首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth characteristics of multicellular spheroids, derived from human melanoma xenografts and cultivated in liquid-overlay culture, were studied and compared with those of the parent tumours. Six of the seven melanomas investigated formed spheroids, which grew exponentially up to a volume of 1-2 X 10(7) microns 3 (a diameter of 270-340 microns) before the growth rate tapered off. The morphology of the spheroids varied considerably among the melanomas; some spheroids grew as densely packed, spherical structures of cells whereas others were loosely packed and showed an irregular shape. Central necrosis developed when the spheroids attained a diameter of 150-200 microns. The histological and cytological appearance of the spheroids was remarkably similar to that of the parent xenograft in five of the six cases. The sixth melanoma contained two subpopulations with distinctly different DNA content, one of which was predominant in the spheroids, the other in the tumours. This gave rise to clear histological and cytological differences. The volume-doubling time of the spheroids during the exponential growth phase ranged from 1.7 +/- 0.2 to 2.7 +/- 0.4 days and the fraction of cells in S from 13 +/- 1 to 28 +/- 2%. The volume-doubling time decreased with increasing fraction of cells in S, indicating that the differences in growth rate were due mainly to differences in the growth fraction or to differences in the duration of G1. The spheroid volume-doubling times did not correlate with those of the parent xenografts (Td = 4.2-22.5 days at V = 200 mm3), possibly because the cell loss factors of the xenografts were large and varied among the melanomas. The fractions of cells in G1/G0, S and G2 + M in the spheroids and the xenografts did not correlate either, but were found to be within the same narrow ranges in the spheroids and the xenografts--i.e. 50-80% (G1/G0), 10-30% (S) and 10-20% (G2 + M).  相似文献   

2.
R. Gonthier  A. Jacqmard  G. Bernier 《Planta》1985,165(2):288-291
The cell-cycle duration and the growth fraction were estimated in the vegetative shoot apical meristem of Sinapis alba L. The length of the cell cycle was about 86 h, i.e. 2.5 times shorter than the cell-doubling time (M. Bodson, 1975, Ann. Bot. 39, 547–554) and the growth fraction was between 32 to 41%. These data demonstrated that the cell population of this meristem was heterogeneous, including one subpopulation of rapidly cycling cells and one subpopulation of non-cycling cells, i.e. cells with a very long cell cycle compared with that of the rapidly cycling cells. Non-cycling cells had no particular localization within the meristem. Both the central and peripheral zones of the meristem were mosaics of rapidly cycling and non-cycling cells.Abbreviations G1 pre-DNA-synthesis phase - G2 post-DNA-synthesis phase - GF growth fraction - M mitosis phase - PLM pulse-labelled-mitoses method - S DNA-synthesis phase - T cell-cycle duration - TdR thymidine  相似文献   

3.
The cytological effects of 2 mM hydroxyurea upon Chinese hamster cells at various phases of the cell cycle were examined. Cells in the G1, G2, or M phases of the generation cycle treated with hydroxyurea showed no chromosomal aberrations. Cell treated in S phase became moribund and eventually lysed. Some of these moribund S cells reached mitosis much later and were found to have chromatid aberrations. Cells in the log phase of growth, surviving exposure to 2 mM hydroxyurea for six hours, also showed no aberrations. Thus, viable (colony-forming) cells, resulting from synchrony procedures with hydroxyurea are free of chromosomal aberrations.  相似文献   

4.
A simple stochastic model has been developed to determine the cell cycle kinetics of the isoprenaline stimulated proliferative response in rat acinar cells. The response was measured experimentally, using 3H-TdR labelling of interphase cells and cumulative collections of mitotic cells with vincristine. The rise and fall of the fraction of labelled interphase cells and of metaphase cells is expressed by the product of the proliferative fraction and a difference of probability distributions. The probability statements of the model were formulated and then compared by an iterative fitting procedure to experimental data to obtain estimates of the model parameters. The model when fitted to the combined fraction labelled interphase (FLIW) and fraction metaphase (FMW,) waves gave a mean Gis transit time of 21-2 hr, mean Gis+ S transit time of 270 hr, and mean Gis+ S + G2 transit time of 35-8 hr for a single injection of isoprenaline, where Gis is the initiation to S phase time. When successive injections of isoprenaline were given at intervals of 24 and 28 hr the corresponding values after the third injection were 12-4 hr, 20-8 hr and 25-7 hr respectively. The variance of the Gis phase dropped from 18-1 to 1–3 while the other variances remained unchanged. The estimated proliferative fraction was 0–24 after a single injection of isoprenaline, and 0–31 after three injections of the drug. Independently determined values of the proliferative fraction, obtained from repeated 3H-TdR injections, were 0–21 and 0–36 respectively.  相似文献   

5.
There are few data available on cell cycle events that occur when proliferation of normal cells in culture is curtailed due to “natural aging” of the culture conditions. Stathmokinetic and cytofluorometry studies were performed on PHA-stimulated human lymphocyte cultures for eight consecutive days. Cell proliferation peaked on day 5 and then gradually decreased. Percent labeled mitosis curves performed each day demonstrated that, for those cells which progressed to mitosis, the cell cycle time remained constant at 18 ± 1 hour throughout the entire period of culture. However when the fate of all cells pulse-labeled with 3H-thymidine (S phase cells) was followed daily, only 64 ± 5% of labeled cells reached mitosis on day 3 and <20% on day 6. When the growth fraction was estimated by standard methods (with the labeling index) and used to predict future cell counts in the culture, proliferation was greatly overestimated; but after correcting the growth fraction for labeled cells not reaching mitosis, proliferation was accurately predicted by a newly derived “dividing fraction.” Flow cytofluorometry confirmed accumulation of cells in S and G2 + M phases, and mitotic indices ruled out accumulation in M phase. Assessment of non-viable cells with cytofluorometry demonstrated that death occurred in all phases of the cell cycle. We conclude that with increasing age of culture, an increased fraction of cycling PHA-stimulated lymphocytes fail to progress all the way to mitosis and are arrested in S or G2 phases. These observations provide evidence against the existence of a specific “restriction point” in G1 or at the G1/S interface in aging proliferating human lymphocyte cultures, but it remains to be determined whether cells arrested in S or G2 phases retain the capacity to complete the cell cycle in more favorable culture environments.  相似文献   

6.
L5178Y cells were cultured in vitro at various temperatures. When the cells were in the exponential growth phase, the cells were in the "steady state of growth," i.e., the fraction of cells in the G1, S, G2, and M stages and the durations of each stage were constant. The life cycle analysis of the cells in the steady state of growth demonstrated that the G1 stage and the S stage were affected the most by variation of temperature, and suggested that these two stages have considerable influence on the growth rate of the L5178Y cells. The calculated activation energies were positive in each stage of the life cycle, whereas the entropies of activation were negative throughout. The possible significance of these findings in our search for the regulatory mechanisms of cell growth is discussed.  相似文献   

7.
Abstract: The influence of divalent cations on glycosphingolipid metabolism was examined in the NB41A mouse neuroblastoma clonal cell line. HPLC methods were utilized to quantitate the effects on neutral glycolipids and monosialogangliosides. NB41A cells were shown to contain GM3, GM2, GM1, GD3, and GD1a by HPLC and TLC. The neutral glycosphingolipids consisted of glucosylceramide (GlcCer), lactosylceramide (LacCer), GaINAc(β1→4) Gal(β1→4)Glc(β1→1)Cer (GgOse3Cer), and GaINAc(β1→3)Gal(α1→4) Gal-(β1→4)Glc(β1→1)Cer (GbOse3Cer) according to their HPLC behavior. Cells grown in the presence of 1.85 mm -EGTA showed a two- to threefold increase in GM3 whereas other glycosphingolipids were only slightly affected. When cells were grown in the presence of 1.45 mm -EGTA plus 0.4 mm -EDTA a similar increase in GM3 was observed but this change was now accompanied by decreases in GM2, GM1 GgOse3Cer, and GbOse4Cer. The EGTA-EDTA effects were reversed when growth was in the presence of Ca2+ sufficient to bind all chelator. Mn2+ replacement reversed the chelator effects differentially; GM2 and GM1 levels were the most sensitive to increases in Mn2+ concentration; GgOse3Cer and GbOse4Cer were also sensitive, whereas GM3 was the least affected. These results suggest calcium serves an important regulatory role on GM3 levels and that manganese concentration may regulate the levels of galactosamine-containing glycolipids in mouse NB41A neuroblastoma cells.  相似文献   

8.
We investigated the efficacy of a powerful antagonist of bombesin/gastrin-releasing peptide (BN/GRP) RC-3940-II administered as a single agent or in combination with cytotoxic agents on the growth of HT-29, HCT-116 and HCT-15 human colon cancer in vitro and in vivo. GRP-receptor mRNA and protein were found in all three cell lines tested. Exposure of HT-29 cells to 10 μM RC-3940-II led to an increase in the number of cells blocked in S phase and G2/M and cells with lower G0/G1 DNA content. Similar changes on the cell cycle traverse of HT-29 cells could also be seen at lower concentrations of RC-3940-II (1 μM) after pretreatment with 100 nM GRP (14–27), indicating a dose-dependent mechanism of action based on the blockage of BN/GRP induced proliferation of tumor cells at lower concentrations.

Daily in vivo treatment with BN/GRP antagonist RC-3940-II decreased the volume of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic nude mice by 25 to 67% (p < 0.005). Combined treatment with RC-3940-II and chemotherapeutic agents 5-FU and irinotecan resulted in a synergistic tumor growth suppression of HT-29, HCT-116 and HCT-15 xenografts by 43% to 78%. In HT-29 and HCT-116 xenografts the inhibition for the combinations of RC-3940-II and irinotecan vs. single substances (p < 0.05) was significantly greater.

These findings support the use of RC-3940-II as an anticancer agent and may help to design clinical trials using RC-3940-II in combinations with cytotoxic agents.  相似文献   

9.
The expression of certain antigens specific for proliferating cells can be determined simultaneously with cell cycle distribution by means of two-dimensional flow cytometry. In this way, a tumour's growth potential is characterized more precisely than with any one parameter alone. Here we describe such simultaneous measurements of DNA content and labelling with the Ki-67 antibody that distinguishes between cycling and non-cycling cells. Having overcome a number of technical problems we were able to analyse material from 29 biopsies of human colorectal tumours. In a number of cases, Ki-67 negative cells were found with a DNA-content of G0/1 only, whereas all cells with an S- or G2-phase DNA-content were Ki-67 positive. There were other cases in which cells with an S- and G2-phase DNA-content had obviously become quiescent (Ki-67 negative), sometimes even outnumbering the proliferating (Ki-67 positive) cells in the respective compartments of the cycle. Generally, however, when Ki-67 negative and positive subpopulations were analysed separately it was found that the former had a significantly lower (S + G2)-phase fraction than the latter. There was evidence for a correlation between Ki-67 index and (S + G2)-phase fraction at least in the subgroup of aneuploid tumours. Neither of the two parameters was correlated with stage according to Duke's classification or tumour size. However, a positive correlation was found between the fraction of unlabelled S- and G2-phase cells and tumour size as reflected in the T category.  相似文献   

10.
To better understand how the flow cytometric bromodeoxyuridine (BrdUrd)-pulse-chase method detects perturbed cell kinetics we applied it to measure cell cycle progression delays following exposure to ionizing radiation. Since this method will allow both the use of asynchronous cell populations and the determination of the alterations in cell cycle progression specific to cells irradiated in given cell cycle phases, it has a significant advantage over laborious synchronization methods. Exponentially growing Chinese hamster ovary (CHO) K1 cells were irradiated with graded doses of X-rays and pulse-labelled with BrdUrd immediately thereafter. Cells were subcultured in a BrdUrd-free medium for various time intervals and prepared for flow cytometric analysis. Of five flow cytometric parameters examined, only those that involved cell transit through G2, i.e. the fraction of BrdUrd-negative G2 cells and the fraction of BrdUrd-positive cells that had not divided, showed radiation dose-dependent delays. The magnitude of the effects indicates that the cells irradiated in G2 and in S are equally delayed. S phase transit of cells irradiated in S or in G1 did not appear to be affected. There were apparent changes in flow of cells out of G1, which could be explained by the delayed entry of G2 cells into the compartment because of G2 arrest. Thus, in asynchronous cells the method was able to detect G2 delay in those cells irradiated in S and G2 phases and demonstrate the absence of cell-cycle delays in other phases.  相似文献   

11.
Adult rat hepatocytes aggregated to form floating multicellular spheroids when cultured in Primaria dishes, which have a positively charged surface, in serum-free Williams' medium E (WE) supplemented with insulin and epidermal growth factor (EGF). These hormones were essential for maintenance of the spheroids, whereas the size of the spheroids depended on the inoculum cell density. The spheroids retained in vivo levels of expressions of albumin and glucokinase and synthesized scarcely any DNA even in the presence of insulin and EGF. On transfer to type I collagen-coated dishes, the spheroids gradually disaggregated and the cells formed monolayers, in which the expressions of albumin and glucokinase were suppressed and DNA synthesis and hexokinase activity were increased. DNA synthesis of hepatocytes in monolayer culture was maximal 24 hr after transfer of the spheroids, ~80% of the hepatocyte nuclei were labelled with bromodeoxyuridine during culture for 48 hr, and the mitotic index was ~70% after 60 hr. These results suggest that, in spheroids, hepatocytes remained in the G0 phase, but that when they formed monolayers, they progressed to the G1 phase and proceeded through the cell cycle in the presence of insulin and EGF. This work shows that the cell cycle of hepatocytes in culture can be manipulated by providing conditions for quiescence as spheroids or growth as monolayers and that the shape of hepatocytes is important for regulating their growth and liver-specific functions. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Summary Under hypoxia (10 and 5% partial oxygen tension) meristematic cells ofAllium cepa L. roots acquired new cycle kinetics, characterized by reduced but constant rates of root growth. Under these conditions, there was preferential lengthening of G1 and of the last third of the S period, S3. Since hyperoxygenation shortened S3 but not G1 in these cells, the high sensitivity of late replication to environmental oxygen is demonstrated. The preferential depression of the replication rate when those cells replicated the last third of their DNA was not associated with diminished cell size. Rather, the lower the oxygen level the larger the mean size of the cycling cells. Under anoxia (0% oxygen tension) the rate of growth slowed, accompanied by preferential accumulation of cells in G1. However, steady state kinetics of root growth was not achieved under these extreme conditions.Abbreviations Mean cell length - LI labelling index or frequency of cells with labelled nuclei after [3H]thymidine - G1, S, G2 pre-replicative, replicative, and post-replicative periods of the interphase of cycling cells - M mitosis  相似文献   

13.
Prolactin and growth hormone production were measured in a rat pituitary tumour cell strain (GH3) after treatment with cortisol (5 × 10?6 M), thyroliberin (2.5 × 10?6 M) and 17β-estradiol (10?6 M). The changes in hormone production were related to alterations in cell growth rate and cell cycle distribution. Cortisol inhibited prolactin production, stimulated growth hormone production and reduced the cellular growth rate measured two days after start of treatment (maximum about 40% inhibition). Flow-micro fluorometric analysis of DNA distributions showed that cortisol treatment reduced the relative number of cells in S phase (maximum effect about 50%) with a compensatory increase of the proportion of cells in G1 phase. The lack of inhibition of prolactin production after three days of cortisol treatment may partly be related to the increased number of cells in G1 phase. Thyroliberin and 17β-estradiol did not significantly affect cell growth after six days of treatment, although the fraction of cells in S phase was reduced by approximately 40% with a corresponding increase of cells in G1 phase. For thyroliberin and 17β-estradiol, the stimulatory effect on prolactin production and the inhibitory effect on growth hormone production witin a period of treatment of six days cannot be explained by a shift in cell cycle distributions. None of the three hormones influenced the growth fraction which was equal to unity. In conclusion, thyroliberin and 17β-etradiol are able to change prolactin and growth hormone production without altering the cell cycle distribution. However, the effects of cortisol on prolactin and growth hormone production may partly be due to an alteration in cell cycle traverse resulting in an increased number of cells in the G1 phase.  相似文献   

14.
Abstract. Murine mesenchymal stem cells can be induced to arrest their growth at a series of growth and differentiation states in the G1 phase of the cell cycle. These include the predifferentiation arrest state (GD) at which the integrated control of proliferation and differentiation is mediated, the growth factor/serum deficiency arrest state (GS), and the nutrient deficiency arrest state (GN). Cells at states of reversible nonterminal differentiation (GD?) and irreversible terminal differentiation (TD) can also be isolated. In this paper we have employed 1- and 2-dimensional (D) gel electrophoresis to evaluate changes in specific proteins that occur during the various growth and differentiation states of 3T3 T mesenchymal stem cells. The protein composition of membrane, microsome and cytosol preparations of cells arrested at GD, GS and GN states was determined by 2-D gel electrophoresis. More than 50 distinct polypeptides could be identified for each arrest state in gels analysed by a silver staining procedure or by autoradiography following [35S]-methionine labelling. A second series of studies established that a more limited number of differences could be identified if phosphoproteins were analysed by 1-D gel electrophoresis in cells at the GS, GD, GD?. and TD states. These results established that one distinct 37 kD phosphoprotein is present in all growth arrested cells and that two distinct differentiation-associated phosphoproteins with molecular weights of 29 kD and 72 kD are present in cells at the GD? and TD states. Thus, the composition of proteins and phosphoproteins in mesenchymal stem cells serves to characterize different states of growth arrest and differentiation. The identification of differential protein expression provides an opportunity to test their functional role in growth and differentiation control.  相似文献   

15.
Summary Mammary and adipose explants from eight mid-lactation Holstein cows were co-cultured for 24 h in the presence or absence of liver explants, 1 μg/ml pituitary bovine somatotrophin, or 100 ng/ml insulinlike growth factor-I. Liver explants in the media significantly depressed DNA and protein synthesis by mammary tissue as measured by [14C]-thymidine and amino acid incorporation. As measured by flow cytometry, the concentration of DNA in the G0G1 and G2M cells and the percentage of cells in the G0G1 population of mammary tissue was also significantly depressed by liver tissue. Changes in the percentage of cells in the S and G2M phases were not significant. Insulinlike growth factor-I in the presence of liver explants depressed protein synthesis, thymidine incorporation, and the concentration of DNA in the G0G1 and G2M cells compared to control but did not affect the percentage of cells in the G0G1, S, or G2M phases. Previously it was assumed that changes in [14C]thymidine incorporation indicated that changes in cell division were occurring. Flow cytometry revealed that changes in DNA content of mammary cells as a result of liver or hormonal stimulation were not due to changes in cell division. Indications are that differences in cellular DNA content result from changes in the rate of amplification of individual genes responsible for milk protein synthesis.  相似文献   

16.
The pronounced diurnal rhythm in DNA distribution of the hamster check pouch epithelium both in the S fraction and in the (G2+ M) fraction was compared with previous studies of the changes in tritiated thymidine labelling index and mitotic activity. the DNA distributions were obtained by flow cytometry after ultrasonic disaggregation of the isolated epithelium into a suspension of single nuclei. the DNA distributions were analysed with the computer program of J. Fried (1976) and by planimetry. the S fraction was higher than the autoradiographic labelling index during the whole 24 hr period. Only the computer fitted S fraction and the labelling index had the same difference between maximal and minimal values, and maxima at the same time of day. the DNA distributions showed a diurnal release of G1 cells into S phase proceeding through (G2+ M) phase and returning to G1 phase within a 24 hr period.  相似文献   

17.
Growth deceleration of an Ehrlich ascites tumor with increasing mass is associated with a prolongation of the cell cycle and a decline in the growth fraction. These effects are reversed upon transfer of cells from an older tumor into a new host. Studies were made to locate the stages at which a cell cycle could be suspended or resumed. Transplantation caused a prompt rise in both mitotic and flash H3TdR labeling indices. When all the cells in cycle including mitoses were prelabeled with H3TdR in older tumors, the fraction of labeled mitoses did not decline for a considerable period after transplantation into new hosts. This suggests that the early rise in mitoses is not due to a flow of resting (Go) cells from a G2 store (G2-Go transition). It appears rather to be a reflection of a lag of the mitotic process relative to other stages during the initial readjustment of the cycle. A prompt rise in flash H3TdR indices in the transplants suggested cell entry into S from either a suspended GI (G1-Go transition) or a suspended S (S-Go transition). These possibilities were examined by relating micro-spectrophotometric estimates of DNA to the cell cycle stage as revealed by H3TdR autoradiography. Since Go cells had DNA values corresponding to GI, it was concluded that decycling or recycling could occur only after mitosis and before DNA synthesis.  相似文献   

18.
Radioimmunotherapy is hindered by the slow penetration of antibody molecules into tumors. Cells that are poorly targeted by antibody, because of their distance from feeding blood vessels, receive the lowest radiation dose, and this problem is compounded if there are radioresistant hypoxic cells present. It would be desirable to combine radioimmunotherapy with an agent that is preferentially toxic to these cells. SR 4233 is a potent hypoxic cytotoxin, and it was combined with 131I-NR-LU-10 to treat LS174T human colon adenocarcinoma multicell spheroids and nude mouse xenografts for these studies. Under conditions of severe hypoxia (< 0.01% O2), 2 h of pretreatment or 18 h of simultaneous treatment with SR 4233 did not significantly enhance the effectiveness of 131I-NR-LU-10 in spheroids. However, under aerobic conditions with a 10% fraction of hypoxic cells, there was more toxicity than would be predicted from simple additivity. Xenografts treated with 131I-NR-LU-10 + SR 4233 had a growth delay that was significantly longer than that achieved with 131I-NR-LU-10 alone. In both spheroids and xenografts, combined treatment produced about 10 times more cell killing than 131I-NR-LU-10 alone. The lack of enhancement in spheroids under complete hypoxia suggests that SR 4233 does not sensitize hypoxic cells to radiation damage. The results with aerobic spheroids and in vivo, where a portion of the cells were hypoxic, could be explained by the targeting of different cell populations (hypoxic and aerobic) by each therapeutic modality. This effect should also be enhanced by reoxygenation and reestablishment of the hypoxic fraction during treatment, thus allowing more than the initially hypoxic fraction of cells to be killed by the SR 4233.  相似文献   

19.
20.
Summary In the silkworm, Bombyx mori, diapause occurs at a specific embryonic stage, i.e. after formation of the germ band with cephalic lobes and telson and sequential mesoderm segmentation. As long as the eggs are incubated at 25° C, cell divisions and morphological development of the embryos cease. To examine changes in percentage of embryonic cells in the G1, S and G2 phases during embryogenesis, nuclear fractions were isolated from embryos, stained with propidium iodide and then subjected to flow cytometric analysis. The percentages of embryonic cells in G1, S and G2 were 10, 35 and 55%, respectively, at the stage of formation of cephalic lobes, whilst 98% of cells were in G2 at diapause stage. After termination of diapause by acclimation at 5° C or by a combination of chilling and HCl, cell division resumed in the embryos. During this period, the cells rapidly entered S phase through G1 from G2, suggesting that their G1 phase was short. In eggs in which diapause was averted by HCl-treatment after incubation at 25° C for 20 h after oviposition, embryonic development proceeded continuously for 9.5 days at 25° C until hatching. Along with this development, the G1 fraction increased to levels of about 90%. These results indicate that embryonic cells are arrested in G2 at diapause and suggest that, concomitant with further embryonic development, cell cycles become slower in proportion to an increasing length of G1. Finally, most of the cells may be arrested in G1, while there is only a small fraction of cells continuously cycling. Offprint requests to: T. Yaginuma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号