首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ca2+-dependent protein kinase (CDPK) has been proposed to mediate inhibition by Ca2+ of cytoplasmic streaming in the green algaChara. We have identified the in vivo substrate(s) of CDPK inChara by using vacuolar perfusion of individual internodal cells with [-32P]ATP. Phosphorylation of several polypeptides is enhanced when perfusions are performed at 10–4M free Ca2+ compared to <10–9M free Ca2+. The Ca2+-stimulated phosphorylation of these proteins is inhibited by the presence of a monoclonal antibody to soybean CDPK. One of these proteins is 16 to 18kDa and is recognized by an antibody against gizzard myosin light chains. These results demonstrate that inChara, several polypeptides are phophorylated by CDPK and one of these proteins has been tentatively identified as a myosin light chain. These observations support the hypothesis that Ca2+-regulated phosphorylation of myosin is involved in the regulation of cytoplasmic streaming.Abbreviations CDPK calcium-dependent protein kinase - mAb monoclonal antibody  相似文献   

2.
The hull of the fruit of the mangosteen tree (Garcinia mangostana) contains four inhibitors of plant Ca(2+)-dependent protein kinase. Two of these inhibitors have been purified and identified as the xanthones 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-butenyl)-9H- xanthen-9-one (mangostin) and 1,3,6,7-tetrahydroxy-2,8-bis(3-methyl-2-butenyl)- 9H-xanthen-9-one (gamma-mangostin). Both xanthones also inhibit avian myosin light chain kinase and rat liver cyclic AMP-dependent protein kinase. This is the first report of inhibition of plant and animal second messenger-regulated protein kinases by plant-derived xanthones.  相似文献   

3.
Phosphorylation of regulatory light chain (LC20) by myosin light chain kinase (MLCK) has been thought to play an important role in both smooth muscle contraction and several functions of vertebrate non-muscle cells. Amiloride, a frequently used Na+/H+ exchange inhibitor, potently inhibited phosphorylation of LC20 by MLCK. The inhibition was non-competitive with respect to myosin but competitive with ATP (Ki = 0.95 microM), suggesting that amiloride may act as an ATP analogue. Amiloride also inhibited the tension development of ether-treated gizzard fibers which were lacking in Na+/H+ antiport, even in the presence of ATP regenerating system. Thus, it must be reminded that amiloride cannot be used as a specific inhibitor of Na+/H+ exchange, and that the inhibition of myosin phosphorylation by amiloride should be taken into consideration in studying the role of Na+/H+ antiport in the cellular function.  相似文献   

4.
Wortmannin, a specific inhibitor of myosin light chain kinase (MLCK) blocked IgE mediated histamine release from rat basophilic leukemia cell (RBL-2H3) and human basophils dose-dependently. Its IC50 was 20 nM for RBL-2H3 cells and 30 nM for human basophils. There was complete inhibition at the concentration of 1 microM. Wortmannin inhibited partially the A23187 induced histamine release from RBL-2H3 cells (40% inhibition at 1 microM). This inhibition was not accompanied by any significant effect on cytosolic free calcium concentration [( Ca2+]i). KT5926, another MLCK inhibitor, inhibited histamine release comparably with wortmannin and blocked to some degree the increase of [Ca2+]i in RBL-2H3 cells. Thus, the phosphorylation of myosin seems to be involved in signal transduction through Fc epsilon RI.  相似文献   

5.
Recently, one of the authors (K.I.) and other investigators reported that myosin light chain (MLC) of smooth muscle (gizzard, arterial and tracheal) was diphosphorylated by myosin light chain kinase (MLCK) and that diphosphorylated myosin showed a marked increase in the actin-activated myosin ATPase activity in vitro and ex vivo. In this study, we prepared myosin, actin, tropomyosin (human platelet), MLCK (chicken gizzard) and calmodulin (bovine brain) and demonstrated diphosphorylation of MLC of platelet by MLCK in vitro. Our results are as follows. (1) Platelet MLC was diphosphorylated by a relatively high concentration (greater than 20 micrograms/ml) of MLCK in vitro. As a result of diphosphorylation, the actin-activated myosin ATPase activity was increased 3 to 4-fold as compared to the monophosphorylation. (2) Both di- and monophosphorylation reactions showed similar Ca2+, KCl, MgCl2-dependence. Maximal reaction was seen at [Ca2+] greater than 10(-6) M, 60 mM KCl and 2 mM MgCl2. This condition was physiological in activated platelets. (3) Di- and monophosphorylated myosin showed similar Ca2+, KCl-dependence of ATPase activity but distinct MgCl2-dependence. Diphosphorylated myosin showed maximal ATPase activity at 2 mM MgCl2 and monophosphorylated myosin showed a maximum at 10 mM MgCl2. (4) The addition of tropomyosin stimulated actin-activated ATPase activity in both di- and monophosphorylated myosin to the same degree. (5) ML-9, a relatively specific inhibitor of MLCK, inhibited the aggregation of human platelets induced by thrombin ex vivo in a dose-dependent manner. Moreover, this drug also partially inhibited both di- and monophosphorylation reactions and actin-activated ATPase activity. On the other hand, H-7, a synthetic inhibitor of protein kinase C, had little effect on the aggregation of human platelets induced by thrombin ex vivo. From these results, we conclude that diphosphorylation of platelet myosin by MLCK may play an important role in activated platelets in vivo.  相似文献   

6.
As a regulator of smooth muscle contractility, zipper-interacting protein kinase (ZIPK) appears to phosphorylate the regulatory myosin light chain (RLC20), directly or indirectly, at Ser19 and Thr18 in a Ca2+-independent manner. The calmodulin-binding and autoinhibitory domain of myosin light chain kinase (MLCK) shares similarity to a sequence found in ZIPK. This similarity in sequence prompted an investigation of the SM1 peptide, which is derived from the autoinhibitory region of MLCK, as a potential inhibitor of ZIPK. In vitro studies showed that SM1 is a competitive inhibitor of a constitutively active 32-kDa form of ZIPK with an apparent Ki value of 3.4 µM. Experiments confirmed that the SM1 peptide is also active against full-length ZIPK. In addition, ZIPK autophosphorylation was reduced by SM1. ZIPK activity is independent of calmodulin; however, calmodulin suppressed the in vitro inhibitory potential of SM1, likely as a result of nonspecific binding of the peptide to calmodulin. Treatment of ileal smooth muscle with exogenous ZIPK was accompanied by an increase in RLC20 diphosphorylation, distinguishing between ZIPK [and integrin-linked kinase (ILK)] and MLCK actions. Administration of SM1 suppressed steady-state muscle tension developed by the addition of exogenous ZIPK to Triton-skinned rat ileal muscle strips with or without calmodulin depletion by trifluoperazine. The decrease in contractile force was associated with decreases in both RLC20 mono- and diphosphorylation. In summary, we present the SM1 peptide as a novel inhibitor of ZIPK. We also conclude that the SM1 peptide, which has no effect on ILK, can be used to distinguish between ZIPK and ILK effects in smooth muscle tissues. inhibitory peptide; calcium sensitization  相似文献   

7.
Smooth muscle contraction is initiated by a rise in intracellular calcium, leading to activation of smooth muscle myosin light chain kinase (MLCK) via calcium/calmodulin (CaM). Activated MLCK then phosphorylates the regulatory myosin light chains, triggering cross-bridge cycling and contraction. Here, we show that MLCK is a substrate of AMP-activated protein kinase (AMPK). The phosphorylation site in chicken MLCK was identified by mass spectrometry to be located in the CaM-binding domain at Ser(815). Phosphorylation by AMPK desensitized MLCK by increasing the concentration of CaM required for half-maximal activation. In primary cultures of rat aortic smooth muscle cells, vasoconstrictors activated AMPK in a calcium-dependent manner via CaM-dependent protein kinase kinase-beta, a known upstream kinase of AMPK. Indeed, vasoconstrictor-induced AMPK activation was abrogated by the STO-609 CaM-dependent protein kinase kinase-beta inhibitor. Myosin light chain phosphorylation was increased under these conditions, suggesting that contraction would be potentiated by ablation of AMPK. Indeed, in aortic rings from mice in which alpha1, the major catalytic subunit isoform in arterial smooth muscle, had been deleted, KCl- or phenylephrine-induced contraction was increased. The findings suggest that AMPK attenuates contraction by phosphorylating and inactivating MLCK. This might contribute to reduced ATP turnover in the tonic phase of smooth muscle contraction.  相似文献   

8.
Increased mortality after stroke is associated with development of brain edema. The aim of the present study was to examine the contribution of endothelial myosin light chain (MLC) phosphorylation to hypoxia-induced blood-brain barrier (BBB) opening. Measurements of trans-endothelial electrical resistance (TEER) were performed to analyse BBB integrity in an in vitro co-culture model (bovine brain microvascular endothelial cells (BEC) and rat astrocytes). Brain fluid content was analysed in rats after stroke induction using a two-vein occlusion model. Dihydroethidium was used to monitor intracellular generation of reactive oxygen species (ROS) in BEC. MLC phosphorylation was detected using immunohistochemistry and immunoblot analysis. Hypoxia caused a decrease of TEER values by more than 40%, which was prevented by inhibition of the MLC-kinase (ML-7, 10 micromol/L). In addition, ML-7 significantly reduced the brain fluid content in vivo after stroke. The NAD(P)H-oxidase inhibitor apocynin (500 micromol/L) prevented the hypoxia-induced TEER decrease. Hypoxia-dependent ROS generation was completely abolished by apocynin. Furthermore, ML-7 and apocynin blocked hypoxia-dependent phosphorylation of MLC. Our data demonstrate that hypoxia causes a breakdown of the BBB in vitro and in vivo involving ROS and the contractile machinery.  相似文献   

9.
Dictyostelium myosin light chain kinase. Purification and characterization   总被引:9,自引:0,他引:9  
A Dictyostelium myosin light chain kinase has been purified approximately 15,000-fold to near homogeneity. The purified kinase is a single polypeptide of approximately 34 kDa that phosphorylates only the 18-kDa Dictyostelium myosin regulatory light chain and itself among substrates tested. The enzyme was purified largely by ammonium sulfate fractionation and hydrophobic (butyl) interaction chromatography. Analysis using polyclonal antibodies raised against the purified 34-kDa protein confirms that this protein is responsible for myosin light chain kinase activity. Protein microsequence of the 34-kDa protein reveals conserved protein kinase sequences. The purified Dictyostelium myosin light chain kinase exhibits a Km for Dictyostelium myosin of 4 microM and a Vmax of 8 nmol/min/mg. Unlike other characterized myosin light chain kinases, this enzyme is not regulated by calcium/calmodulin. Western blot analysis demonstrates that the purified kinase is not a proteolytic fragment that has lost calcium/calmodulin regulation. The Dictyostelium myosin light chain kinase activity is not directly regulated by cyclic nucleotides. However, this kinase undergoes an intramolecular autophosphorylation that activates the enzyme.  相似文献   

10.
Selective binding of L-thyroxine by myosin light chain kinase   总被引:3,自引:0,他引:3  
L-Thyroxine selectively inhibited Ca2+-calmodulin-activated myosin light chain kinases (MLC kinase) purified from rabbit skeletal muscle, chicken gizzard smooth muscle, bovine thyroid gland, and human platelet with similar Ki values (Ki = 2.5 microM). A detailed analysis of L-thyroxine inhibition of smooth muscle myosin light chain kinase activation was undertaken in order to determine the effect of L-thyroxine on the stoichiometries of Ca2+, calmodulin, and the enzyme in the activation process. The kinetic data indicated that L-thyroxine does not interact with calmodulin but, instead, through direct association with the enzyme, inhibits the binding of the Ca2+-calmodulin complex to MLC kinase. L-[125I]Thyroxine gel overlay revealed that the 95-kDa fragment of chicken gizzard MLC kinase digested by chymotrypsin and all the fragments of 110, 94, 70, and 43 kDa produced by Staphylococcus aureus V8 protease digestion which contain the calmodulin binding domain retain L-[125I]thyroxine binding activity, whereas smaller peptides were not radioactive. Since MLC kinase is phosphorylated by cAMP-dependent protein kinase (2 mol of phosphate/mol of MLC kinase), the effect of L-thyroxine on the phosphorylation of MLC kinase also was examined. L-Thyroxine binding did not inhibit the phosphorylation of MLC kinase and, moreover, reversed the inhibition of phosphorylation obtained with the calmodulin-enzyme complex. These observations support the suggestion that L-thyroxine binds at or near the calmodulin-binding site of MLC kinase. L-Thyroxine may serve as a different type of pharmacological tool for elucidating the biological significance of MLC kinase-mediated reactions.  相似文献   

11.
12.
Stimulation of tracheal smooth muscle cells in culture with ionomycin resulted in a rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) and an increase in both myosin light chain kinase and myosin light chain phosphorylation. These responses were markedly inhibited in the absence of extracellular Ca2+. Pretreatment of cells with 1-[N-O-bis(5-isoquinolinesulfonyl)-N- methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific inhibitor of the multifunctional calmodulin-dependent protein kinase II (CaM kinase II), did not affect the increase in [Ca2+]i but inhibited ionomycin-induced phosphorylation of myosin light chain kinase at the regulatory site near the calmodulin-binding domain. KN-62 inhibited CaM kinase II activity toward purified myosin light chain kinase. Phosphorylation of myosin light chain kinase decreased its sensitivity to activation by Ca2+ in cell lysates. Pretreatment of cells with KN-62 prevented this desensitization to Ca2+ and potentiated myosin light chain phosphorylation. We propose that the Ca(2+)-dependent phosphorylation of myosin light chain kinase by CaM kinase II decreases the Ca2+ sensitivity of myosin light chain phosphorylation in smooth muscle.  相似文献   

13.
Ca2+/calmodulin-dependent myosin light chain kinase phosphorylates the regulatory light chain of myosin. Rabbit skeletal muscle myosin light chain kinase also catalyzes a Ca2+/calmodulin-dependent autophosphorylation with a rapid rate of incorporation of 1 mol of 32P/mol of kinase and a slower rate of incorporation up to 1.52 mol of 32P/mol. Autophosphorylation was inhibited by a peptide substrate that has a low Km value for myosin light chain kinase. Autophosphorylation at both rates was concentration-independent, indicating an intramolecular mechanism. There were no significant changes in catalytic properties toward light chain and MgATP substrates or in calmodulin activation properties upon autophosphorylation. After digestion with V8 protease, phosphopeptides were purified and sequenced. Two phosphorylation sites were identified, Ser 160 and Ser 234, with the former associated with the rapid rate of phosphorylation. Both sites are located amino terminal of the catalytic domain. These results indicate that the extended "tail" region of the enzyme can fold into the active site of the kinase.  相似文献   

14.
Isolation and properties of platelet myosin light chain kinase.   总被引:8,自引:0,他引:8  
J L Daniel  R S Adelstein 《Biochemistry》1976,15(11):2370-2377
A protein kinase which phosphorylates the 20 000-dalton light chain of platelet myosin has been isolated from human blood platelets and purified approximately 600-fold. Elution of a 7.5% polyacrylamide gel following electrophoresis of the partially purified enzyme yielded a single peak of kinase activity which could be aligned with a protein band on a stained gel. Assuming a globular shape, a native molecular weight of 83 000 (+/- 10%) was determined by gel filtration on Bio-Gel P-200. The kinase requires Mg2+ for activity and is not sensitive to the removal of trace Ca2+. The enzyme purified from human platelets phosphorylates the 20 000-dalton light chain of mouse fibroblast and chicken gizzard myosin, but does not phosphorylate human skeletal and cardiac myosin.  相似文献   

15.
A M Edelman  E G Krebs 《FEBS letters》1982,138(2):293-298
Phosphatidylethanolamine (PE) was isolated from membranes of Bacillus megaterium. The organism was grown at 20°C and 55°C. The phase equilibria in PE/water systems were studied by 2H and 31P nuclear magnetic resonance, and by polarized light microscopy. PE isolated from B. megaterium grown at 20°C forms a lamellar liquid crystalline phase at the growth temperature, and at low water contents a cubic liquid crystalline phase at 58°C. The ratio iso/ante-iso acyl chains was 0.3 in this lipid. PE isolated from this organism grown at 55°C forms only a lamellar liquid crystalline phase up to at least 65°C. In this lipid the ratio iso/ante-iso acyl chains was 3.2.  相似文献   

16.
Changes in myosin and myosin light chain kinase during myogenesis   总被引:1,自引:0,他引:1  
Myosins and myosin light chain kinases have been isolated from a cloned line of myoblasts (L5/A10) as this cell line undergoes differentiation toward adult muscle. At least three myosin isozymes were obtained during this developmental process. Initially a nonmuscle type of myosin was found in the myoblasts. The molecular weights of the myoblast light chains were 20 000 and 15 000. Myosin isolated from early myotubes had light chains with molecular weights of 20 000 and 19 500. Myosin isolated from myotubes which contained sarcomeres had light chains with molecular weights of 23 000, 18 500, and 16 000. This last myosin was similar in light chain complement to adult rat thigh muscle. Two forms of the myosin light chain kinase activity were detected: a calcium-independent kinase in the myoblasts and a calcium-dependent kinase in the myotubes with sarcomeres. No myosin light chain kinase activity was detected in the early myotubes.  相似文献   

17.
M Nomura  J T Stull  K E Kamm  M C Mumby 《Biochemistry》1992,31(47):11915-11920
Smooth muscle myosin light chain kinase is phosphorylated at two sites (A and B) by different protein kinases. Phosphorylation at site A increases the concentration of Ca2+/calmodulin required for kinase activation. Diphosphorylated myosin light chain kinase was used to determine the site-specificity of several forms of protein serine/threonine phosphatase. These phosphatases readily dephosphorylated myosin light chain kinase in vitro and displayed differing specificities for the two phosphorylation sites. Type 2A protein phosphatase specifically dephosphorylated site A, and binding of Ca2+/calmodulin to the kinase had no effect on dephosphorylation. The purified catalytic subunit of type 1 protein phosphatase dephosphorylated both sites in the absence of Ca2+/calmodulin but only dephosphorylated site A in the presence of Ca2+/calmodulin. A protein phosphatase fraction was prepared from smooth muscle actomyosin by extraction with 80 mM MgCl2. On the basis of sensitivity to okadaic acid and inhibitor 2, this activity was composed of multiple protein phosphatases including type 1 activity. This phosphatase fraction dephosphorylated both sites in the absence of Ca2+/calmodulin. However, dephosphorylation of both sites A and B was completely blocked in the presence of Ca2+/calmodulin. These results indicate that two phosphorylation sites of myosin light chain kinase are dephosphorylated by multiple protein serine/threonine phosphatases with unique catalytic specificities.  相似文献   

18.
Myosin light chain kinase binds to actin-containing filaments from cells with a greater affinity than to F-actin. However, it is not known if this binding in cells is regulated by Ca2+/calmodulin as it is with F-actin. Therefore, the binding properties of the kinase to stress fibers were examined in smooth muscle-derived A7r5 cells. Full-length myosin light chain kinase or a truncation mutant lacking residues 2-142 was expressed as chimeras containing green fluorescent protein at the C terminus. In intact cells, the full-length kinase bound to stress fibers, whereas the truncated kinase showed diffuse fluorescence in the cytoplasm. After permeabilization with saponin, the fluorescence from the truncated kinase disappeared, whereas the fluorescence of the full-length kinase was retained on stress fibers. Measurements of fluorescence intensities and fluorescence recovery after photobleaching of the full-length myosin light chain kinase in saponin-permeable cells showed that Ca2+/calmodulin did not dissociate the kinase from these filaments. However, the filament-bound kinase was sufficient for Ca2+-dependent phosphorylation of myosin regulatory light chain and contraction of stress fibers. Thus, dissociation of myosin light chain kinase from actin-containing thin filaments is not necessary for phosphorylation of myosin light chain in thick filaments. We note that the distance between the N terminus and the catalytic core of the kinase is sufficient to span the distance between thin and thick filaments.  相似文献   

19.
Mitosis-specific phosphorylation of myosin light chain kinase   总被引:4,自引:0,他引:4  
Cell cytosol preparations from mitotic HeLa cells exhibit a kinase activity that phosphorylates myosin light chain kinase (MLCK). This MLCK kinase activity is apparently distinct from the known MLCK kinases, including cAMP-dependent protein kinase, cGMP-dependent protein kinase, Ca(2+)-activated phospholipid-dependent protein kinase, or Ca(2+)-calmodulin-dependent protein kinase II, based on the following criteria. First, the MLCK kinase activity of mitotic cells does not respond to a variety of characteristic activators or inhibitors of these known kinases. Second, one- and two-dimensional peptide maps have revealed that the site of phosphorylation by the MLCK kinase of mitotic cells differs from those by these known kinases. The mitotic MLCK kinase phosphorylates MLCK at a threonine residue at a ratio of up to 1 mol of phosphate/mol of chicken gizzard MLCK. The MLCK kinase is mitosis-specific because mitotic cell extracts show much higher phosphorylation activity than nonmitotic cell extracts.  相似文献   

20.
Isometrically suspended uteri from estrogen-primed rats were stimulated with prostaglandin F2 alpha and then exposed to relaxin. Relaxin-dependent decreases in the ratio of phosphorylated to total myosin light chains (MLC) and in MLC kinase activity, measured in the presence of 0.5 mg/ml of uterine myosin and the absence and presence of Ca2+-calmodulin (CaM), were observed. The time-course and concentration-response of these biochemical effects of relaxin paralleled the hormone-induced inhibition of uterine contractile activity. Relaxin treatment resulted in a change in the requirements of MLC kinase for Ca2+, CaM, and myosin. Titrations of MLC kinase activity showed a shift in K50 values for Ca2+ from 82 to 260 nM and for CaM from 2.2 to 25 nM in extracts from control and relaxin-treated tissues, respectively. The myosin Km values of MLC kinase from control and relaxin-treated tissues were 0.33 and 0.71 mg/ml, respectively. Under optimal assay conditions (100 microM Ca2+, 1 microM CaM, and 1.2 mg/ml of myosin) the activities of MLC kinase in both extracts were identical, regardless of hormone concentration or exposure time. These data suggest that relaxin-treatment results in a change in the affinity of MLC kinase for its substrate and modulator and that relaxin inhibits uterine contractile activity by a mechanism which involves a decrease in MLC kinase activity and, in turn, a decrease in phosphorylation of the 20,000-dalton light chains of myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号