首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the effect of fulvic acids (FA) on the migration of TNT in soil, batch experiments in which 2%, 5%, and 10% (w/w) of FA were added to soils were conducted. Adsorption kinetics and adsorption-desorption isotherms of TNT in soils were investigated, with results of the kinetics tests showing that the adsorption process could be divided into a fast and a slow stage and that FA could extend the adsorption time. Kinetic data were fit to pseudo first-order, pseudo second-order, Elovich, and intra-particle diffusion kinetic models. The fitting results showed that a pseudo second-order kinetic model best described the adsorption process, while Elovich and intra-particle diffusion kinetic models could accurately predict the adsorption at higher FA content. The adsorption-desorption isotherms were predicted using Linear, Freundlich, and Langmuir isotherm models. Results showed that the Freundlich model best described the adsorption-desorption process, and that FA increased adsorption capacity and enhanced the adsorption affinity. The hysteresis index suggested that FA could reduce the desorption of TNT in soil.  相似文献   

2.
为提高植物染料叶绿素铜钠盐对蚕丝织物上染过程的控制,提供染色工艺优化的理论指导,本文研究了叶绿素铜钠盐上染蚕丝织物的动力学吸附过程,探讨了染色机理,并运用准一级和准二级动力学模型对叶绿素铜钠盐染色蚕丝织物的实验数据进行模拟,计算叶绿素铜钠盐染色蚕丝织物的动力学参数.结果表明:叶绿素铜钠盐在蚕丝织物上的染色符合准二级动力学模型,且在染色温度70~90℃范围内,随着染色温度的升高,染色平衡吸附量降低,染色速率常数增大,半染时间减小,扩散系数增大.  相似文献   

3.
The objective of this study is to assess the environmentaly friendly Ni(II) adsorption from synthetic wastewater using waste pomace of olive oil factory (WPOOF). Batch kinetic studies were performed in order to investigate the adsorbent and adsorbate dose, solution pH, agitating speed and temperature. The maximum Ni(II) adsorption was obtained at pH 4.0. The equilibrium nature of Ni(II) adsorption at different temperature was described by the Freundlich, Langmuir and Temkin isotherms. The equilibrium data fit well the Temkin and Langmuir isotherm. The monolayer adsorption capacities of WPOOF as obtained from Langmuir isotherm at 60 °C was found to be 14.80 mg/g. The adsorption mechanism was examined by the FTIR technique. The results of the thermodynamic investigations indicated that the adsorption reactions were spontaneous (ΔG < 0), slightly endothermic (ΔH > 0) and irreversible (ΔS > 0). The pseudo first-order, pseudo second-order, Elovich and intraparticle diffusion kinetic models were used to describe the kinetic data.  相似文献   

4.
A batch adsorption system was applied to study the adsorption of Fe(II) and Fe(III) ions from aqueous solution by chitosan and cross-linked chitosan beads. The adsorption capacities and rates of Fe(II) and Fe(III) ions onto chitosan and cross-linked chitosan beads were evaluated. Chitosan beads were cross-linked with glutaraldehyde (GLA), epichlorohydrin (ECH) and ethylene glycol diglycidyl ether (EGDE) in order to enhance the chemical resistance and mechanical strength of chitosan beads. Experiments were carried out as function of pH, agitation period, agitation rate and concentration of Fe(II) and Fe(III) ions. Langmuir and Freundlich adsorption models were applied to describe the isotherms and isotherm constants. Equilibrium data agreed very well with the Langmuir model. The kinetic experimental data correlated well with the second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. Results also showed that chitosan and cross-linked chitosan beads were favourable adsorbers.  相似文献   

5.
Heavy metals can be adsorbed by living or non-living biomass. Submerged aquatic plants can be used for the removal of heavy metals. In this paper, lead, zinc, and copper adsorption properties of Ceratophyllum demersum (Coontail or hornwort) were investigated and results were compared with other aquatic submerged plants. Data obtained from the initial adsorption studies indicated that C. demersum was capable of removing lead, zinc, and copper from solution. The metal biosorption was fast and equilibrium was attained within 20 min. Data obtained from further batch studies conformed well to the Langmuir Model. Maximum adsorption capacities (q(max)) onto C. demersum were 6.17 mg/g for Cu(II), 13.98 mg/g for Zn(II) and 44.8 mg/g for Pb(II). Kinetics of adsorption of zinc, lead and copper were analysed and rate constants were derived for each metal. It was found that the overall adsorption process was best described by pseudo second-order kinetics. The results showed that this submerged aquatic plant C. demersum can be successfully used for heavy metal removal under dilute metal concentration.  相似文献   

6.
A new biosorbent was developed by coating chitosan, a naturally and abundantly available biopolymer, on to polyvinyl chloride (PVC) beads. The biosorbent was characterized by FTIR spectra, porosity and surface area analyses. Equilibrium and column flow adsorption characteristics of copper(II) and nickel(II) ions on the biosorbent were studied. The effect of pH, agitation time, concentration of adsorbate and amount of adsorbent on the extent of adsorption was investigated. The experimental data were fitted to Langmuir and Freundlich adsorption isotherms. The data were analyzed on the basis of Lagergren pseudo first order, pseudo-second order and Weber-Morris intraparticle diffusion models. The maximum monolayer adsorption capacity of chitosan coated PVC sorbent as obtained from Langmuir adsorption isotherm was found to be 87.9 mg g(-1) for Cu(II) and 120.5 mg g(-1) for Ni(II) ions, respectively. In addition, breakthrough curves were obtained from column flow experiments. The experimental results demonstrated that chitosan coated PVC beads could be used for the removal of Cu(II) and Ni(II) ions from aqueous medium through adsorption.  相似文献   

7.
Removal of lead from aqueous solutions by agricultural waste maize bran   总被引:5,自引:0,他引:5  
Maize bran is a low cost biosorbent that has been used for the removal of lead(II) from an aqueous solution. The effects of various parameters such as contact time, adsorbate concentration, pH of the medium and temperature were examined. Optimum removal at 20 degrees C was found to be 98.4% at pH 6.5, with an initial Pb(II) concentration of 100 mg l(-1). Dynamics of the sorption process and mass transfer of Pb(II) to maize bran were investigated and the values of rate constant of adsorption, rate constant of intraparticle diffusion and the mass transfer coefficients were calculated. Different thermodynamic parameters viz., changes in standard free energy, enthalpy and entropy were evaluated and it was found that the reaction was spontaneous and exothermic in nature. The adsorption data fitted the Langmuir isotherm. A generalized empirical model was proposed for the kinetics at different initial concentrations. The data were subjected to multiple regression analysis and a model was developed to predict the removal of Pb(II) from an aqueous solution.  相似文献   

8.
Low-cost activated carbon was prepared from Spartina alterniflora by phosphoric acid activation for the removal of Pb(II) from dilute aqueous solution. The effect of experimental parameters such as pH, initial concentration, contact time and temperature on the adsorption was studied. The obtained data were fitted with the Langmuir and Freundlich equations to describe the equilibrium isotherms. The kinetic data were fitted with the Lagergren-first-order, pseudo-second-order and Elovich models. It was found that pH played a major role in the adsorption process. The maximum adsorption capacity for Pb(II) on S. alterniflora activated carbon (SAAC) calculated from Langmuir isotherm was more than 99 mg g−1. The optimum pH range for the removal of Pb(II) was 4.8–5.6. The Freundlich isotherm model was found to best describe the experimental data. The kinetic rates were best fitted to the pseudo-second-order model. Thermodynamic study showed the adsorption was a spontaneous exothermic process.  相似文献   

9.
The present work investigated the adsorption behaviors of lysozyme onto weak cation exchangers at different temperatures. The adsorption isotherm, adsorption thermodynamics and adsorption kinetics were studied. The results indicate that the adsorption of lysozyme onto acrylic acid copolymer based beads (Hydrolite D115) is spontaneous and exothermic, while that onto agarose based beads (CM Sepharose 6 Fast Flow) is also spontaneous, but endothermic. The pseudo second-order kinetic model fits well to the dynamic adsorption experimental data, and the kinetic results are also in concert with the adsorption thermodynamics.  相似文献   

10.
Abstract

The removal of hexavalent chromium from aqueous solution using grape stalks wastes encapsulated in calcium alginate (GS–CA) beads was investigated. Cr(VI) sorption kinetics were evaluated as a function of chromium initial concentration and grape stalks (GS) content in the calcium alginate (CA) beads. The process follows pseudo second-order kinetics. Transport properties of hexavalent chromium on GS–CA beads was characterised by calculating chromium diffusion coefficient using the Linear Absorption Model (LAM). Langmuir isotherms, at pH 3.0 were used to describe sorption equilibrium data as a function of GS percentage in the CAbeads. Maximum uptake obtained was 86.42 mmol of Cr(VI) per L of wet sorbent volume. Results indicated that both kinetic and equilibrium models describe adequately the adsorption process.  相似文献   

11.
The biosorption of reactive dyes (Reactive Blue 2 - RB2 and Reactive Yellow 2 - RY2) onto dried activated sludge was investigated. The dye binding capacity of biosorbent was shown as a function of initial pH, initial dye concentration and type of dye. The equilibrium data fitted very well to both the Freundlich and Langmuir adsorption models. The results showed that both the dyes uptake processes followed the second-order rate expression.  相似文献   

12.
In this research, kinetics of Cr(VI) reduction by iron filings was investigated through a batch study in seven different soils. Chromate reduction experiments were carried out for initial Cr(VI) concentrations ranging from 20 to 100 mgkg?1 and iron filings dosage of 0 to 5% w/w. The experimental data were analyzed using various kinetic models including zero-order, pseudo first-order, power function, Elovich, and diffusion parabolic. Results showed that the Cr(VI) reduction efficiency in the presence of all studied soils increased with increasing iron filings dosage and decreased with increasing the initial Cr(VI) concentration. The reaction rates considerably depended on pH and were higher in acidic soils. The diffusion parabolic model was the best kinetic model as evidenced by the highest determination coefficient (r2) and the lowest standard error of the estimate (SE). The rate-limiting step(s) may be transport of chromate anions across a liquid film at the interface of soil-liquid, transport in liquid-filled macropores of iron filings aggregates, or diffusion in micropores and along the particle's surface.  相似文献   

13.
Many studies have been carried out on the biosorption capacity of different kinds of biomass. However, reports on the kinetic and equilibrium study of the biosorption process are limited. In our experiments, the removal of Cr(VI) from aqueous solution was investigated in a batch system by sorption on the dead cells of Bacillus licheniformis isolated from metal-polluted soils. Equilibrium and kinetic experiments were performed at various initial metal concentrations, pH, contact time, and temperatures. The biomass exhibited the highest Cr(VI) uptake capacity at 50°C, pH 2.5 and with the initial Cr(VI) concentration of 300 mg/g. The Langmuir and Freundlich models were considered to identify the isotherm that could better describe the equilibrium adsorption of Cr(VI) onto biomass. The Langmuir model fitted our experimental data better than the Freundlich model. The suitability of the pseudo first-order and pseudo second-order kinetic models for the sorption of Cr(VI) onto Bacillus licheniformis was also discussed. It is better to apply the pseudo second-kinetic model to describe the sorption system.  相似文献   

14.
In the present study a novel biomass, derived from the pulp of Saccharum bengalense, was used as an adsorbent material for the removal of Pb (II) ions from aqueous solution. After 50 minutes contact time, almost 92% lead removal was possible at pH 6.0 under batch test conditions. The experimental data was analyzed using Langmuir, Freundlich, Timken and Dubinin-Radushkevich two parameters isotherm model, three parameters Redlich—Peterson, Sip and Toth models and four parameters Fritz Schlunder isotherm models. Langmuir, Redlich—Peterson and Fritz-Schlunder models were found to be the best fit models. Kinetic studies revealed that the sorption process was well explained with pseudo second-order kinetic model. Thermodynamic parameters including free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated and reveal the spontaneous, endothermic and feasible nature of the adsorption process. The thermodynamic parameters of activation (ΔG #, ΔH #and ΔS #) were calculated from the pseudo-second order rate constant by using the Eyring equation. Results showed that Pb (II) adsorption onto SB is an associated mechanism and the reorientation step is entropy controlled.  相似文献   

15.
Coir pith was chemically modified for the adsorption of cobalt(II) ions from aqueous solution. Chemical modification was done by esterification using succinic anhydride followed by activation with NaHCO(3) in order to improve the adsorption of Co(II). Adsorptive removal of Co(II) from aqueous solution onto modified coir pith was evaluated in batch studies under varying conditions of agitation time and metal ion concentration to assess the kinetic and equilibrium parameters. A pseudo-second-order kinetic model fitted well for the sorption of Co(II) onto modified coir pith. Sorption kinetics showed that the loading of Co(II) by this material was quite fast under ambient conditions. The Langmuir and Freundlich equilibrium isotherm models provided excellent fits for the adsorption data, with R(2) of 0.99 and 0.98, respectively. After esterification, the maximum Co(II) sorption loading Q(0); was greatly improved. It is evident that chemically modified adsorbent exhibits better Co(II) removal capability than raw adsorbent suggesting that surface modification of the adsorbent generates more adsorption sites on its solid surface for metal adsorption. A complete recovery of the adsorbed metal ions from the spent adsorbent was achieved by using 1.0N HCl.  相似文献   

16.
Biosorption of cadmium (II) ions from aqueous solution onto immobilized cells of Pycnoporus sanguineus (P. sanguineus) was investigated in a batch system. Equilibrium and kinetic studies were conducted by considering the effect of pH, initial cadmium (II) concentration, biomass loading and temperature. Results showed that the uptake of cadmium (II) ions increased with the increase of initial cadmium (II) concentration, pH and temperature. Langmuir, Freundlich and Redlich-Peterson isotherm models were used to analyze the equilibrium data at different temperatures. Langmuir isotherm model described the experimental data well followed by Redlich-Peterson and Freundlich isotherm models. Biosorption kinetics data were fitted using pseudo-first, pseudo-second-order and intraparticle diffusion. It was found that the kinetics data fitted well the pseudo-second-order followed by intraparticle diffusion. Thermodynamic parameters such as standard Gibbs free energy (Delta G0), standard enthalpy (Delta H0) and standard entropy (Delta S0) were evaluated. The result showed that biosorption of cadmium (II) ions onto immobilized cells of P. sanguineus was spontaneous and endothermic nature.  相似文献   

17.
In this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, whereas for Cu(II), the corresponding value was 31.65 mg/g obtained with Khan model. The kinetic study demonstrated that the optimum agitation speed was 400 rpm, at which the best removal efficiency and/or minimum surface mass transfer resistance (MSMTR) was achieved. A pseudo-second-order rate kinetic model gave the best fit to the experimental data (R2 = 0.99), resulting in MSMTR values of 4.69× 10?5, 4.45× 10?6, and 1.12× 10?6 m/s for Pb(II), Cu(II), and Ni(II), respectively. The thermodynamic study showed that the biosorption process was spontaneous and exothermic in nature.  相似文献   

18.
The potential of nonliving biomass of Hydrilla verticillata to adsorb Pb(II) from an aqueous solution containing very low concentrations of Pb(II) was determined in this study. Effects of shaking time, contact time, biosorbent dosage, pH of the medium, and initial Pb(II) concentration on metal-biosorbent interactions were studied through batch adsorption experiments. Maximum Pb(II) removal was obtained after 2 h of shaking. Adsorption capacity at the equilibrium increased with increasing initial Pb(II) concentration, whereas it decreased with increasing biosorbent dosage. The optimum pH of the biosorption was 4.0. Surface titrations showed that the surface of the biosorbent was positively charged at low pH and negatively charged at pH higher than 3.6. Fourier transform infrared (FT-IR) spectra of the biosorbent confirmed the involvement of hydroxyl and C?O of acylamide functional groups on the biosorbent surface in the Pb(II) binding process. Kinetic and equilibrium data showed that the adsorption process followed the pseudo-second-order kinetic model and both Langmuir and Freundlich isothermal models. The mean adsorption energy showed that the adsorption of Pb(II) was physical in nature. The monolayer adsorption capacity of Pb(II) was 125 mg g?1. The desorption of Pb(II) from the biosorbent by selected desorbing solutions were HNO3 > Na2CO3 > NaOH > NaNO3.  相似文献   

19.
The ability of Calabrian pine bark wastes (Pinus brutia Ten) for the removal of Fe(II) ions from aqueous solution at different concentrations and temperatures at a fixed pH was investigated. While the amounts of Fe(II) ions adsorbed onto the bark increased with increasing concentration, it increased slightly with increasing the temperature. Kinetics studies showed that adsorption process followed the first-order kinetic model as well as intra-particle diffusion kinetics. Adsorption isotherm followed both Langmuir and Freundlich models. And it was determined that the adsorption was favorable from a dimensionless factor, R(L). Furthermore, the thermodynamic parameters demonstrated that the removal of Fe(II) by the bark was a physical process.  相似文献   

20.
The shell of the seed of Chrysophyllum albidum carbon was used to adsorb lead (Pb) from aqueous solution, the sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration, and particle size on adsorption were also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The first-order rate equation by Lagergren was tested on the kinetic data and the adsorption process followed first-order rate kinetics. Isotherm data were analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms; the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 72.1 mg Pb (II) g- 1 at initial pH of 5.0 at 30°C for the particle size of 1.00 to 1.25 mm with the use of 2.0 g/100 ml adsorbent mass. The structural features of the adsorbent were characterized by Fourier transform infrared (FTIR) spectrometry; the presence of hydroxyl, carbonyl, amide, and phosphate groups confirms the potential mechanism adsorption of the adsorbent. This readily available adsorbent is efficient in the uptake of Pb (II) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号