首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeast ISC1 (Yer019w) encodes inositolphosphosphingolipid-phospholipase C and is activated by phosphatidylserine (PS) and cardiolipin (CL) (Sawai, H., Okamoto, Y., Lubert, C., Mao, C., Bielawska, A., Domae, M., and Hannun, Y. A. (2000) J. Biol. Chem. 275, 39793-39798). In this study, the structural requirements for anionic phospholipid-selective binding of ISC1 were determined using site-directed and deletion mutants. FLAG-tagged Isc1p was activated by PS, CL, and phosphatidylglycerol (PG) in a dose-dependent manner. Using lipid-protein overlay assays, Isc1p interacted specifically and directly with PS/CL/PG. Lipid-protein binding studies of a series of deletion mutants demonstrated that the second transmembrane domain (TMII) and the C terminus were required for PS binding. Moreover, the TMII and the C terminus domain were sufficient to impart PS binding to a heterologous protein, green fluorescence protein. In addition, mutations of positively charged amino acid residues at the C terminus of ISC1 reduced the activating effects of PS, suggesting involvement of these amino acids in interaction with PS/CL/PG and in the activation of the enzyme. Finally, when separate fragments containing the N terminus-TMI and TMII-C terminus were expressed heterologously, enzyme activity was reconstituted, demonstrating that the interaction of the N terminus and the C terminus is required for activity of Isc1p. These results raise the hypothesis that in the presence of PS/CL/PG, the catalytic domain in the N terminus of Isc1p is "pulled" to the membrane to interact with substrate. These studies provide unique insights into the properties of ISC1 and define a novel mechanism for activation of enzymes by lipids cofactors.  相似文献   

2.
We have previously shown that mutants in the cardiolipin (CL) pathway exhibit temperature-sensitive growth defects that are not associated with mitochondrial dysfunction. The pgs1Delta mutant, lacking the first enzyme of the CL pathway, phosphatidylglycerolphosphate synthase (Pgs1p), has a defective cell wall due to decreased beta-1,3-glucan (Zhong, Q., Gvozdenovic-Jeremic, J., Webster, P., Zhou, J., and Greenberg, M. L. (2005) Mol. Biol. Cell 16, 665-675). Disruption of KRE5, a gene involved in cell wall biogenesis, restores beta-1,3-glucan synthesis and suppresses pgs1Delta temperature sensitivity. To gain insight into the mechanisms underlying the cell wall defect in pgs1Delta, we show in the current report that pgs1Delta cells have reduced glucan synthase activity and diminished levels of Fks1p, the glucan synthase catalytic subunit. In addition, activation of Slt2p, the downstream effector of the protein kinase C (PKC)-activated cell integrity pathway, was defective in pgs1Delta. The kre5W1166X suppressor restored Slt2p activation and dramatically increased (>10-fold) mRNA levels of FKS2, the alternate catalytic subunit of glucan synthase, partially restoring glucan synthase activity. Consistent with these results, up-regulation of PKC-Slt2 signaling and overexpression of FKS1 or FKS2 alleviated sensitivity of pgs1Delta to cell wall-perturbing agents and restored growth at elevated temperature. These findings demonstrate that functional Pgs1p is essential for cell wall biogenesis and activation of the PKC-Slt2 signaling pathway.  相似文献   

3.
Disruption of PGS1, which encodes the enzyme that catalyzes the committed step of cardiolipin (CL) synthesis, results in loss of the mitochondrial anionic phospholipids phosphatidylglycerol (PG) and CL. The pgs1Delta mutant exhibits severe growth defects at 37 degrees C. To understand the essential functions of mitochondrial anionic lipids at elevated temperatures, we isolated suppressors of pgs1Delta that grew at 37 degrees C. One of the suppressors has a loss of function mutation in KRE5, which is involved in cell wall biogenesis. The cell wall of pgs1Delta contained markedly reduced beta-1,3-glucan, which was restored in the suppressor. Stabilization of the cell wall with osmotic support alleviated the cell wall defects of pgs1Delta and suppressed the temperature sensitivity of all CL-deficient mutants. Evidence is presented suggesting that the previously reported inability of pgs1Delta to grow in the presence of ethidium bromide was due to defective cell wall integrity, not from "petite lethality." These findings demonstrated that mitochondrial anionic lipids are required for cellular functions that are essential in cell wall biogenesis, the maintenance of cell integrity, and survival at elevated temperature.  相似文献   

4.
We previously reported that the yeast Saccharomyces cerevisiae ISC1 gene (Yer019w), which has homology to the bacterial sphingomyelinase gene, encodes inositol phosphosphingolipids-phospholipase C, Isc1p [Sawai, H., Okamoto, Y., Luberto, C., Mao, C., Bielawska, A., Domae, M., and Hannun, Y. A. (2000) J. Biol. Chem. 275, 39793-39798]. The present study was conducted to determine specific domains in Isc1p required for catalysis. Several amino acid residues are conserved from bacterial sphingomyelinase to mammalian sphingomyelinase and are also found in ISC1. Individual mutation of the conserved E100, N233, and H334 resulted in complete loss of Isc1p activity, suggesting an essential role in catalysis for these amino acid residues. Isc1p also contains a domain (from G162 to S169) with homology to P-loop domains, found in nucleotide-binding proteins. In addition, two amino acid residues from this domain, D163 and K168, are conserved from bacterial to mammalian sphingomyelinases in this "P-loop-like domain". G162, D163, G167, K168, and S169 were replaced individually with alanine using site-directed mutagenesis. D163A and K168A lost activity completely. Mutations in the other three positions rendered enzyme versions with much reduced but detectable activity. The V(max) values for G162A, G167A, and S169A were reduced, compared with wild type, but the K(m) values for G162A, G167A, and S169A were similar to that of wild type, indicating that the substrate binding efficiency was not greatly altered in these mutants and that the P-loop-like domain of ISC1 might be essential in catalysis of Isc1p. Furthermore, the Mg(2+) K(a) constants for G162A, G167, and S169A were higher than that for wild type, suggesting that this P-loop-like domain may be involved in Mg(2+) binding. Although cell lysates from yeast cells overexpressing all mutants similarly bound to phosphatidylserine (PS), an anionic lipid activator of Isc1p, G162A and G167A required 13.3 mol % PS to achieve maximum activity compared to 6.7 mol % for the wild-type enzyme, suggesting that PS might play a role in optimal catalytic efficiency of Isc1p via this P-loop-like domain. This study provides novel insight into a new domain found in Isc1p and related enzymes.  相似文献   

5.
Isc1 regulates sphingolipid metabolism in yeast mitochondria   总被引:1,自引:0,他引:1  
The Saccharomyces cerevisiae inositol sphingolipid phospholipase C (Isc1p), a homolog of mammalian neutral sphingomyelinases, hydrolyzes complex sphingolipids to produce ceramide in vitro. Epitope-tagged Isc1p associates with the mitochondria in the post-diauxic phase of yeast growth. In this report, the mitochondrial localization of Isc1p and its role in regulating sphingolipid metabolism were investigated. First, endogenous Isc1p activity was enriched in highly purified mitochondria, and western blots using highly purified mitochondrial membrane fractions demonstrated that epitope-tagged Isc1p localized to the outer mitochondrial membrane as an integral membrane protein. Next, LC/MS was employed to determine the sphingolipid composition of highly purified mitochondria which were found to be significantly enriched in alpha-hydroxylated phytoceramides (21.7 fold) relative to the whole cell. Mitochondria, on the other hand, were significantly depleted in sphingoid bases. Compared to the parental strain, mitochondria from isc1Delta in the post-diauxic phase showed drastic reduction in the levels of alpha-hydroxylated phytoceramide (93.1% loss compared to WT mitochondria with only 2.58 fold enrichment in mitochondria compared to whole cell). Functionally, isc1Delta showed a higher rate of respiratory-deficient cells after incubation at high temperature and was more sensitive to hydrogen peroxide and ethidium bromide, indicating that isc1Delta exhibits defects related to mitochondrial function. These results suggest that Isc1p generates ceramide in mitochondria, and the generated ceramide contributes to the normal function of mitochondria. This study provides a first insight into the specific composition of ceramides in mitochondria.  相似文献   

6.
7.
8.
Cardiolipin (CL) is a dimeric phospholipid localized primarily in the mitochondrial membrane. Previous studies have shown that yeast cells containing a disruption of CRD1, the structural gene encoding CL synthase, exhibit temperature-sensitive colony formation and multiple mitochondrial defects. A recent report (Zhang, M., Su, X., Mileykovskaya, E., Amoscato, A. A., and Dowhan, W. (2003) J. Biol. Chem. 278, 35204-35210) suggested that defects associated with CL deficiency may result from the reduced expression of PET56 in crd1 Delta mutant backgrounds and should be reevaluated. In the current study, we present evidence that CL deficiency leads to mitochondrial DNA instability, loss of viability, and defects in oxidative phosphorylation at elevated temperatures. The observed mutant phenotypes are characteristic of crd1 Delta mutant cells of both PET56 and pet56 backgrounds and are complemented by an episomal copy of CRD1 but not by expression of the PET56 gene. Phosphatidylglycerol is elevated in crd1 Delta mutant cells when grown in the presence of fermentable and non-fermentable carbon sources, although the extent of the increase is higher in nonfermentable medium. An increase in the ratio of phosphatidylethanolamine to phosphatidylcholine was also apparent in the mutant. These findings demonstrate that CRD1, independent of PET56, is required for optimal mitochondrial function and for an essential cellular function at elevated temperatures.  相似文献   

9.
Cox15p is essential for the biogenesis of cytochrome oxidase [Glerum et al., J. Biol. Chem. 272 (1997) 19088-19094]. We show here that cox15 mutants are blocked in heme A but not heme O biosynthesis. In Schizosaccharomyces pombe COX15 is fused to YAH1, the yeast gene for mitochondrial ferredoxin (adrenodoxin). A fusion of Cox15p and Yah1p in Saccharomyces cerevisiae rescued both cox15 and yah1 null mutants. This suggests that Yah1p functions in concert with Cox15p. We propose that Cox15p functions together with Yah1p and its putative reductase (Arh1p) in the hydroxylation of heme O.  相似文献   

10.
11.
The Saccharomyces cerevisiae inositol sphingolipid phospholipase C (Isc1p), a homolog of mammalian neutral sphingomyelinases, hydrolyzes complex sphingolipids to produce ceramide in vitro. Epitope-tagged Isc1p associates with the mitochondria in the post-diauxic phase of yeast growth. In this report, the mitochondrial localization of Isc1p and its role in regulating sphingolipid metabolism were investigated. First, endogenous Isc1p activity was enriched in highly purified mitochondria, and western blots using highly purified mitochondrial membrane fractions demonstrated that epitope-tagged Isc1p localized to the outer mitochondrial membrane as an integral membrane protein. Next, LC/MS was employed to determine the sphingolipid composition of highly purified mitochondria which were found to be significantly enriched in α-hydroxylated phytoceramides (21.7 fold) relative to the whole cell. Mitochondria, on the other hand, were significantly depleted in sphingoid bases. Compared to the parental strain, mitochondria from isc1Δ in the post-diauxic phase showed drastic reduction in the levels of α-hydroxylated phytoceramide (93.1% loss compared to WT mitochondria with only 2.58 fold enrichment in mitochondria compared to whole cell). Functionally, isc1Δ showed a higher rate of respiratory-deficient cells after incubation at high temperature and was more sensitive to hydrogen peroxide and ethidium bromide, indicating that isc1Δ exhibits defects related to mitochondrial function. These results suggest that Isc1p generates ceramide in mitochondria, and the generated ceramide contributes to the normal function of mitochondria. This study provides a first insight into the specific composition of ceramides in mitochondria.  相似文献   

12.
13.
14.
Supernatant protein factor (SPF), a cytosolic protein (Mr = 47,000) stimulates microsomal squalene epoxidase activity 4- to 10-fold in the presence of anionic phospholipid such as phosphatidylglycerol (PG) (Saat, Y., and Bloch, K. (1976) J. Biol. Chem. 251, 5155-5160). This effect has been ascribed to substrate translocation from inactive to active pools within the membrane of the endoplasmic reticulum (Friedlander, E. J., Caras, I. W., Lin, L. F. H., and Bloch, K. (1980) J. Biol. Chem. 255, 8042-8045). Here we show that SPF and PG also stimulate squalene uptake per se by microsomes as well as stimulate squalene epoxidase. Microsomes preloaded with substrate in the presence of SPF and PG show full epoxidase activity. They do not require further addition of these factors during enzyme assay. Addition of SPF and PG to assay mixtures containing microsomes preloaded with substrate in the presence of SPF and PG did not further increase epoxidase activity. We also show that PG tightly binds to microsomes. This binding of PG is essential for the response of microsomal epoxidase to SPF. Solubilized microsomal enzymes have been reconstituted and show high epoxidase activity. In this system, SPF and PG do not stimulate the conversion of squalene into products.  相似文献   

15.
In a previous study (Shin, E. Y., Shin, K. S., Lee, C. S., Woo, K. N., Quan, S. H., Soung, N. K., Kim, Y. G., Cha, C. I., Kim, S. R., Park, D., Bokoch, G. M., and Kim, E. G. (2002) J. Biol. Chem. 277, 44417-44430) we reported that phosphorylation of p85 betaPIX, a guanine nucleotide exchange factor (GEF) for Rac1/Cdc42, is a signal for translocation of the PIX complex to neuronal growth cones and is associated with basic fibroblast growth factor (bFGF)-induced neurite outgrowth. However, the issue of whether p85 betaPIX phosphorylation affects GEF activity on Rac1/Cdc42 is yet to be explored. Here we show that Rac1 activation occurs in a p85 betaPIX phosphorylation-dependent manner. A GST-PBD binding assay reveals that Rac1 is activated in a dose- and time-dependent manner in PC12 cells in response to bFGF. Inhibition of ERK or PAK2, the kinases upstream of p85 betaPIX in the bFGF signaling, prevents Rac1 activation, suggesting that phosphorylation of p85 betaPIX functions upstream of Rac1 activation. To directly address this issue, transfection studies with wild-type and mutant p85 betaPIX (S525A/T526A, a non-phosphorylatable form) were performed. Expression of mutant PIX markedly inhibits both bFGF- and nerve growth factor (NGF)-induced activation of Rac1, indicating that phosphorylation of p85 betaPIX is responsible for activation of this G protein. Both wild-type and mutant p85 betaPIX displaying negative GEF activity (L238R/L239S) are similarly recruited to growth cones, suggesting that Rac1 activation is not essential for translocation of the PIX complex (PAK2-p85 betaPIX-Rac1). However, expression of mutant p85 betaPIX (L238R/L239S) results in retraction of the pre-existing neurites. Our results provide evidence that bFGF- and NGF-induced phosphorylation of p85 betaPIX mediates Rac1 activation, which in turn regulates cytoskeletal reorganization at growth cones, but not translocation of the PIX complex.  相似文献   

16.
17.
The molecular determinants of the contractile properties of smooth muscle are poorly understood, and have been suggested to be controlled by splice variant expression of the myosin heavy chain near the 25/50-kDa junction (Kelley, C. A., Takahashi, M., Yu, J. H., and Adelstein, R. S. (1993) J. Biol. Chem. 268, 12848-12854) as well as by differences in the expression of an acidic (MLC(17a)) and a basic (MLC(17b)) isoform of the 17-kDa essential myosin light chain (Nabeshima, Y., Nonomura, Y., and Fujii-Kuriyama, Y. (1987) J. Biol. Chem. 262, 106508-10612). To investigate the molecular mechanism that regulates the mechanical properties of smooth muscle, we determined the effect of forced expression of MLC(17a) and MLC(17b) on the rate of force activation during agonist-stimulated contractions of single cultured chicken embryonic aortic and gizzard smooth muscle cells. Forced expression of MLC(17a) in aortic smooth muscle cells increased (p < 0.05) the rate of force activation, forced expression of MLC(17b) in gizzard smooth muscle cells decreased (p < 0.05) the rate of force activation, while forced expression of the endogenous MLC(17) isoform had no effect on the rate of force activation. These results demonstrate that MLC(17) is a molecular determinant of the contractile properties of smooth muscle. MLC(17) could affect the contractile properties of smooth muscle by either changing the stiffness of the myosin lever arm or modulating the rate of a load-dependent step and/or transition in the actomyosin ATPase cycle.  相似文献   

18.
The translation release factors (RFs) RF1 and RF2 of Escherichia coli are methylated at the N5-glutamine of the GGQ motif by PrmC methyltransferase. This motif is conserved in organisms from bacteria to higher eukaryotes. The Saccharomyces cerevisiae RFs, mitochondrial Mrf1p and cytoplasmic Sup45p (eRF1), have sequence similarities to the bacterial RFs, including the potential site of glutamine methylation in the GGQ motif. A computational analysis revealed two yeast proteins, Mtq1p and Mtq2p, that have strong sequence similarity to PrmC. Mass spectrometric analysis demonstrated that Mtq1p and Mtq2p methylate Mrf1p and Sup45p, respectively, in vivo. A tryptic peptide of Mrf1p, GGQHVNTTDSAVR, containing the GGQ motif was found to be approximately 50% methylated at the glutamine residue in the normal strain but completely unmodified in the peptide from mtq1-Delta. Moreover, Mtq1p methyltransferase activity was observed in an in vitro assay. In similar experiments, it was determined that Mtq2p methylates Sup45p. The Sup45p methylation by Mtq2p was recently confirmed independently (Heurgue-Hamard, V., Champ, S., Mora, L., Merkulova-Rainon, T., Kisselev, L. L., and Buckingham, R. H. (2005) J. Biol. Chem. 280, 2439-2445). Analysis of the deletion mutants showed that although mtq1-Delta had only moderate growth defects on nonfermentable carbon sources, the mtq2-Delta had multiple phenotypes, including cold sensitivity and sensitivity to translation fidelity antibiotics paromomycin and geneticin, to high salt and calcium concentrations, to polymyxin B, and to caffeine. Also, the mitochondrial mit(-) mutation, cox2-V25, containing a premature stop mutation, was suppressed by mtq1-Delta. Most interestingly, the mtq2-Delta was significantly more resistant to the anti-microtubule drugs thiabendazole and benomyl, suggesting that Mtq2p may also methylate certain microtubule-related proteins.  相似文献   

19.
20.
arv1Delta mutant cells have an altered sterol distribution within cell membranes (Tinkelenberg, A.H., Liu, Y., Alcantara, F., Khan, S., Guo, Z., Bard, M., and Sturley, S. L. (2000) J. Biol. Chem. 275, 40667-40670), and thus it has been suggested that Arv1p may be involved in the trafficking of sterol in the yeast Saccharomyces cerevisiae and also in humans. Here we present data showing that arv1Delta mutants also harbor defects in sphingolipid metabolism. [(3)H]inositol and [(3)H]dihydrosphingosine radiolabeling studies demonstrated that mutant cells had reduced rates of biosynthesis and lower steady-state levels of complex sphingolipids while accumulating certain hydroxylated ceramide species. Phospholipid radiolabeling studies showed that arv1Delta cells harbored defects in the rates of biosynthesis and steady-state levels of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. Neutral lipid radiolabeling studies indicated that the rate of biosynthesis and steady-state levels of sterol ester were increased in arv1Delta cells. Moreover, these same studies demonstrated that arv1Delta cells had decreased rates of biosynthesis and steady-state levels of total fatty acid and fatty acid alcohols. Gas chromatography/mass spectrometry analyses examining different fatty acid species showed that arv1Delta cells had decreased levels of C18:1 fatty acid. Additional gas chromatography/mass spectrometry analyses determining the levels of various molecular sterol species in arv1Delta cells showed that mutant cells accumulated early sterol intermediates. Using fluorescence microscopy we found that GFP-Arv1p localizes to the endoplasmic reticulum and Golgi. Interestingly, the heterologous expression of the human ARV1 cDNA suppressed the sphingolipid metabolic defects of arv1Delta cells. We hypothesize that in eukaryotic cells, Arv1p functions in the sphingolipid metabolic pathway perhaps as a transporter of ceramides between the endoplasmic reticulum and Golgi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号