首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The E6 protein encoded by the oncogenic human papillomavirus types 16 and 18 is one of two viral products expressed in HPV-associated cancers. E6 is an oncoprotein which cooperates with E7 to immortalize primary human keratinocytes. Insight into the mechanism by which E6 functions in oncogenesis is provided by the observation that the E6 protein encoded by HPV-16 and HPV-18 can complex the wild-type p53 protein in vitro. Wild-type p53 gene has tumor suppressor properties, and is a target for several of the oncoproteins encoded by DNA tumor viruses. In this study we demonstrate that the E6 proteins of the oncogenic HPVs that bind p53 stimulate the degradation of p53. The E6-promoted degradation of p53 is ATP dependent and involves the ubiquitin-dependent protease system. Selective degradation of cellular proteins such as p53 with negative regulatory functions provides a novel mechanism of action for dominant-acting oncoproteins.  相似文献   

2.
The E7 proteins encoded by the human papillomaviruses (HPVs) associated with anogenital lesions share significant amino acid sequence homology. The E7 proteins of these different HPVs were assessed for their ability to form complexes with the retinoblastoma tumor suppressor gene product (p105-RB). Similar to the E7 protein of HPV-16, the E7 proteins of HPV-18, HBV-6b and HPV-11 were found to associate with p105-RB in vitro. The E7 proteins of HPV types associated with a high risk of malignant progression (HPV-16 and HPV-18) formed complexes with p105-RB with equal affinities. The E7 proteins encoded by HPV types 6b and 11, which are associated with clinical lesions with a lower risk for progression, bound to p105-RB with lower affinities. The E7 protein of the bovine papillomavirus type 1 (BPV-1), which does not share structural similarity in the amino terminal region with the HPV E7 proteins, was unable to form a detectable complex with p105-RB. The amino acid sequences of the HPV-16 E7 protein involved in complex formation with p105-RB in vitro have been mapped. Only a portion of the sequences that are conserved between the HPV E7 proteins and AdE1A were necessary for association with p105-RB. Furthermore, the HPV-16 E7-p105-RB complex was detected in an HPV-16-transformed human keratinocyte cell line.  相似文献   

3.
The E6 protein of human papillomavirus types 16 and 18 (HPV-16 and HPV-18) can stably associate with the p53 protein in vitro. In the presence of rabbit reticulocyte lysate, this association leads to the specific degradation of p53 through the ubiquitin-dependent proteolysis system. We have examined the E6-p53 complex in more detail and have found that association of E6 with p53 is mediated by an additional cellular factor. This factor is present in rabbit reticulocyte lysate, primary human keratinocytes and in each of five human cell lines examined. The factor is designated E6-AP, for E6-associated protein, based on the observation that the E6 proteins of HPV-16 and 18 can form a stable complex with the factor in the absence of p53, whereas p53 association with the factor can be detected only in the presence of E6. Gel filtration and coprecipitation experiments indicate that E6-AP is a monomeric protein of approximately 100 kDa.  相似文献   

4.
The E6 proteins from cervical cancer-associated human papillomavirus (HPV) types such as HPV type 16 (HPV-16) induce proteolysis of the p53 tumor suppressor protein through interaction with E6-AP. We have previously shown that human mammary epithelial cells (MECs) immortalized by HPV-16 E6 display low levels of p53. HPV-16 E6 as well as other cancer-related papillomavirus E6 proteins also binds the cellular protein E6BP (ERC-55). To explore the potential functional significance of these interactions, we created and analyzed a series of E6 mutants for their ability to interact with E6-AP, p53, and E6BP in vitro. While there was a similar pattern of binding among these E6 targets, a subset of mutants differentiated E6-AP binding, p53 binding, and p53 degradation activities. These results demonstrated that E6 binding to E6-AP is not sufficient for binding to p53 and that E6 binding to p53 is not sufficient for inducing p53 degradation. The in vivo activity of these HPV-16 E6 mutants was tested in MECs. In agreement with the in vitro results, most of these p53 degradation-defective E6 mutants were unable to reduce the p53 level in early-passage MECs. Interestingly, several mutants that showed severely reduced ability for interacting with E6-AP, p53, and E6BP in vitro efficiently immortalized MECs. These immortalized cells exhibited low p53 levels at late passage. Furthermore, mutants defective for p53 degradation but able to immortalize MECs were also identified, and the immortal cells retained normal levels of p53 protein. These results imply that multiple functions of HPV-16 E6 contribute to MEC immortalization.  相似文献   

5.
The E6 oncoproteins encoded by the cancer-associated human papillomaviruses (HPVs) can associate with and promote the degradation of wild-type p53 in vitro. To gain further insight into this process, the ability of HPV-16 E6 to complex with and promote the degradation of mutant forms of p53 was studied. A correlation between binding and the targeted degradation of p53 was established. Mutant p53 proteins that bound HPV-16 E6 were targeted for degradation, whereas those that did not complex HPV-16 E6 were not degraded. Since the HPV-16 E6-promoted degradation involves the ubiquitin-dependent proteolysis pathway, specific mutations were made in the amino terminus of p53 to examine whether the E6 targeted degradation involved the N-end rule pathway. No requirement for destabilizing amino acids at the N terminus of p53 was found, nor was evidence found that HPV-16 E6 could provide this determinant in trans, indicating that the N-terminal rule pathway is not involved in the E6-promoted degradation of p53.  相似文献   

6.
Functional p53 protein is associated with the ability of cells to arrest in G1 after DNA damage. The E6 protein of cancer-associated human papillomavirus type 16 (HPV-16) binds to p53 and targets its degradation through the ubiquitin pathway. To determine whether the ability of E6 to interact with p53 leads to a disruption of cell cycle control, mutated E6 proteins were tested for p53 binding and p53 degradation targeting in vitro, the ability to reduce intracellular p53 levels in vivo, and the ability to abrogate actinomycin D-induced growth arrest in human keratinocytes. Mutations scattered throughout the amino terminus, either zinc finger or the central region but not the carboxy terminus, severely reduced the ability of E6 to interact with p53. Expression of HPV-16 E6 or mutated E6 proteins that bound and targeted p53 for degradation in vitro sharply reduced the level of intracellular p53 induced by actinomycin D in human keratinocytes. A perfect correlation between the ability of E6 proteins to reduce the level of intracellular p53 and their ability to block actinomycin D-induced cellular growth arrest was observed. These results suggest that interaction with p53 is important for the ability of HPV E6 proteins to circumvent growth arrest.  相似文献   

7.
Three naturally occurring variant human papillomavirus type 16 (HPV-16) E6 proteins, which contained amino acid substitutions predominantly near the N terminus, exhibited significant differences in their abilities to abrogate keratinocyte differentiation in response to serum and calcium and to induce the degradation of p53 in vitro. One variant surpassed the reference E6 protein in its ability to abrogate keratinocyte differentiation responses, whereas another showed a reduction in this activity. Interestingly, the biological activities of the HPV-16 E6 proteins and their abilities to induce p53 degradation in vitro were directly correlated. These results demonstrate that naturally occurring variants of HPV-16 differ in biological and biochemical properties which might result in differences in pathogenicity.  相似文献   

8.
9.
10.
11.
12.
The transforming proteins of DNA tumor viruses SV40, adenovirus and human papillomaviruses (HPV) bind the retinoblastoma and p53 cell cycle regulatory proteins. While the binding of SV40 large T antigen and the adenovirus E1B 55 kDa protein results in the stabilization of the p53 protein, the binding of HPV16 and 18 E6 results in enhanced degradation in vitro. To explore the effect of viral proteins on p53 stability in vivo, we have examined cell lines immortalized in tissue culture by HPV18 E6 and E7 or SV40 large T antigen, as well as cell lines derived from cervical neoplasias. The half-life of the p53 protein in non-transformed human foreskin keratinocytes in culture was found to be approximately 3 h while in cell lines immortalized by E6 and E7, p53 protein half-lives ranged from 2.8 h to less than 1 h. Since equivalent levels of E6 were found in these cells, the range in p53 levels observed was not a result of variability in amounts of E6. In keratinocyte lines immortalized by E7 alone, the p53 half-life was found to be similar to that in non-transformed cells; however, it decreased to approximately 1 h following supertransfection of an E6 gene. These observations are consistent with an interaction of E6 and p53 in vivo resulting in reductions in the stability of p53 ranging between 2- and 4-fold. We also observed that the expression of various TATA containing promoters was repressed in transient assays by co-transfection with plasmids expressing the wild-type p53 gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
The E6 protein from high-risk human papillomaviruses (HPVs) targets the p53 tumor suppressor for degradation by the proteasome pathway. This ability contributes to the oncogenic potential of these viruses. However, several aspects concerning the mechanism of E6-mediated p53 degradation at the cellular level remain to be clarified. This study therefore examined the role of cell localization and ubiquitination in the E6-mediated degradation of p53. As demonstrated within, following coexpression both p53 and high-risk HPV type 18 (HPV-18) E6 (18E6) shuttle from the nucleus to the cytoplasm. Mutation of the C-terminal nuclear export signal (NES) of p53 or treatment with leptomycin B inhibited the 18E6-mediated nuclear export of p53. Impairment of nuclear export resulted in only a partial reduction in 18E6-mediated degradation, suggesting that both nuclear and cytoplasmic proteasomes can target p53 for degradation. This was also consistent with the observation that 18E6 mediated the accumulation of polyubiquitinated p53 in the nucleus. In comparison, a p53 isoform that localizes predominantly to the cytoplasm was not targeted for degradation by 18E6 in vivo but could be degraded in vitro, arguing that nuclear p53 is the target for E6-mediated degradation. This study supports a model in which (i) E6 mediates the accumulation of polyubiquitinated p53 in the nucleus, (ii) E6 is coexported with p53 from the nucleus to the cytoplasm via a CRM1 nuclear export mechanism involving the C-terminal NES of p53, and (iii) E6-mediated p53 degradation can be mediated by both nuclear and cytoplasmic proteasomes.  相似文献   

15.
The attachment and spreading of keratinocyte cells result from interactions between integrins and immobilized extracellular matrix molecules. Human papillomavirus type 16 (HPV-16) E6 augmented the kinetics of cell spreading, while E6 genes from HPV-11 or bovine papillomavirus type 1 did not. The ability of E6 to interact with the E6AP ubiquitin ligase and target p53 degradation was required to augment cell-spreading kinetics; dominant negative p53 alleles also enhanced the kinetics of cell spreading and the level of attachment of cells to hydrophobic surfaces. The targeted degradation of p53 by E6 may contribute to the invasive phenotype exhibited by cervical cells that contain high-risk HPV types.  相似文献   

16.
17.
Human cervical carcinoma cell lines that harbor human papillomavirus (HPV) have been reported to retain selectively and express HPV sequences which could encode viral E6 and E7 proteins. The potential importance of HPV E6 to tumors is suggested further by the observation that bovine papillomavirus (BPV) E6 can induce morphologic transformation of mouse cells in vitro. To identify HPV E6 protein, a polypeptide encoded by HPV-16 E6 was produced in a bacterial expression vector and used to raise antisera. The antisera specifically immunoprecipitated the predicted 18-kd protein in two human carcinoma cell lines known to express HPV-16 RNA and in mouse cells morphologically transformed by HPV-16 DNA. The 18-kd E6 protein was distinct from a previously identified HPV-16 E7 protein. The HPV-16 E6 antibodies were found to be type specific in that they did not recognize E6 protein in cells containing HPV-18 sequences and reacted weakly, if at all, to BPV E6 protein. The results demonstrate that human tumors containing HPV-16 DNA can express an E6 protein product. They are consistent with the hypothesis that E6 may contribute to the transformed phenotype in human cervical cancers that express this protein.  相似文献   

18.
The E6 oncoproteins of the cancer-associated or high-risk human papillomaviruses (HPVs) target the cellular p53 protein. The association of E6 with p53 leads to the specific ubiquitination and degradation of p53 in vitro, suggesting a model by which E6 deregulates cell growth control by the elimination of the p53 tumor suppressor protein. Complex formation between E6 and p53 requires an additional cellular factor, designated E6-AP (E6-associated protein), which has a native and subunit molecular mass of approximately 100 kDa. Here we report the purification of E6-AP and the cloning of its corresponding cDNA, which contains a novel open reading frame encoding 865 amino acids. E6-AP, translated in vitro, has the following properties: (i) it associates with wild-type p53 in the presence of the HPV16 E6 protein and simultaneously stimulates the association of E6 with p53, (ii) it associates with the high-risk HPV16 and HPV18 E6 proteins in the absence of p53, and (iii) it induces the E6- and ubiquitin-dependent degradation of p53 in vitro.  相似文献   

19.
Human papillomavirus (HPV) E6 oncoproteins target many cellular proteins for ubiquitin-mediated proteasomal degradation. In the case of p53, this is mediated principally by the E6AP ubiquitin ligase. Several studies have reported that E6 can target certain of its substrates in an apparently E6AP-independent fashion and that several of these substrates vary in the degree to which they are degraded by E6 at different stages of malignancy. To more fully understand the regulation of the E6AP/E6 proteolytic targeting complex, we performed a mass spectroscopic analysis of HPV type 18 (HPV-18) E6 protein complexes and identified the HECT domain-containing ubiquitin ligase EDD as a new HPV-18 E6 binding partner. We show that EDD can interact independently with both E6 and E6AP. Furthermore, EDD appears to regulate E6AP expression levels independently of E6, and loss of EDD stimulates the proteolytic activity of the E6/E6AP complex. Conversely, higher levels of EDD expression protect a number of substrates from E6-induced degradation, partly as a consequence of lower levels of E6 and E6AP expression. Intriguingly, reduction in EDD expression levels in HPV-18-positive HeLa cells enhances cell resistance to apoptotic and growth arrest stimuli. These studies suggest that changes in the levels of EDD expression during different stages of the viral life cycle or during malignancy could have a profound effect upon the ability of E6 to target various substrates for proteolytic degradation and thereby directly influence the development of HPV-induced malignancy.  相似文献   

20.
We and others have previously reported that human papillomavirus (HPV)-16 E6 protein expression sensitizes certain cell types to apoptosis. To confirm that this sensitization occurred in HPV's natural host cells, and to explore the mechanism(s) of sensitization, we infected human keratinocytes (HKCs) with retroviruses containing HPV-6 E6, HPV-16 E6, HPV-16 E7, or HPV-16 E6/E7. Apoptosis was monitored by DNA fragmentation gel analysis and direct observation of nuclei in cells stained with DAPI. Exposure of HKCs to etoposide, cisplatin, mitomycin C (MMC), atractyloside, and sodium butyrate, resulted in a time and dose-dependent induction of apoptosis. Expression of HPV-16 E6 and HPV-16 E6/E7, but not HPV-6 E6 or HPV-16 E7, enhanced the sensitivity of HKCs to cisplatin-, etoposide- and MMC-, but not atractyloside- or sodium butyrate-induced apoptosis. Expression of both HPV-16 E6 and HPV-16 E6/E7 decreased, but did not abolish, p53 protein levels relative to normal HKCs, and resulted in cytoplasmic localization of wt p53. P53 induction occurred in HPV-16 E6 and HPV-16 E6/E7 expressing cells after exposure to cisplatin or MMC, though never to levels found in normal untreated HKCs. P21 levels were decreased in HPV-16 E6 and HPV-16 E6/E7 expressing HKCs, and no induction of p21 was seen in these cells following exposure to cisplatin or MMC. Caspase-3 activity was found to be elevated in HPV-16 E6-expressing HKCs following exposure to cisplatin and MMC as documented by fluorometric and Western Blot analysis. Expression of wt CrmA or treatment of HPV-16 E6 expressing HKCs with the caspase-3 inhibitor DEVD.fmk prevented HPV-16 E6-induced sensitization in HKCs. These results suggest that HPV-16 E6 and HPV-16 E6/E7 expression sensitizes HKCs to apoptosis caused by cisplatin, etoposide and MMC, but not atractyloside or sodium butyrate. The data also suggest that wt p53 and caspase-3 activity are required for HPV-16 E6 and HPV-16 E6/E7-induced sensitization of HKCs to DNA damaging agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号