.   总被引:5,自引:4,他引:1       下载免费PDF全文
The tertiary structures of horse, tuna, Neurospora crassa, horse [Hse65,Leu67]- and horse [Hse65,Leu74]-cytochromes c were studied with high-resolution 1H n.m.r. spectroscopy. The amino acid sequences of these proteins differ at position 46, which is occupied by phenylalanine in the horse proteins but by tyrosine in the remaining two, and at positions 67, 74 and 97, which are all occupied by tyrosine residues in horse and tuna cytochrome c but in the other proteins are substituted by phenylalanine or leucine, though there is only one such substitution per protein. The various aromatic-amino-acid substitutions do not seriously affect the protein structure.  相似文献   

8.
The isolated complexes of ferricytochrome c with cytochrome c oxidase, cytochrome c reductase (cytochrome bc1 or complex III), and cytochrome c1 (a subunit of cytochrome c reductase) were investigated by the method of differential chemical modification (Bosshard, H.R. (1979) Methods Biochem. Anal. 25, 273-301). By this method the chemical reactivity of each of the 19 lysyl side chains of horse cytochrome c was compared in free and in complexed cytochrome c and binding sites were deduced from altered chemical reactivities of particular lysyl side chains in complexed cytochrome c. The most important findings follow. 1. The binding sites on cytochrome c for cytochrome c oxidase and cytochrome c reductase, defined in terms of the involvement of particular lysyl residues, are indistinguishable. The two oxidation-reduction partners of cytochrome c interact at the front (exposed heme edge) and top left part of the molecule, shielding mainly lysyl residues 8, 13, 72 + 73, 86, and 87. The chemical reactivity of lysyl residues 22, 39, 53, 55, 60, 99, and 100 is unaffected by complex formation while the remaining lysyl residues in positions 5, 7, 25, 27, 79, and 88 are somewhat less reactive in the complexed molecule. 2. When bound to cytochrome c reductase or to the isolated cytochrome c1 subunit of the reductase the same lysyl side chains of cytochrome c are shielded. This indicates that cytochrome c binds to the c1 subunit of the reductase during the electron transfer process.  相似文献   

9.
10.
The interactions of yeast iso-1 cytochrome c with bovine cytochrome c oxidase were studied using cytochrome c variants in which lysines of the binding domain were substituted by alanines. Resonance Raman spectra of the fully oxidized complexes of both proteins reveal structural changes of both the heme c and the hemes a and a3. The structural changes in cytochrome c are the same as those observed upon binding to phospholipid vesicles where the bound protein exists in two conformers, B1 and B2. Whereas the structure of B1 is the same as that of the unbound cytochrome c, the formation of B2 is associated with substantial alterations of the heme pocket. In cytochrome c oxidase, the structural changes in both hemes refer to more subtle perturbations of the immediate protein environment and may be a result of a conformational equilibrium involving two states. These changes are qualitatively different to those observed for cytochrome c oxidase upon poly-l-lysine binding. The resonance Raman spectra of the various cytochrome c/cytochrome c oxidase complexes were analyzed quantitatively. The spectroscopic studies were paralleled by steady-state kinetic measurements of the same protein combinations. The results of the spectra analysis and the kinetic studies were used to determine the stability of the complexes and the conformational equilibria B2/B1 for all cytochrome c variants. The complex stability decreases in the order: wild-type WT > J72K > K79A > K73A > K87A > J72A > K86A > K73A/K79A (where J is the natural trimethyl lysine). This order is not exhibited by the conformational equilibria. The electrostatic control of state B2 formation does not depend on individual intermolecular salt bridges, but on the charge distribution in a specific region of the front surface of cytochrome c that is defined by the lysyl residues at positions 72, 73 and 79. On the other hand, the conformational changes in cytochrome c oxidase were found to be independent of the identity of the bound cytochrome c variant. The maximum rate constants determined from steady-state kinetic measurements could be related to the conformational equilibria of the bound cytochrome c using a simple model that assumes that the conformational transitions are faster than product formation. Within this model, the data analysis leads to the conclusion that the interprotein electron transfer rate constant is around two times higher in state B2 than in B1. These results can be interpreted in terms of an increase of the driving force in state B2 as a result of the large negative shift of the reduction potential.  相似文献   

11.
12.
The five conserved cysteine residues present in the alpha-subunit and the three conserved cysteine residues present in the beta-subunit of nitrogenase component 1 were individually changed to alanine. Mutations in the alpha-subunit at positions 63, 89, 155 and 275 and in the beta-subunit at positions 69, 94 and 152 all resulted in a loss of diazotrophic growth and component 1 activity and loss of the normal e.p.r. signal of the component 1 protein. Component 2 activity was retained. Replacement of cysteine-184 in the alpha-subunit with alanine greatly diminished, but did not eliminate, diazotrophic growth and component 1 activity. Substitution of serine for cysteine at position 152 in the beta-subunit, in contrast with the substitution of alanine at this position, resulted in the formation of active component 1. Replacement of the non-conserved cysteine-112 in the beta-subunit with alanine did not greatly perturb diazotrophic growth or the activity of component 1. Extracts prepared from a mutant, with cysteine-275 of the alpha-subunit replaced by alanine, complemented extracts of a mutant unable to synthesize the iron-molybdenum cofactor of nitrogenase, indicating that the alanine-275 substitution increases the availability of cofactor. Furthermore extracts of this mutant exhibited an e.p.r. signal similar to that of extracted iron-molybdenum cofactor. These data suggest a role for cysteine-275 as a ligand to the cofactor.  相似文献   

13.
Andrographolide 1, a diterpenoid lactone of the plant Andrographis paniculata, known to possess antitumour activity in in vitro and in vivo breast cancer models was subjected to semisynthesis leading to the preparation of a number of novel compounds. These compounds exhibited in vitro antitumour activity with moderate to excellent growth inhibition against MCF-7 (breast) and HCT-116 (colon) cancer cells. Compounds 3,19-(2-chlorobenzylidene)andrographolide(5), 3,19-(3-chlorobenzylidene)andrographolide(6), 3,19-(3-fluorobenzylidene)andrographolide(7), 3,19-(4-fluorobenzylidene)andrographolide(8), 3,19-(2-fluorobenzylidene)andrographolide(10), 3,19-(2-chloro-5-nitrobenzylidene)andrographolide (21), 3,19-(4-chlorobenzylidene)andrographolide(30) and 3,19-(2-chloro-4-fluorobenzylidene) andrographolide(31) were also screened against 60 NCI (National Cancer Institute, USA) human tumour cell lines derived from nine cancer cell types.  相似文献   

14.
Andrographolide 1, a diterpenoid lactone of the plant Andrographis paniculata, known to possess antitumour activity in in vitro and in vivo breast cancer models was subjected to semisynthesis leading to the preparation of a number of novel compounds. These compounds exhibited in vitro antitumour activity with moderate to excellent growth inhibition against MCF-7 (breast) and HCT-116 (colon) cancer cells. Compounds 3,19-(2-chlorobenzylidene)andrographolide(5), 3,19-(3-chlorobenzylidene)andrographolide(6), 3,19-(3-fluorobenzylidene) andrographolide(7), 3,19-(4-fluorobenzylidene)andrographolide(8), 3,19-(2-fluorobenzylidene)andrographolide(10), 3,19-(2-chloro-5-nitrobenzylidene)andrographolide (21), 3,19-(4-chlorobenzylidene)andrographolide(30) and 3,19-(2-chloro-4-fluorobenzylidene) andrographolide(31) were also screened against 60 NCI (National Cancer Institute, USA) human tumour cell lines derived from nine cancer cell types.  相似文献   

15.
1. The electric potential fields around tuna ferri- and ferrocytochrome c were calculated assuming that (i) all of the lysines and arginines are protonated, (ii) all of the glutamic and aspartic acids and the terminal carboxylic acid are dissociated, and (iii) the haem has a net charge of +1e in the oxidized form. 2. Near the haem crevice high values for the potential (greater than +2.5 kT/e) are found. Consequently, electron transfer via the haem edge is favored if the oxidant or reductant is negatively charged. 3. The inhomogeneous distribution of charges leads to a dipole moment of 244 and 238 debye for oxidized and reduced tuna cytochrome c, respectively. Horse cytochrome c has dipole moments of 303 (oxidized) and 286 (reduced) debye. 4. A line through the positive and negative charge centres, the dipole axis, crosses the tuna cytochrome c surface at Ala 83 (positive part) and Lys 99 (negative part). The direction of the dipole axis of horse cytochrome c is very similar. Since the centre of the domain on the cytochrome c surface, which is involved in the binding to cytochrome c oxidase, is found at the beta-carbon of the Phe 82 in horse cytochrome c (Ferguson-Miller, S., Brautigan, D.L. and Margoliash, E. (1978) J. Biol. Chem. 253, 149--159) it is suggested that the direction of the dipole is of physiological importance. 5. The activity coefficients of horse ferri- and ferrocytochrome c were calculated as a function of ionic strength using a formula derived by Kirkwood (Kirkwood, J.G. (1934) J. Chem. Phys. 2, 351--361). 6. Due to the high net charge at pH 7.5 the influence of the dipole moments of horse ferri- and ferrocytochrome c on the respective activity coefficients can be neglected at I less than or equal to 50 mM. 7. Using the Br?nsted relation the effect of ionic strength on reaction rates of horse cytochrome c was calculated. Good agreement is found between theory and experimental results reported in the literature.  相似文献   

16.
Cytochrome c was chemically coupled to cytochrome c oxidase using the reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) which couples amine groups to carboxyl residues. The products of this reaction were analyzed on 2.5–27% polyacrylamide gradient gels electrophoretically. Since cytochrome c binds to cytochrome oxidase electrostatically in an attraction between certain of its lysine residues and carboxyl residues on the oxidase surface, EDC is an especially appropriate reagent probe for binding-subunit studies. Coupling of polylysine to cytochrome oxidase using EDC was also performed, and the products of this reaction indicate that polylysine, an inhibitor of the cytochrome c reaction with oxidase, binds to the same oxidase subunit as does cytochrome c, subunit IV in the gel system used.  相似文献   

17.
18.
Cytochrome c oxidase forms tight binding complexes with the cytochrome c analog, porphyrin cytochrome c. The behaviour of the reduced and pulsed forms of the oxidase with porphyrin cytochrome c have been followed as functions of ionic strength; this behaviour has been compared with that of the resting oxidase [Kornblatt, Hui Bon Hoa and English (1984) Biochemistry 23, 5906-5911]. All forms of the cytochrome oxidase studied bind one porphyrin cytochrome c per 'functional' cytochrome oxidase (two heme a); it appears as though porphyrin cytochrome c and cytochrome c compete for the same site on the oxidase. The resting enzyme binds cytochrome c 8 times more strongly than porphyrin cytochrome c; the reduced enzyme, in contrast, binds the two with almost equal affinity. In all three cases, resting, pulsed and reduced, the heme-to-porphyrin distance is estimated to be about 3 nm. The tight-binding complexes formed between cytochrome oxidase and porphyrin cytochrome c can be dissociated by salt. Debye-Hückel analysis of salt titrations indicate that the resting enzyme and the reduced enzyme are similar in that the product of the interaction charges on the two proteins is about -14. The product of the charges for the pulsed enzyme is -25, indicating that on average another positive and negative charge take part in the interaction of the two proteins. While there is one tight binding site for cytochrome c per two heme a, cytochrome c is able to 'communicate' with four heme a. In the absence of cytochrome c, electron transfer from tetramethylphenylenediamine to the oxidase to oxygen results in the conversion of the resting form to the 'oxygenated'; in the presence of cytochrome c, the same electron transfer results in the appearance of the 'pulsed' form. Cytochrome c titrations of the enzyme show that a ratio of only one cytochrome c to four heme a is sufficient to convert all the oxidase to the 'pulsed' form. Porphyrin cytochrome c, like cytochrome c, catalyzes the same conversion with the same stoichiometry. The binding data and salt effects indicate that major structural alterations occur in the oxidase as it is converted from the resting to the partially reduced and subsequently to the pulsed form.  相似文献   

19.
The effect of complex formation between ferricytochrome c and cytochrome c peroxidase (Ferrocytochrome-c:hydrogen peroxide oxidoreductase, EC 1.11.1.5) on the reduction of cytochrome c by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), reduced N-methylphenazonium methosulfate (PMSH), and ascorbate has been determined at low ionic strength (pH 7) and 25 degrees C. Complex formation with the peroxidase enhances the rate of ferricytochrome c reduction by the neutral reductants TMPD and PMSH. Under all experimental conditions investigated, complex formation with cytochrome c peroxidase inhibits the ascorbate reduction of ferricytochrome c. This inhibition is due to the unfavorable electrostatic interactions between the ascorbate dianion and the negatively charged cytochrome c-cytochrome c peroxidase complex. Corrections for the electrostatic term by extrapolating the data to infinite ionic strength suggest that ascorbate can reduce cytochrome c peroxidase-bound cytochrome c faster than free cytochrome c. Reduction of cytochrome c peroxidase Compound II by dicyanobis(1,10-phenanthroline)iron(II) (Fe(phen)2(CN)2) is essentially unaffected by complex formation between the enzyme and ferricytochrome c at low ionic strength (pH 6) and 25 degrees C. However, reduction of Compound II by the negatively changed tetracyano-(1,10-phenanthroline)iron(II) (Fe(phen)(CN)4) is enhanced in the presence of ferricytochrome c. This enhancement is due to the more favorable electrostatic interactions between the reductant and cytochrome c-cytochrome c peroxidase Compound II complex then for Compound II itself. These studies indicate that complex formation between cytochrome c and cytochrome c peroxidase does not sterically block the electron-transfer pathways from these small nonphysiological reductants to the hemes in these two proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号