首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endoprotease furin, which belongs to the family of mammalian proprotein convertase (PC), is synthesized as a zymogen with an N-terminal, 81-residue inhibitory prodomain. It has been shown that the proenzyme form of furin undergoes a multistep 'autocatalytic' removal of the prodomain at the C-terminal side of the two consensus sites, R(78)-T-K-R(81) approximately and R(44)-G-V-T-K-R(49) approximately. The furin-mediated cleavage at R(44)-G-V-T-K-R(49) approximately, in particular, is significantly accelerated in an 'acidic' environment. Here, we show that under neutral pH conditions, the inhibitory prodomain of furin is partially folded and undergoes conformational exchanges as indicated by extensive broadening of the NMR spectra. Presence of many ring-current shifted methyl resonances suggests that the partially folded state of the prodomain may still possess a 'semirigid' protein core with specific packing interactions among amino acid side chains. Measurements of the hydrodynamic radii and compaction factors indicate that this partially folded state is significantly more compact than a random chain. The conformational stability of the prodomain appears to be pH sensitive, in that the prodomain undergoes an unfolding transition towards acidic conditions. Our NMR analyses establish that the acid-induced unfolding is mainly experienced by the residues from the C-terminal half of the prodomain (residues R(44)-R(81)) that contains the two furin cleavage sites. A 38-residue peptide fragment derived from the entire pH-sensitive C-terminal region (residues R(44)-R(81)) does not exhibit any exchange-induced line broadening and adopts flexible conformations. We propose that at neutral pH, the cleavage site R(44)-G-V-T-K-R(49) approximately is buried within the protein core that is formed in part by residues from the N-terminal region, and that the cleavage site becomes exposed under acidic conditions, leading to a facile cleavage by the furin enzyme.  相似文献   

2.
A 14 amino acid residue peptide from the helical region of Scorpion neurotoxin has been structurally characterized using CD and NMR spectroscopy in different solvent conditions. 2,2,2-Trifluoroethanol (TFE) titration has been carried out in 11 steps from 0 to 90% TFE and the gradual stabilization of the conformation to form predominantly alpha-helix covering all of the 14 residues has been studied by 1H and 13C NMR spectroscopy. Detailed information such as coupling constants, chemical shift indices, NOESY peak intensities and amide proton temperature coefficients at each TFE concentration has been extracted and analysed to derive the step-wise preferential stabilization of the helical segments along the length of the peptide. It was found that there is a finite amount of the helical conformation in the middle residues 5-11 even at low TFE concentrations. It was also observed that > 75% TFE (v/v) is required for the propagation of the helix to the N and C termini and for correct packing of the side chains of all of the residues. These observations are significant to understanding the folding of this segment in the protein and may throw light on the inherent preferences and side chain interactions in the formation of the helix in the peptide.  相似文献   

3.
Dermaseptins are antimicrobial peptides from frog skin that have high membrane-lytic activity against a broad spectrum of microorganisms. The structure of dermaseptin B2 in aqueous solution, in TFE/water mixtures, and in micellar and nonmicellar SDS was analyzed by CD, FTIR, fluorescence, and NMR spectroscopy combined with molecular dynamics calculations. Dermaseptin B2 is unstructured in water, but helical conformations, mostly in segment 3-18, are stabilized by addition of TFE. SDS titration showed that dermaseptin B2 assumes nonhelical structures at SDS concentrations far below the critical micellar concentration and helical structures at micellar concentrations. Dermaseptin B2 bound to SDS micelles (0.4 mM peptide, 80 mM SDS) adopts a well-defined amphipathic helix between residues 11-31 connected to a more flexible helical segment spanning residues 1-8 by a flexible hinge region around Val9 and Gly10. Experiments using paramagnetic probes showed that dermaseptin B2 lies near the surface of SDS micelles and that residue Trp3 is buried in the SDS micelle, but close to the surface. A slow exchange equilibrium occurs at higher peptide/SDS ratios (2 mM peptide, 80 mM SDS) between forms having distinct sets of resonances in the N-terminal 1-11 segment. This equilibrium could reflect different oligomeric states of dermaseptin B2 interacting with SDS micelles. Structure-activity studies on dermaseptin B2 analogues showed that the N-terminal 1-11 segment is an absolute requirement for antibacterial activity, while the C-terminal 10-33 region is also important for full antibiotic activity.  相似文献   

4.
In an attempt to characterize the early folding events in bovine beta-lactoglobulin (BLG), a set of peptides, covering the flexible N-terminal region and the stable C-terminus beta-core, was synthesized and analyzed by circular dichroism and by nuclear magnetic resonance in water, trifluoroethanol (TFE), and sodium dodecyl sulfate (SDS) below and above the critical micellar concentration. The role of local and long-range hydrophobic interactions in guiding the folding has been investigated. For the peptide fragment covering the more flexible N-terminal region of BLG (beta-strands A, B), where both theoretical predictions and kinetic refolding experiments suggested the formation of non-native alpha-helix, no native long-range contacts were identified, and a helical secondary structure was stabilized only in the presence of 25 mM SDS. At variance, in 50% (v/v) TFE, native, long-range hydrophobic interactions were observed in the peptide covering the core region comprising G and H beta-strands. The side chains involved in these interactions form a nativelike hydrophobic cluster, thus suggesting that the GH region may act as the folding initiation site for BLG. This result is reinforced by the identification, in the urea denaturated BLG, of residual structure located at the level of the GH interface, as evidenced by NMR analysis. These results, in excellent agreement with kinetic, thermodynamic, and cold denaturation folding data, once more underline the utmost importance of the GH region for the stability and folding of BLG. Severe aggregation effects prevented the structural analysis of the peptide covering the EFGH region, indicating that this larger segment does not represent an independent folding domain and that the terminal alpha-helix is necessary for stabilizing the BLG folding core.  相似文献   

5.
J Kweon  H J Lee  Y M Kim  Y S Choi  K B Lee 《FEBS letters》1999,456(2):343-348
The structure of bovine growth hormone releasing factor (bGHRF) consisting of 44 amino acids has been studied in CD and 1H nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular modeling. Since bGHRF does not have an ordered structure in water alone, a 30% 2,2,2-trifluoroethanol (TFE) aqueous solvent was used to induce considerable alpha-helical structures, which corresponds to a helical content of approximately 62% as determined by circular dichroism (CD). The secondary structure was obtained from nuclear Overhauser enhancement and 3J(HN alpha) coupling constant in 30% TFE solution. Three-dimensional structures consistent with NMR data were generated by using distance geometry calculation. A set of 267 interproton distances derived from nuclear Overhauser effect correlation spectroscopy (NOESY) experiments and coupling constants were used. From the initial random conformations, 50 distance geometry structures with minimal violations were selected for further refinement. The 14 best structures were obtained after simulated annealing calculation with energy minimization. The structure of bGHRF in 30% TFE solution was characterized by one alpha-helix (residues 8-19), two poorly constrained helices (residues 23-27 and residues 31-34) and a beta I(III)-turn fragment (residues 20-23; phi(i+1) = -53.1 degrees, psi(i+1) = -19.6 degrees, phi(i+2) = -59.9 degrees, psi(i+2) = -20.6 degrees) connected by the segments of less defined structures in N-terminal and omega-shaped flexible C-terminal determined from NOESY cross peaks between helical segment (residues 14-18) and tail fragment (residues 42-44). The obtained structure will play an important role toward the understanding of the structural and functional role of the GHRF.  相似文献   

6.
Zhang X  Adda CG  Low A  Zhang J  Zhang W  Sun H  Tu X  Anders RF  Norton RS 《Biochemistry》2012,51(7):1380-1387
Merozoite surface protein 2 (MSP2), an abundant glycosylphosphatidylinositol-anchored protein on the surface of Plasmodium falciparum merozoites, is a promising malaria vaccine candidate. MSP2 is intrinsically disordered and forms amyloid-like fibrils in solution under physiological conditions. The 25 N-terminal residues (MSP2(1-25)) play an important role in both fibril formation and membrane binding of the full-length protein. In this study, the fibril formation and solution structure of MSP2(1-25) in the membrane mimetic solvents sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), and trifluoroethanol (TFE) have been investigated by transmission electronic microscopy, turbidity, thioflavin T fluorescence, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy. Turbidity data showed that the aggregation of MSP2(1-25) was suppressed in the presence of membrane mimetic solvents. CD spectra indicated that helical structure in MSP2(1-25) was stabilized in SDS and DPC micelles and in high concentrations of TFE. The structure of MSP2(1-25) in 50% aqueous TFE, determined using NMR, showed that the peptide formed an amphipathic helix encompassing residues 10-24. Low concentrations of TFE favored partially folded helical conformations, as demonstrated by CD and NMR, and promoted MSP2(1-25) fibril formation. Our data suggest that partially folded helical conformations of the N-terminal region of MSP2 are on the pathway to amyloid fibril formation, while higher degrees of helical structure stabilized by high concentrations of TFE or membrane mimetics suppress self-association and thus inhibit fibril formation. The roles of the induced helical conformations in membrane interactions are also discussed.  相似文献   

7.
Although the N‐terminal region in human apolipoprotein (apo) A‐I is thought to stabilize the lipid‐free structure of the protein, its role in lipid binding is unknown. Using synthetic fragment peptides, we examined the lipid‐binding properties of the first 43 residues (1–43) of apoA‐I in comparison with residues 44–65 and 220–241, which have strong lipid affinity in the molecule. Circular dichroism measurements demonstrated that peptides corresponding to each segment have potential propensity to form α‐helical structure in trifluoroethanol. Spectroscopic and thermodynamic measurements revealed that apoA‐I (1–43) peptide has the strong ability to bind to lipid vesicles and to form α‐helical structure comparable to apoA‐I (220–241) peptide. Substitution of Tyr‐18 located at the center of the most hydrophobic region in residues 1–43 with a helix‐breaking proline resulted in the impaired lipid binding, indicating that the α‐helical structure in this region is required to trigger the lipid binding. In contrast, apoA‐I (44–65) peptide exhibited a lower propensity to form α‐helical structure upon binding to lipid, and apoA‐I (44–65/S55P) peptide exhibited diminished, but not completely impaired, lipid binding, suggesting that the central region of residues 44–65 is not pivotally involved in the formation of the α‐helical structure and lipid binding. These results indicate that the most N‐terminal region of apoA‐I molecule, residues 1–43, contributes to the lipid interaction of apoA‐I through the hydrophobic helical residues. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Chen Z  Xu P  Barbier JR  Willick G  Ni F 《Biochemistry》2000,39(42):12766-12777
The solution conformations of a selectively osteogenic 1-31 fragment of the human parathyroid hormone (hPTH), hPTH(1-31)NH(2), have been characterized by use of very high field NMR spectroscopy at 800 MHz. The combination of the CalphaH proton and (13)Calpha chemical shifts, (3)J(NH)(alpha) coupling constants, NH proton temperature coefficients, and backbone NOEs reveals that the hPTH(1-31)NH(2) peptide has well-formed helical structures localized in two distinct segments of the polypeptide backbone. There are also many characteristic NOEs defining specific side-chain/backbone and side-chain/side-chain contacts within both helical structures. The solution structure of hPTH(1-31)NH(2) contains a short N-terminal helical segment for residues 3-11, including the helix capping residues 3 and 11 and a long C-terminal helix for residues 16-30. The two helical structures are reinforced by well-defined capping motifs and side-chain packing interactions within and at both ends of these helices. On one face of the C-terminal helix, there are side-chain pairs of Glu22-Arg25, Glu22-Lys26, and Arg25-Gln29 that can form ion-pair and/or hydrogen bonding interactions. On the opposite face of this helix, there are characteristic hydrophobic interactions involving the aromatic side chain of Trp23 packing against the aliphatic side chains of Leu15, Leu24, Lys27, and Leu28. There is also a linear array of hydrophobic residues from Val2, to Leu7, to Leu11 and continuing on to residues His14 and Leu15 in the hinge region and to Trp23 in the C-terminal helix. Capping and hydrophobic interactions at the end of the N-terminal and at the beginning of the C-terminal helix appear to consolidate the helical structures into a V-shaped overall conformation for at least the folded population of the hPTH(1-31)NH(2) peptide. Stabilization of well-folded conformations in this linear 1-31 peptide fragment and possibly other analogues of human PTH may have a significant impact on the biological activities of the PTH peptides in general and specifically for the osteogenic/anabolic activities of bone-building PTH analogues.  相似文献   

9.
The LAH4 family of histidine-rich peptides exhibits potent antimicrobial and DNA transfection activities, both of which require interactions with cellular membranes. The bilayer association of the peptides has been shown to be strongly pH-dependent, with in-planar alignments under acidic conditions and transmembrane orientations when the histidines are discharged. Therefore, we investigated the pH- and temperature-dependent conformations of LAH4 in DPC micellar solutions and in a TFE/PBS solvent mixture. In the presence of detergent and at pH 4.1, LAH4 adopts helical conformations between residues 9 and 24 concomitantly with a high hydrophobic moment. At pH 6.1, a helix-loop-helix structure forms with a hinge encompassing residues His10-Ala13. The data suggest that the high density of histidine residues and the resulting electrostatic repulsion lead to both a decrease in the pK values of the histidines and a less stable α-helical conformation of this region. The hinged structure at pH 6.1 facilitates membrane anchoring and insertion. At pH 7.8, the histidines are uncharged and an extended helical conformation including residues 4-21 is again obtained. LAH4 thus exhibits a high degree of conformational plasticity. The structures provide a stroboscopic view of the conformational changes that occur during membrane insertion, and are discussed in the context of antimicrobial activity and DNA transfection.  相似文献   

10.
We tested the hypothesis that the recurrence of hydrophobic amino acids in a polypeptide at positions falling in an axial, hydrophobic strip if the sequence were coiled as an alpha helix, can lead to helical nucleation on a hydrophobic surface. The hydrophobic surface could anchor such residues, whereas the peptide sequence grows in a helical configuration that is stabilized by hydrogen bonds among carbonyl and amido NH groups along the peptidyl backbone of the helix, and by other intercycle interactions among amino acid side chains. Such bound, helical structures might protect peptides from proteases and/or facilitate transport to a MHC-containing compartment and thus be reflected in the selection of T cell-presented segments. Helical structure in a series of HPLC-purified peptides was estimated from circular dichroism measurements in: 1) 0.01 M phosphate buffer, pH 7.0, 2) that buffer with 45% trifluoroethanol (TFE), and 3) that buffer with di-O-hexadecyl phosphatidylcholine vesicles. By decreasing the dielectric constant of the buffer, TFE enhances intrapeptide interactions generally, whereas the lipid vesicles only provide a surface for hydrophobic interactions. The peptides varied in their strip-of-helix hydrophobicity indices (SOHHI; the mean Kyte-Doolittle hydrophobicities of residues in an axial strip of an alpha helix) and in proline content. Structural order for peptides with helical circular dichroism spectra was estimated as percentage helicity from circular dichroism theta 222 nm values and peptide concentration. A prototypic alpha helical peptide with three cycles plus two amino acids and an axial hydrophobic strip of four leucyl residues (SOHHI = 3.8) was disordered in phosphate buffer, 58% helical in that buffer with 48% TFE, and 36% helical in that buffer with vesicles. Percentage helicity in the presence of vesicles of the subset of peptides without proline followed their SOHHI values. Peptides with multiple prolyl residues had circular dichroism spectra with strong signals, but since they did not have altered spectra in the presence of vesicles relative to phosphate buffer alone, the hydrophobic surface of the vesicle did not appear to stabilize those structures.  相似文献   

11.
Wang M  Shan L  Wang J 《Biopolymers》2006,83(3):268-279
Two synthetic peptides, SNasealpha1 and SNasealpha2, corresponding to residues G55-I72 and K97-A109, respectively, of staphylococcal nuclease (SNase), are adopted for detecting the role of helix alpha1 (E57-A69) and helix alpha2 (M98-Q106) in the initiation of folding of SNase. The helix-forming tendencies of the two SNase peptide fragments are investigated using circular dichroism (CD) and two-dimensional (2D) nuclear magnetic resonance (NMR) methods in water and 40% trifluoroethanol (TFE) solutions. The coil-helix conformational transitions of the two peptides in the TFE-H2O mixture are different from each other. SNasealpha1 adopts a low population of localized helical conformation in water, and shows a gradual transition to helical conformation with increasing concentrations of TFE. SNasealpha2 is essentially unstructured in water, but undergoes a cooperative transition to a predominantly helical conformation at high TFE concentrations. Using the NMR data obtained in the presence of 40% TFE, an ensemble of alpha-helical structures has been calculated for both peptides in the absence of tertiary interactions. Analysis of all the experimental data available indicates that formation of ordered alpha-helical structures in the segments E57-A69 and M98-Q106 of SNase may require nonlocal interactions through transient contact with hydrophobic residues in other parts of the protein to stabilize the helical conformations in the folding. The folding of helix alpha1 is supposed to be effective in initiating protein folding. The formation of helix alpha2 depends strongly on the hydrophobic environment created in the protein folding, and is more important in the stabilization of the tertiary conformation of SNase.  相似文献   

12.
The Antennapedia homeodomain structure consists of four helices. The helices II and III are connected by a tripeptide that forms a turn, and constitute the well-known helix-turn-helix motif. The recognition helix penetrates the DNA major groove, gives specific protein-DNA contacts and forms direct, or water-mediated, intermolecular hydrogen bonds. It was suggested that helix III (and perhaps also helix IV) might represent the recognition helix of Antennapedia homeodomain, which makes contact with the surface of the major groove of the DNA. In an attempt to clarify the helix III capabilities of assuming an helical conformation when separated from the rest of the protein, we carried out the structural determination of the recognition helix III in different solvent media. The conformational study of fragments 42-53, where residues W48 and F49, not involved in the protein-DNA interaction, were substituted by two alanines, was conducted in sodium dodecyl sulfate (SDS), trifluoroethanol (TFE) and TFE/water, using circular dichroism, nuclear magnetic resonance (NMR) and distance geometry (DG) techniques. The fragment assumes a well-defined secondary structure in TFE and in TFE/water (90/10, v/v) with an alpha-helix encompassing residues 4-9, while in TFE/water (70/30, v/v) a less regular structure was found. The DG results in the micellar system evidence the presence of a distorted alpha-helical conformation involving residues 4-8. Our results reveal that the isolated Antennapedia recognition helix III tend to preserve in solution the alpha-helical conformation even if separated from the rest of the molecule.  相似文献   

13.
It has been well established that phosphorylation is an important reaction for the regulation of protein functions. In the N-terminal domain of the alpha-chain of pig gastric H(+)/K(+)-ATPase, reversible sequential phosphorylation occurs at Tyr 10 and Tyr 7. In this study, we determined the structure of the peptide involving the residues from Gly 2 to Gly 34 of pig gastric H(+)/K(+)-ATPase and investigated the tyrosine phosphorylation-induced conformational change using CD and NMR experiments. The solution structure showed that the N-terminal fragment has a helical conformation, and the peptide adopted two alpha-helices in 50% trifluoroethanol (TFE) solvent, suggesting that the peptide has a high helical propensity under hydrophobic conditions. Furthermore, the CD and NMR data suggested that the structure of the N-terminal fragment becomes more disordered as a result of phosphorylation of Tyr 10. This conformational change induced by the phosphorylation of Tyr 10 might be an advantageous reaction for sequential phosphorylation and may be important for regulating the function of H(+)/K(+)-ATPase.  相似文献   

14.
The amino acid sequence of a type-I helical segment from the low-sulphur protein (S-carboxymethylkerateine-A) of wool was determined by combining automatic and manual-sequencing data. Whereas in the type-II helical segment most of the cationic groups occur in pairs, 11 of the 22 anionic residues in the sequence of the type-I segment were situated next to a second anionic residue. This suggests possible interactions between type-I and type-II helical segments in alpha-keratin. As observed with the sequence of a type-II helical segment a model constructed on 3.6 residues per turn of helix shows a line of hydrophobic residues along the helix, thereby supporting the physicochemical evidence that the molecule is predominantly helical and forms part of a coiled-coil structure. Examination of the sequence data by predictive methods indicates the possibilty of extensive sections of alpha-helix interspersed with discontinuities. The molecule contains a number of regions with peptide sequences identical with those found by other workers after enzymic digestion of fractions from oxidized wool.  相似文献   

15.
800 MHz NMR structure of the 28-residue peptide thymosin alpha-1 in 40% TFE/60% water (v/v) has been determined. Restrained molecular dynamic simulations with an explicit solvent box containing 40% TFE/60% TIP3P water (v/v) were used, in order to get the 3D model of the NMR structure. We found that the peptide adopts a structured conformation having two stable regions: an alpha-helix region from residues 14 to 26 and two double β-turns in the N-terminal twelve residues which form a distorted helical structure.  相似文献   

16.
Jourdan M  Searle MS 《Biochemistry》2000,39(40):12355-12364
Peptide fragments corresponding to the N- and C-terminal portions of bovine ubiquitin, U(1-35) and U(36-76), are shown by NMR to associate in solution to form a complex of modest stability (Kassn approximately 1.4 x 10(5) M(-1) at pH 7.0), with NMR features characteristic of a nativelike structure. The complex undergoes cold denaturation, with temperature-dependent estimates of stability from NMR indicating a DeltaC(p) degrees for fragment complexation in good agreement with that determined for native ubiquitin, suggesting that fragment association results in the burial of a similar hydrophobic surface area. The stability of the complex shows appreciable pH dependence, suggesting that ionic interactions on the surface of the protein contribute significantly. However, denaturation studies of native ubiquitin in the presence of guanidine hydrochloride (Gdn.HCl) show little pH dependence, suggesting that ionic interactions may be "screened" by the denaturant, as recently suggested. Examination of the conformation of the isolated peptide fragments has shown evidence for a low population of nativelike structure in the N-terminal beta-hairpin (residues 1-17) and weak nascent helical propensity in the helical fragment (residues 21-35). In contrast, the C-terminal peptide (36-76) shows evidence in aqueous solution, from some Halpha chemical shifts, for nonnative phi and psi angles; nonnative alpha-helical structure is readily induced in the presence of organic cosolvents, indicating that tertiary interactions in both native ubiquitin and the folded fragment complex strongly dictate its structural preference. The data suggest that the N-terminal fragment (1-35), where interaction between the helix and hairpin requires the minimum loss of conformational entropy, may provide the nucleation site for fragment complexation.  相似文献   

17.
Stomoxyn and spinigerin belong to the class of linear cysteine-free insect antimicrobial peptides that kill a range of microorganisms, parasites, and some viruses but without any lytic activity against mammalian erythrocytes. Stomoxyn is localized in the gut epithelium of the nonvector stable fly that is sympatric with the trypanosome vector tsetse fly. Spinigerin is stored and secreted by hemocytes from the fungus-growing termite. The structure of synthetic stomoxyn and spinigerin in aqueous solution and in TFE/water mixtures was analyzed by CD and NMR spectroscopy combined with molecular modeling calculations. Stomoxyn and spinigerin adopt a flexible random coil structure in water while both assume a stable helical structure in the presence of TFE. In 50% TFE, the structure of stomoxyn is typical of cecropins, including an amphipathic helix at the N-terminus and a hydrophobic C-terminus with helical features that probably fold in a helical conformation at higher TFE concentration. In contrast to stomoxyn, spinigerin acquires very rapidly a helical conformation. In 10% TFE the helix is highly bent and the structure is poorly defined. In 50% TFE, the helical structure is well defined all along its sequence, and the slightly bent alpha-helix displays an amphiphilic character, as observed for magainin 2. The structural similarities between stomoxyn and cecropin A from Hyalophora cecropia and between spinigerin and magainin 2 suggest a similar mode of action on the bacterial membranes of both pairs of peptides. Our results also confirm that TFE induces helix formation and propagation for amino acids showing helical propensity in water but also enhances the helix propagation propensity of nonpolar beta-branched residues.  相似文献   

18.
The structural properties of the endogenous opioid peptide dynorphin A(1-17) (DynA), a potential analgesic, were studied with molecular dynamics simulations in dimyristoylphosphatidylcholine bilayers. Starting with the known NMR structure of the peptide in dodecylphosphocholine micelles, the N-terminal helical segment of DynA (encompassing residues 1-10) was initially inserted in the bilayer in a perpendicular orientation with respect to the membrane plane. Parallel simulations were carried out from two starting structures, systems A and B, that differ by 4 A in the vertical positioning of the peptide helix. The complex consisted of approximately 26,400 atoms (dynorphin + 86 lipids + approximately 5300 waters). After >2 ns of simulation, which included >1 ns of equilibration, the orientation of the helical segment of DynA had undergone a transition from parallel to tilted with respect to the bilayer normal in both the A and B systems. When the helix axis achieved a approximately 50 degrees angle with the bilayer normal, it remained stable for the next 1 ns of simulation. The two simulations with different starting points converged to the same final structure, with the helix inserted in the bilayer throughout the simulations. Analysis shows that the tilted orientation adopted by the N-terminal helix is due to specific interactions of residues in the DynA sequence with phospholipid headgroups, water, and the hydrocarbon chains. Key elements are the "snorkel model"-type interactions of arginine side chains, the stabilization of the N-terminal hydrophobic sequence in the lipid environment, and the specific interactions of the first residue, Tyr. Water penetration within the bilayer is facilitated by the immersed DynA, but it is not uniform around the surface of the helix. Many water molecules surround the arginine side chains, while water penetration near the helical surface formed by hydrophobic residues is negligible. A mechanism of receptor interaction is proposed for DynA, involving the tilted orientation observed from these simulations of the peptide in the lipid bilayer.  相似文献   

19.
The colicin E1 channel polypeptide was shown to be organized anisotropically in membranes by solid-state NMR analysis of samples of uniformly 15N-labeled protein in oriented planar phospholipid bilayers. The 190 residue C-terminal colicin E1 channel domain is the largest polypeptide to have been characterized by 15N solid-state NMR spectroscopy in oriented membrane bilayers. The 15N-NMR spectra of the colicin E1 show that: (1) the structure and dynamics are independent of anionic lipid content in both oriented and unoriented samples; (2) assuming the secondary structure of the polypeptide is helical, there are both trans-membrane and in-plane helical segments; (3) trans-membrane helices account for approximately 20-25% of the channel polypeptide, which is equivalent to 38-48 residues of the 190-residue polypeptide. The results of the two-dimensional PISEMA spectrum are interpreted in terms of a single trans-membrane helical hairpin inserted into the bilayer from each channel molecule. These data are also consistent with this helical hairpin being derived from the 38-residue hydrophobic segment near the C-terminus of the colicin E1 channel polypeptide.  相似文献   

20.
With the purpose of establishing whether, as a general rule, regions of a protein chain that are helical in the native structure maintain, at least partially, the same helical structure when isolated in solution, we have prepared the 1-23 fragment of human hemoglobin alpha-chain, and studied its conformational properties in aqueous solution by CD and 1H-NMR. From the analysis of CD and NMR spectral changes with temperature, salt and addition of trifluoroethanol (TFE) it can be concluded that the 1-23 peptide forms a measurable population (18% at 22 degrees C (pH 5.6) TFE/H2O, 30:70 (v/v)) of an alpha-helix structure that spans the same residues that are helical in the native protein (namely, 6 to 17). These results, taken together with similar ones obtained previously in the 1-19, 21-42 and 50-61 RNAase fragments, support the idea that no helices other than the native ones are actually formed in solution by protein fragments. This implies that the final helical structure of a protein is present from the very beginning of the folding process, and also that such elements of secondary structure can act as primary nucleation centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号