首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
线粒体融合蛋白Mitofusin在胰岛素抵抗发生与防治中的作用   总被引:1,自引:0,他引:1  
Mitofusin是线粒体融合的关键介导蛋白,与胰岛素抵抗及2型糖尿病的发生与防治密切相关。本文就Mitofusin在胰岛素抵抗发生与运动防治中的作用作一综述。  相似文献   

2.
Mitochondria are double‐membrane‐bound organelles that constantly change shape through membrane fusion and fission. Outer mitochondrial membrane fusion is controlled by Mitofusin, whose molecular architecture consists of an N‐terminal GTPase domain, a first heptad repeat domain (HR1), two transmembrane domains, and a second heptad repeat domain (HR2). The mode of action of Mitofusin and the specific roles played by each of these functional domains in mitochondrial fusion are not fully understood. Here, using a combination of in situ and in vitro fusion assays, we show that HR1 induces membrane fusion and possesses a conserved amphipathic helix that folds upon interaction with the lipid bilayer surface. Our results strongly suggest that HR1 facilitates membrane fusion by destabilizing the lipid bilayer structure, notably in membrane regions presenting lipid packing defects. This mechanism for fusion is thus distinct from that described for the heptad repeat domains of SNARE and viral proteins, which assemble as membrane‐bridging complexes, triggering close membrane apposition and fusion, and is more closely related to that of the C‐terminal amphipathic tail of the Atlastin protein.  相似文献   

3.
Mitochondrial dynamics play a critical role in mitochondrial function and signaling. Although mitochondria play a critical role in hypoxia/ischemia, the further mechanisms between mitochondrial dynamics and ischemia are still unclear. The current study aimed to determine the role of mitofusin 2, a key regulator of mitochondrial fusion, in a hypoxic model and to explore a novel strategy for cerebral ischemia via modulation of mitochondrial dynamics. To the best of our knowledge, this is the first study to investigate both mitochondrial function and molecular pathways to determine the role of mitofusin 2 in hypoxia-induced neuronal apoptosis. In vivo, C57BL/6 mice (male, 19–25 g) underwent a permanent middle cerebral artery occlusion for 12 or 24 h (n = 6 per group). In vitro, cobalt chloride was used to mimic hypoxia in immortalized hippocampal neurons. Down- or up-regulation of Mfn2 was induced to investigate the role of Mfn2 in hypoxia, especially in mitochondrial function and signaling pathways. The findings demonstrated that decreased mitofusin 2 occurred both in vivo and in vitro hypoxic models; second, the anti-apoptotic effect of Mfn2 may work via restoration of mitochondrial function; third, the modulation of the B Cell Leukemia 2/Bcl-2 Associated X protein and extracellular signal-regulated kinase 1/2 signaling pathways highlight the role of Mfn2 in signaling pathways beyond fusion. In summary, depletion of mitofusin 2 would lead to apoptosis both in normal or hypoxic conditions; however, mitofusin 2 overexpression could attenuate hypoxia-induced apoptosis, which represents a potential novel strategy for neuroprotection against ischemic brain damage.  相似文献   

4.
BAT‐controlled thermogenic activity is thought to be required for its capacity to prevent the development of insulin resistance. This hypothesis predicts that mediators of thermogenesis may help prevent diet‐induced insulin resistance. We report that the mitochondrial fusion protein Mitofusin 2 (Mfn2) in BAT is essential for cold‐stimulated thermogenesis, but promotes insulin resistance in obese mice. Mfn2 deletion in mice through Ucp1‐cre (BAT‐Mfn2‐KO) causes BAT lipohypertrophy and cold intolerance. Surprisingly however, deletion of Mfn2 in mice fed a high fat diet (HFD) results in improved insulin sensitivity and resistance to obesity, while impaired cold‐stimulated thermogenesis is maintained. Improvement in insulin sensitivity is associated with a gender‐specific remodeling of BAT mitochondrial function. In females, BAT mitochondria increase their efficiency for ATP‐synthesizing fat oxidation, whereas in BAT from males, complex I‐driven respiration is decreased and glycolytic capacity is increased. Thus, BAT adaptation to obesity is regulated by Mfn2 and with BAT‐Mfn2 absent, BAT contribution to prevention of insulin resistance is independent and inversely correlated to whole‐body cold‐stimulated thermogenesis.  相似文献   

5.
Plasma glucose, insulin, and C-peptide concentrations were determined in response to graded infusions of glucose, and insulin secretion rates were calculated over each sampling period. Measurements were also made of insulin clearance, resistance to insulin-mediated glucose, uptake, and the plasma glucose, insulin, and C-peptide concentrations at hourly intervals from 8:00 AM to 4:00 PM in response to breakfast and lunch. Plasma glucose, insulin, and C-peptide concentrations were significantly (P < 0.01) higher in obese women in response to the graded intravenous glucose infusion, associated with a 40% (P < 0.005) greater insulin secretory response. Degree of insulin resistance correlated positively (P < 0.05) with the increase in insulin secretion rate in both nonobese (r = 0.52) and obese (r = 0.58) groups and inversely (P < 0.05) with the decrease in insulin clearance in obese (r = -0.46) and nonobese (r = -0.39) individuals. Weight loss was associated with significantly lower plasma glucose, insulin, and C-peptide concentrations in response to graded glucose infusions and in day-long insulin concentrations. Neither insulin resistance nor the insulin secretory response changed after weight loss, whereas there was a significant increase in the rate of insulin clearance during the glucose infusion. It is concluded that 1) obesity is associated with a shift to the left in the glucose-stimulated insulin secretory dose-response curve as well as a decrease in insulin clearance and 2) changes in insulin secretion and insulin clearance in obese women are more a function of insulin resistance than obesity.  相似文献   

6.
Heart disease is the leading cause of death in patients with insulin resistance and type 2 diabetes (DM2). Even in the absence of coronary artery disease and hypertension, functional and structural abnormalities exist in patients with well-controlled and uncomplicated DM2. These derangements are collectively designated by the term diabetic cardiomyopathy (DCM). Changes in myocardial energy metabolism, due to altered substrate supply and utilization, largely underlie the development of DCM. Insulin is an important regulator of myocardial substrate metabolism, but also exerts regulatory effects on intracellular Ca2+ handling and cell survival. The current paper reviews the multiple functional and molecular effects of insulin on the heart, all of which ultimately seem to be cardioprotective both under normal conditions and under ischemia. In particular, the dismal consequences of myocardial insulin resistance contributing to the development of DCM will be discussed.  相似文献   

7.
Mitofusin 2 (Mfn2) is a dynamin-like protein anchored in the outer mitochondrial membrane that plays a crucial role in ensuring optimal mitochondrial morphological homeostasis. It has been shown that reduced expression of Mfn2 is associated with insulin resistance, but the mechanism is still unclear. We investigated whether Mfn2 deficiency leads to impaired insulin sensitivity via elevated oxidative stress. L6 skeletal muscle cells were treated with palmitate and Mfn2 expression was repressed by transfection with antisense Mfn2. Levels of antioxidant enzymes, reactive oxygen species (ROS), the phosphorylation of c-Jun N-terminal Kinase (JNK) and nuclear factor-κB (NF-κB) and the mitochondrial membrane potential (Δψm) were measured. The results showed palmitate-induced insulin resistance of skeletal muscle cells was accompanied by Mfn2 repression. Meanwhile, the cells had decreased Δψm and activity of antioxidant enzymes which could increase production of ROS, phosphorylation of JNK and NF-κB. When Mfn2 was up-regulated in palmitate-treated cells, oxidative stress and insulin resistance was alleviated. Furthermore, knock-down of Mfn2 in control cells enhanced oxidative stress. Mfn2 deficiency led to increased superoxide concentration and activation of JNK as well as NF-κB associated with insulin signaling. In conclusion, Mfn2 is a potent repressor for oxidative stress and regulation of Mfn2 expression may prove to be a potential method to circumvent insulin resistance.  相似文献   

8.
9.
Type 2 diabetes mellitus (DM) appears to be a significant risk factor for Alzheimer disease (AD). Insulin and insulin-like growth factor-1 (IGF-1) also have intense effects in the central nervous system (CNS), regulating key processes such as neuronal survival and longevity, as well as learning and memory. Hyperglycaemia induces increased peripheral utilization of insulin, resulting in reduced insulin transport into the brain. Whereas the density of brain insulin receptor decreases during age, IGF-1 receptor increases, suggesting that specific insulin-mediated signals is involved in aging and possibly in cognitive decline. Molecular mechanisms that protect CNS neurons against β-amyloid-derived-diffusible ligands (ADDL), responsible for synaptic deterioration underlying AD memory failure, have been identified. The protection mechanism does not involve simple competition between ADDLs and insulin, but rather it is signalling dependent down-regulation of ADDL-binding sites. Defective insulin signalling make neurons energy deficient and vulnerable to oxidizing or other metabolic insults and impairs synaptic plasticity. In fact, destruction of mitochondria, by oxidation of a dynamic-like transporter protein, may cause synapse loss in AD. Moreover, interaction between Aβ and τ proteins could be cause of neuronal loss. Hyperinsulinaemia as well as complete lack of insulin result in increased τ phosphorylation, leading to an imbalance of insulin-regulated τ kinases and phosphatates. However, amyloid peptides accumulation is currently seen as a key step in the pathogenesis of AD. Inflammation interacts with processing and deposit of β-amyloid. Chronic hyperinsulinemia may exacerbate inflammatory responses and increase markers of oxidative stress. In addition, insulin appears to act as 'neuromodulator', influencing release and reuptake of neurotransmitters, and improving learning and memory. Thus, experimental and clinical evidence show that insulin action influences cerebral functions. In this paper, we reviewed several mechanisms by which insulin may affect pathophysiology in AD.  相似文献   

10.
11.
Insulin resistance in the skeletal muscle is manifested by diminished insulin-stimulated glucose uptake and is a core factor in the pathogenesis of type 2 diabetes mellitus (DM), but the mechanism causing insulin resistance is still unknown. Our recent study has shown that pH of interstitial fluids was lowered in early developmental stage of insulin resistance in OLETF rats, a model of type 2 DM. Therefore, in the present study, we confirmed effects of the extracellular pH on the insulin signaling pathway in a rat skeletal muscle-derived cell line, L6 cell. The phosphorylation level (activation) of the insulin receptor was significantly diminished in low pH media. The phosphorylation level of Akt, which is a downstream target of the insulin signaling pathway, also decreased in low pH media. Moreover, the insulin binding to its receptor was reduced by lowering extracellular pH, while the expression of insulin receptors on the plasma membrane was not affected by the extracellular pH. Finally, insulin-stimulated 2-deoxyglucose uptake in L6 cells was diminished in low pH media. Our present study suggests that lowered extracellular pH conditions may produce the pathogenesis of insulin resistance in skeletal muscle cells.  相似文献   

12.
苏定冯 《生命科学》2009,(4):473-478
以脑卒中为代表的脑血管疾病是非常严重的健康和社会问题。本项目结合我国国情,遵循优势互补、强强联合的方针,整合我国现有的优势和已建立起来的研究队伍,进行以下四个方面的研究:(1)遗传学研究,探讨脑卒中和颅内动脉狭窄的易感基因;(2)脑卒中发生的新的决定因素研究,探讨预防脑卒中的新靶点;(3)神经血管单元研究,探索脑卒中治疗的新策略;(4)转基因技术平台和化学生物学小分子探针技术平台研究,探讨脑卒中发生发展过程中涉及的各种信号转导通路。  相似文献   

13.
Insulin signaling at target tissues is essential for growth and development and for normal homeostasis of glucose, fat, and protein metabolism. Control over this process is therefore tightly regulated. It can be achieved by a negative feedback control mechanism whereby downstream components inhibit upstream elements along the insulin-signaling pathway (autoregulation) or by signals from apparently unrelated pathways that inhibit insulin signaling thus leading to insulin resistance. Phosphorylation of insulin receptor substrate (IRS) proteins on serine residues has emerged as a key step in these control processes under both physiological and pathological conditions. The list of IRS kinases implicated in the development of insulin resistance is growing rapidly, concomitant with the list of potential Ser/Thr phosphorylation sites in IRS proteins. Here, we review a range of conditions that activate IRS kinases to phosphorylate IRS proteins on "hot spot" domains. The flexibility vs. specificity features of this reaction is discussed and its characteristic as an "array" phosphorylation is suggested. Finally, its implications on insulin signaling, insulin resistance and type 2 diabetes, an emerging epidemic of the 21st century are outlined.  相似文献   

14.
Insulin resistance plays a major role in the pathogenesis of type 2 diabetes, yet despite much effort, the underlying factors that are responsible for it are poorly understood. In this review, we focus on some recent advances in our understanding of the pathogenesis of insulin resistance in humans that have been made using magnetic resonance spectroscopy.  相似文献   

15.

Purpose

Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance.

Methods and Results

DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨm) depolarization, exhibited attenuated insulin signaling and 2-deoxy-d-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H2O2), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨm depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H2O2-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨm depolarization and impaired 2-DG uptake, however they improved insulin signaling.

Conclusions

A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance.  相似文献   

16.

[Purpose]

Little is known about the potential role of lifestyle factors in sex differences in insulin resistance in late elementary school children.

[Methods]

In this cross-sectional study, we compared sex differences in Tanner scales, body fat, physical activity (PA) and fitness, and insulin resistance markers in elementary school children (boys, n = 69 and girls, n = 81) aged 12-13 years. Body composition was assessed with a standardized protocol. Cardiorespiratory fitness was measured as oxygen consumption during an incremental treadmill exercise. Fasting blood samples were collected for blood chemistry assays including lipids, glucose, insulin and homeostasis model assessment for insulin resistance (HOMA-IR), leptin, and adiponectin. Daily PA was measured with an accelerometer for 7 consecutive days, and they were classified as low-, moderate-, and vigorous-PA. Independent t-tests were used to compare mean differences in the measured variables between boys and girls. There were significant sex differences in Tanner scales, body mass index, percent body fat, and waist circumference (WC).

[Results]

Girls had significantly higher values in Tanner scales (p < 0.001) and percent body fat (p < 0.001) than boys. Boys had significantly higher values in body mass index (p = 0.019) and waist circumference (p < 0.001) than girls. Boys also had significantly higher values in VO2max (p < 0.001) and low (p < 0.001), moderate (p < 0.001), and vigorous (p < 0.001) PAs. With respect to metabolic risk factors, girls had significantly higher serum levels of triglycerides (p = 0.005), insulin (p < 0.001), and HOMA-IR (p < 0.001) and significantly lower high-density lipoprotein cholesterol (p = 0.015) than boys.

[Conclusion]

In summary, the current findings of the study showed that the increased risk for insulin resistance in girls over boys is associated with higher Tanner scale and percent body fat in conjunction with poor cardiorespiratory fitness and physical inactivity, suggesting that exercise intervention to promote physical activity and fitness is imperative for general health promotion of school children, with a special focus on girls.  相似文献   

17.
18.
Roles of lipoarabinomannan in the pathogenesis of tuberculosis   总被引:5,自引:0,他引:5  
Tuberculosis is a worldwide public health threat caused by Mycobacterium tuberculosis. All mycobacteria express a unique cell envelope glycolipid, lipoarabinomannan, which can be released at sites of infection. Lipoarabinomannan is a potential virulence factor which can bind to leukocytes and modulate immune responses. Here, we provide an overview of the interactions of mycobacteria and lipoarabinomannan with immune cells.  相似文献   

19.
Cortactin is a ubiquitous actin-binding protein that was originally identified as a substrate for the protein kinase Src. It is accumulated in peripheral, actin-enriched structures of cells, including lamellipodia and membrane ruffles, suggesting that cortactin facilitates actin network formation. In addition, recent data suggests that it regulates various aspects of cell dynamics, including integrin signaling, vesicular transport, axon guidance, and cell migration. A large body of evidence indicates that cortactin is also implicated in the pathogenesis of human neoplasia. It is over-expressed in a number of epithelial carcinomas, including breast cancer and head and neck cancer. Over-expression of cortactin in human tumors has been proposed to result in increased cell migration and metastatic potential. This review aims to focus on cortactin-mediated signaling pathways, with emphasis on its contribution to tumor progression and metastasis formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号