首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non‐hair cells and represents a model system for studying the control of cell‐fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell‐fate stabilization. Our work opens the door for future studies addressing SAB‐dependent functions of the cytoskeleton during root epidermal patterning.  相似文献   

3.
Lateral root formation, the primary way plants increase their root mass, displays developmental plasticity in response to environmental changes. The aberrant lateral root formation (alf)4-1 mutation blocks the initiation of lateral roots, thus greatly altering root system architecture. We have positionally cloned the ALF4 gene and have further characterized its phenotype. The encoded ALF4 protein is conserved among plants and has no similarities to proteins from other kingdoms. The gene is present in a single copy in Arabidopsis. Using translational reporters for ALF4 gene expression, we have determined that the ALF4 protein is nuclear localized and that the gene is expressed in most plant tissues; however, ALF4 expression and ALF4's subcellular location are not regulated by auxin. These findings taken together with further genetic and phenotypic characterization of the alf4-1 mutant suggest that ALF4 functions independent from auxin signaling and instead functions in maintaining the pericycle in the mitotically competent state needed for lateral root formation. Our results provide genetic evidence that the pericycle shares properties with meristems and that this tissue plays a central role in creating the developmental plasticity needed for root system development.  相似文献   

4.
Shi H  Zhu JK 《Plant physiology》2002,129(2):585-593
Root hair development in plants is controlled by many genetic, hormonal, and environmental factors. A number of genes have been shown to be important for root hair formation. Arabidopsis salt overly sensitive 4 mutants were originally identified by screening for NaCl-hypersensitive growth. The SOS4 (Salt Overly Sensitive 4) gene was recently isolated by map-based cloning and shown to encode a pyridoxal (PL) kinase involved in the production of PL-5-phosphate, which is an important cofactor for various enzymes and a ligand for certain ion transporters. The root growth of sos4 mutants is slower than that of the wild type. Microscopic observations revealed that sos4 mutants do not have root hairs in the maturation zone. The sos4 mutations block the initiation of most root hairs, and impair the tip growth of those that are initiated. The root hairless phenotype of sos4 mutants was complemented by the wild-type SOS4 gene. SOS4 promoter-beta-glucuronidase analysis showed that SOS4 is expressed in the root hair and other hair-like structures. Consistent with SOS4 function as a PL kinase, in vitro application of pyridoxine and pyridoxamine, but not PL, partially rescued the root hair defect in sos4 mutants. 1-Aminocyclopropane-1-carboxylic acid and 2,4-dichlorophenoxyacetic acid treatments promoted root hair formation in both wild-type and sos4 plants, indicating that genetically SOS4 functions upstream of ethylene and auxin in root hair development. The possible role of SOS4 in ethylene and auxin biosynthesis is discussed.  相似文献   

5.
Evidence is provided that ethylene is a positive regulator of hair cell development in the root epidermis of Arabidopsis thaliana. Treatment of seedlings with increasing concentrations of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) results in progressively more root hair cells developing in positions normally occupied by non-hair cells. Consistent with these findings are observations that treatments that block either ethylene synthesis or its perception reduce the number of root hairs. A model is proposed in which either ethylene or ACC is a signal involved in specifying the pattern of cell differentiation in the Arabidopsis root epidermis.  相似文献   

6.
7.
8.
Phosphatidylglycerol (PG) is an indispensable lipid class in photosynthetic activity. However, the importance of PG biosynthesis in non-photosynthetic organs remains elusive. We previously identified phosphatidylglycerophosphate phosphatase 1 (PGPP1), which catalyzes the last step of PG biosynthesis in Arabidopsis thaliana. In the present report, we noted considerably shorter roots of the pgpp1-1 mutant compared to the wild type. We observed defective order of columella cells in the root apices, which was complemented by introducing the wild-type PGPP1 gene. Although PGPP1 is chloroplast-localized in leaf mesophyll cells, we observed mitochondrial localization of PGPP1 in root cells, suggesting possible dual targeting of PGPP1. Moreover, we identified previously uncharacterized 2 protein tyrosine phosphatase-like proteins as functional PGPPs. These proteins, designated PTPMT1 and PTPMT2, complemented growth and lipid phenotypes of Δgep4, a Saccharomyces cerevisiae mutant of PGPP. The ptpmt1-1 ptpmt2-1 exhibited no visible phenotype; however, the pgpp1-1 ptpmt1-1 ptpmt2-1 significantly enhanced the root phenotype of pgpp1-1 without further affecting the photosynthesis, suggesting that these newly found PGPPs are involved in the root phenotype. Radiolabeling experiment of mutant roots showed that decreased PG biosynthesis is associated with the mutation of PGPP1. These results suggest that PG biosynthesis is required for the root growth.  相似文献   

9.
Root hairs are tubular outgrowths specifically differentiated from epidermal cells in a differentiation zone. The formation of root hairs greatly increases the surface area of a root and maximizes its ability to absorb water and inorganic nutrients essential for plant growth and development. Root hair development is strictly regulated by intracellular and intercellular signal communications. Cell surface-localized receptor-like protein kinases(RLKs) have been shown to be important components in these cellular processes. In this review,the functions of a number of key RLKs in regulating Arabidopsis root hair development are discussed, especially those involved in root epidermal cell fate determination and root hair tip growth.  相似文献   

10.
The exosome is a conserved protein complex that is responsible for essential 3'→5' RNA degradation in both the nucleus and the cytosol. It is composed of a nine-subunit core complex to which co-factors confer both RNA substrate recognition and ribonucleolytic activities. Very few exosome co-factors have been identified in plants. Here, we have characterized a putative RNA helicase, AtMTR4, that is involved in the degradation of several nucleolar exosome substrates in Arabidopsis thaliana. We show that AtMTR4, rather than its closely related protein HEN2, is required for proper rRNA biogenesis in Arabidopsis. AtMTR4 is mostly localized in the nucleolus, a subcellular compartmentalization that is shared with another exosome co-factor, RRP6L2. AtMTR4 and RRP6L2 cooperate in several steps of rRNA maturation and surveillance, such as processing the 5.8S rRNA and removal of rRNA maturation by-products. Interestingly, degradation of the Arabidopsis 5' external transcribed spacer (5' ETS) requires cooperation of both the 5'→3' and 3'→5' exoribonucleolytic pathways. Accumulating AtMTR4 targets give rise to illegitimate small RNAs; however, these do not affect rRNA metabolism or contribute to the phenotype of mtr4 mutants. Plants lacking AtMTR4 are viable but show several developmental defects, including aberrant vein patterning and pointed first leaves. The mtr4 phenotype resembles that of several ribosomal protein and nucleolin mutants, and may be explained by delayed ribosome biogenesis, as we observed a reduced rate of rRNA accumulation in mtr4 mutants. Taken together, these data link AtMTR4 with rRNA biogenesis and development in Arabidopsis.  相似文献   

11.
The Arabidopsis thaliana root hair is used as a model for studying tip growth in plants. We review recent advances, made using physiological and genetic approaches, which give rise to different, yet compatible, current views of the establishment and maintenance of tip growth in epidermal cells. For example, an active calcium influx channel localized at the tip of Arabidopsis root hairs has been identified by patch-clamp measurements. Actin has been visualized in vivo in Arabidopsis root hairs by using a green-fluorescent-protein-talin reporter and shown to form a dense mesh in the apex of the growing tip. The kojak gene, which encodes a protein similar to the catalytic subunit of cellulose synthase, is needed in the first stages of hair growth. A role for LRX1, a leucine-rich repeat extensin, in determining the morphology of the cell wall of root hairs has been established using reverse genetics. The new information can be integrated into a general and more advanced view of how these specialized plant cells grow.  相似文献   

12.
In plants, a proposed ascorbate (vitamin C) biosynthesis pathway occurs via GDP-D-mannose (GDP-D-Man), GDP-L-galactose (GDP-L-Gal), and L-galactose. However, the steps involved in the synthesis of L-Gal from GDP-L-Gal in planta are not fully characterized. Here we present evidence for an in vivo role for L-Gal-1-P phosphatase in plant ascorbate biosynthesis. We have characterized a low ascorbate mutant (vtc4-1) of Arabidopsis thaliana, which exhibits decreased ascorbate biosynthesis. Genetic mapping and sequencing of the VTC4 locus identified a mutation (P92L) in a gene with predicted L-Gal-1-P phosphatase activity (At3g02870). Pro-92 is within a beta-bulge that is conserved in related myo-inositol monophosphatases. The mutation is predicted to disrupt the positioning of catalytic amino acid residues within the active site. Accordingly, L-Gal-1-P phosphatase activity in vtc4-1 was approximately 50% of wild-type plants. In addition, vtc4-1 plants incorporate significantly more radiolabel from [2-(3)H]Man into L-galactosyl residues suggesting that the mutation increases the availability of GDP-L-Gal for polysaccharide synthesis. Finally, a homozygous T-DNA insertion line, which lacks a functional At3g02870 gene product, is also ascorbate-deficient (50% of wild type) and deficient in L-Gal-1-P phosphatase activity. Genetic complementation tests revealed that the insertion mutant and VTC4-1 are alleles of the same genetic locus. The significantly lower ascorbate and perturbed L-Gal metabolism in vtc4-1 and the T-DNA insertion mutant indicate that L-Gal-1-P phosphatase plays a role in plant ascorbate biosynthesis. The presence of ascorbate in the T-DNA insertion mutant suggests there is a bypass to this enzyme or that other pathways also contribute to ascorbate biosynthesis.  相似文献   

13.
Root hair development is controlled by environmental signals. Studies on root hair plasticity in Arabidopsis thaliana have mainly focused on phosphate and iron deficiency. Root hair growth and development and their physiological role in response to salt stress are largely unknown. Here, we show that root epidermal cell types and root hair development are highly regulated by salt stress. Root hair length and density decreased significantly in a dose-dependent manner on both primary roots and junction sites between roots and shoots. The root hair growth and development were sensitive to inhibition by ions but not to osmotic stress. High salinity also alters anatomical structure of roots, leading to a decrease in cell number in N positions and enlargement of the cells. Moreover, analysis of the salt overly sensitive mutants indicated that salt-induced root hair response is caused by ion disequilibrium and appears to be an adaptive mechanism that reduces excessive ion uptake. Finally, we show that genes WER, GL3, EGL3, CPC, and GL2 might be involved in cell specification of root epidermis in stressed plants. Taken together, data suggests that salt-induced root hair plasticity represents a coordinated strategy for early stress avoidance and tolerance as well as a morphological sign of stress adaptation.  相似文献   

14.
In plant development, leaf primordia are formed on the flanks of the shoot apical meristem in a highly predictable pattern. The cells that give rise to a primordium are sequestered from the apical meristem. Maintenance of the meristem requires that these cells be replaced by the addition of new cells. Despite the central role of these activities in development, the mechanism controlling and coordinating them is poorly understood. These processes have been characterized in the Arabidopsis mutant forever young (fey). The fey mutation results in a disruption of leaf positioning and meristem maintenance. The predicted FEY protein shares significant homology to a nodulin and limited homology to various reductases. It is proposed that FEY plays a role in communication in the shoot apex through the modification of a factor regulating meristem development.  相似文献   

15.
Root hair initiation involves the formation of a bulge at the basal end of the trichoblast by localized diffuse growth. Tip growth occurs subsequently at this initiation site and is accompanied by the establishment of a polarized cytoplasmic organization. Arabidopsis plants homozygous for a complete loss-of-function tiny root hair 1 (trh1) mutation were generated by means of the T-DNA-tagging method. Trichoblasts of trh1 plants form initiation sites but fail to undergo tip growth. A predicted primary structure of TRH1 indicates that it belongs to the AtKT/AtKUP/HAK K(+) transporter family. The proposed function of TRH1 as a K(+) transporter was confirmed in (86)Rb uptake experiments, which demonstrated that trh1 plants are partially impaired in K(+) transport. In line with these results, TRH1 was able to complement the trk1 potassium transporter mutant of Saccharomyces, which is defective in high-affinity K(+) uptake. Surprisingly, the trh1 phenotype was not restored when mutant seedlings were grown at high external potassium concentrations. These data demonstrate that TRH1 mediates K(+) transport in Arabidopsis roots and is responsible for specific K(+) translocation, which is essential for root hair elongation.  相似文献   

16.
Most aerial parts of the plant body are products of the continuous activity of the shoot apical meristem (SAM). Leaves are the major component of the aerial plant body, and their temporal and spatial distribution mainly determines shoot architecture. Here we report the identification of the rice gene PLASTOCHRON3 ( PLA3 )/ GOLIATH ( GO ) that regulates various developmental processes including the rate of leaf initiation (the plastochron). PLA3 / GO encodes a glutamate carboxypeptidase, which is thought to catabolize small acidic peptides and produce small signaling molecules. pla3 exhibits similar phenotypes to pla1 and pla2 – a shortened plastochron, precocious leaf maturation and rachis branch-to-shoot conversion in the reproductive phase. However, in contrast to pla1 and pla2 , pla3 showed pleiotropic phenotypes including enlarged embryo, seed vivipary, defects in SAM maintenance and aberrant leaf morphology. Consistent with these pleiotropic phenotypes, PLA3 is expressed in the whole plant body, and is involved in plant hormone homeostasis. Double mutant analysis revealed that PLA1 , PLA2 and PLA3 are regulated independently but function redundantly. Our results suggest that PLA3 modulates various signaling pathways associated with a number of developmental processes.  相似文献   

17.
18.
19.
We characterized the response of root hair density to phosphorus (P) availability in Arabidopsis thaliana. Arabidopsis plants were grown aseptically in growth media with varied phosphorus concentrations, ranging from 1 mmol m3 to 2000 mmol m3 phosphorus. Root hair density (number of root hairs per mm of root length) was analysed starting at 7 d of growth. Root hair density was highly regulated by phosphorus availability, increasing significantly in roots exposed to low-phosphorus availability. The initial root hairs produced by the radicle were not sensitive to phosphorus availability, but began to respond after 9 d of growth. Root hair density was about five times greater in low phosphorus (1 mmol m3) than in high phosphorus (1000 mmol m3) media. Root hair density decreased logarithmically in response to increasing phosphorus concentrations within that range. Root hair density also increased in response to deficiencies of several other nutrients, but not as strongly as to low phosphorus. Indoleacetic acid (IAA), the auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (CMPA), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the ethylene synthesis inhibitor amino-oxyacetic acid (AOA) all increased root hair density under high phosphorus but had very little effect under low phosphorus. Low phosphorus significantly changed root anatomy, causing a 9% increase in root diameter, a 31% decrease in the cross-sectional area of individual trichoblasts, a 40% decrease in the cross-sectional area of individual atrichoblasts, and 45% more cortical cells in cross-section. The larger number of cortical cells and smaller epidermal cell size in low phosphorus roots increased the number of trichoblast files from eight to 12. Two-thirds of increased root hair density in low phosphorus roots was caused by increased likelihood of trichoblasts to form hairs, and 33% of the increase was accounted for by changes in low phosphorus root anatomy resulting in an increased number of trichoblast files. These results show that phosphorus availability can fundamentally alter root anatomy, leading to changes in root hair density, which are presumably important for phosphorus acquisition.  相似文献   

20.
Phosphatidylserine (PS) has many important biological roles, but little is known about its role in plants, partly because of its low abundance. We show here that PS is enriched in Arabidopsis floral tissues and that genetic disruption of PS biosynthesis decreased heterozygote fertility due to inhibition of pollen maturation. At1g15110, designated PSS1, encodes a base-exchange-type PS synthase. Escherichia coli cells expressing PSS1 accumulated PS in the presence of l-serine at 23°C. Promoter-GUS assays showed PSS1 expression in developing anther pollen and tapetum. A few seeds with pss1-1 and pss1-2 knockout alleles escaped embryonic lethality but developed into sterile dwarf mutant plants. These plants contained no PS, verifying that PSS1 is essential for PS biosynthesis. Reciprocal crossing revealed reduced pss1 transmission via male gametophytes, predicting a rate of 61.6%pss1-1 pollen defects in PSS1/pss1-1 plants. Alexander's staining of inseparable qrt1-1 PSS1/pss1-1 quartets revealed a rate of 42% having three or four dead pollen grains, suggesting sporophytic pss1-1 cell death effects. Analysis with the nuclear stain 4',6-diamidino-2-phenylindole (DAPI) showed that all tetrads from PSS1/pss1-1 anthers retain their nuclei, whereas unicellular microspores were sometimes anucleate. Transgenic Arabidopsis expressing a GFP-LactC2 construct that binds PS revealed vesicular staining in tetrads and bicellular microspores and nuclear membrane staining in unicellular microspores. Hence, distribution and/or transport of PS across membranes were dynamically regulated in pollen microspores. However, among unicellular microspores from PSS1/pss1-2 GFP-LactC2 plants, all anucleate microspores showed little GFP-LactC2 fluorescence, suggesting that pss1-2 microspores are more sensitive to sporophytic defects or show partial gametophytic defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号