首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background, Aim and Scope Sustainability is a well recognised goal which is difficult to manage due to its complexity. As part of a series of sustainability management tools, a Product Sustainability Index (PSI) is translating the sustainability aspects to the organization of vehicle product development of Ford of Europe, thus allocating ownership and responsibility to that function. PSI is limiting the scope to those key environmental, social and economic characteristics of passenger vehicles that are controllable by the product development organisation. Materials and Methods: The PSI considers environmental, economic and social aspects based on externally reviewed life cycle environmental and cost aspects (Life Cycle Assessment, Cost of ownership / Life Cycle Costing), externally certified aspects (allergy-tested interior) and related aspects as sustainable materials, safety, mobility capability and noise. After the kick-off of their product development in 2002, the new Ford S-MAX and Ford Galaxy are serving as a pilot for this tool. These products are launched in Europe in 2006. The tracking of PSI performance has been done by engineers of the Vehicle Integration department within the product development organization. The method has been translated in an easy spreadsheet tool. Engineers have been trained within one hour trainings. The application of PSI by vehicle integration followed the principle to reduce the need for any incremental time or additional data to a minimum. PSI is adopted to the existing decision-making process. End of 2005, an internal expert conducted a Life Cycle Assessment and Life Cycle Costing (LCC) study for verification purposes using commercial software. This study and the PSI have been scrutinized by an external review panel according to ISO14040 and, by taking into consideration the on-going SETAC, work in the field of LCC. Results: The results of the Life Cycle based indicators of PSI as calculated by non-experts are fully in line with those of the more detailed expert study. The difference is below 2%. The new Ford Galaxy and Ford S-MAX shows significantly improved performance regarding the life cycle air quality, use of sustainable materials, restricted substances and safety compared to the previous model Galaxy. The affordability (Life Cycle Cost of Ownership) has also been improved when looking at the same engine types. Looking at gasoline versus diesel options, the detailed study shows under what conditions the diesel options are environmentally preferable and less costly (mileage, fuel prices, etc.). Discussion: The robustness of results has been verified in various ways. Based also on Sensitivity and Monte-Carlo Analysis, case study-specific requirements have been deduced defining criteria for a significant environmental improvement between the various vehicles. Only if the differences of LCIA results between two vehicles are larger than a certain threshold are the above-mentioned results robust. Conclusions: In general terms, an approach has been implemented and externally reviewed that allows non-experts to manage key environmental, social and economic aspects in the product development, also on a vehicle level. This allows mainstream functions to take ownership of sustainability and assigns accountability to those who can really decide on changes affecting the sustainability performance. In the case of Ford S-MAX and Galaxy, indicators from all three dimensions of sustainability (environment, social and economic) have been improved compared to the old Ford Galaxy. Recommendations and Perspectives: Based on this positive experience, it is recommended to make, in large or multinational organizations, the core business functions directly responsible and accountable for managing their own part of environmental, social and economic aspects of sustainability. Staff functions should be limited to starting the process with methodological and training support and making sure that the contributions of the different main functions fit together.  相似文献   

2.
Evaluating the sustainability of the urban water cycle is not straightforward, although a variety of methods have been proposed. Given the lack of integrated data about sewers, we applied the eco‐efficiency approach to two case studies located in Spain with contrasting climate, population, and urban and sewer configurations. Our goal was to determine critical variables and life cycle stages and provide results for decision making. We used life cycle assessment and life cycle costing to evaluate their environmental and economic impacts. Results showed that both cities have a similar profile, albeit their contrasting features, that is, operation and maintenance, was the main environmental issue (50% to 70% of the impacts) and pipe installation registered the greatest economic capital expenditure (70% to 75%) due to labor. The location of the wastewater treatment plant (WWTP) is an essential factor in our analysis mainly due to the topography effects (e.g., the annual pump energy was 13 times greater in Calafell). Using the eco‐efficiency portfolio, we observed that sewers might be less eco‐efficient than WWTPs and that we need to envision their design in the context of an integrated WWTP‐sewer management to improve sewer performance. In terms of methodological approach, the bidimensional nature of eco‐efficiency enables the benchmarking of product systems and might be more easily interpreted by the general public. However, there are still some constraints that should be addressed to improve communication, such as the selection of indicators discussed in the article.  相似文献   

3.
Sustainable use of wood may contribute to coping with energy and material resource challenges. The goal of this study is to increase knowledge of the environmental effects of wood use by analyzing the complete value chain of all wooden goods produced or consumed in Switzerland. We start from a material flow analysis of current wood use in Switzerland. Environmental impacts related to the material flows are evaluated using life cycle assessment–based environmental indicators. Regarding climate change, we find an overall average benefit of 0.5 tonnes carbon dioxide equivalent per cubic meter of wood used. High environmental benefits are often achieved when replacing conventional heat production and energy‐consuming materials in construction and furniture. The environmental performance of wood is, however, highly dependent on its use and environmental indicators. To exploit the mitigation potential of wood, we recommend to (1) apply its use where there are high substitution benefits like the replacement of fossil fuels for energy or energy‐intensive building materials, (2) take appropriate measures to minimize negative effects like particulate matter emissions, and (3) keep a systems perspective to weigh effects like substitution and cascading against each other in a comprehensive manner. The results can provide guidance for further in‐depth studies and prospective analyses of wood‐use scenarios.  相似文献   

4.
Background, Aim and Scope Societal assessment is advocated as one of the three pillars in the evaluation of, and movement toward, sustainability. As is the case with the well established LCA, and the emerging LCC, societal life cycle assessment should be developed in such as way as to permit relative product comparisons, rather than absolute analyses. The development of societal life cycle assessment is in its infancy, and important concepts require clarification including the handling of the more than two hundred social indicators. Therefore, any societal life cycle assessment methodology must explain why it is midpoint- or endpoint-based as well as its reasons to be complimentary with, or included within, life cycle assessment. Materials and Methods: A geographically specific midpoint based societal life cycle assessment methodology, which employs labour hours as an intermediate variable in the calculation has been developed and evaluated against an existing LCA comparing two detergents. The methodology is based on using an existing life cycle inventory and, therefore, has identical system boundaries and functional units to LCA. The societal life cycle assessment methodology, much like LCA, passes from inventory, through characterisation factors, to provide an ultimate result. In analogy to economics and cost estimation, societal life cycle assessment combines, into its statistics, both data as well as estimates, some of which are correlated to elements of the LCI. It focuses on the work hours required to meet basic needs.A geographically specific midpoint based societal life cycle assessment methodology, which employs labour hours as an intermediate variable in the calculation has been developed and evaluated against an existing LCA comparing two detergents. The methodology is based on using an existing life cycle inventory and, therefore, has identical system boundaries and functional units to LCA. The societal life cycle assessment methodology, much like LCA, passes from inventory, through characterisation factors, to provide an ultimate result. In analogy to economics and cost estimation, societal life cycle assessment combines, into its statistics, both data as well as estimates, some of which are correlated to elements of the LCI. It focuses on the work hours required to meet basic needs. Results: The societal life cycle assessment of an appended case study indicates that Detergent 2 generates, relative Detergent 1, approximately 20% less employment in Russia, 35% less in France, and approximately five times more in Canada and South Africa, the latter derived from its higher aluminium content. There is essentially no difference in the employment in the use country (Switzerland) nor in Morocco, where some of the waste disposal was assumed to take place. Discussion: Given that housing is more affordable, in terms of shelter units per labour hour, in South Africa, compared to Europe, it is, therefore, of no surprise that Detergent 2 provides a societal benefit in terms of housing. Detergent 2 does, however, result in dematerialization, in that its environmental impact is lower (LCI). Therefore, as less resources are employed and labour required, in extraction, production and transport, the societal benefits in health care, education and necessities, a grouped variable, are lower for Detergent 2. This is despite the employment shift away from Europe and to less 'developed' regions. Conclusions: The assessment of societal impacts involves several hundred specific indicators. Therefore, aggregation is, if not impossible, at least heavily value laden and, therefore, not recommended. The impact of a societal action, derived from a product purchase or otherwise, is also highly local. Given this, societal life cycle assessment, carried through to the midpoints, and based on an existing LCI, has been developed as a methodology. The results, for an existing LCA-detergent case, illustrate that societal life cycle assessment provides a means to investigate how policy and policy makers can be linked to sustainable development. The sensitivity analyses also clarify the decisions in regards to product improvement. Recommendations and Perspectives: The goal of societal life cycle assessment is not to make decisions, but rather to point out tradeoffs to decision- or policy-makers. This case, and the methodology that it is based on, permit such a comparison. Substituting Detergent 2 for Detergent 1 reduces resource use at the expense of an increase in atmospheric and terrestrial emissions. Access to housing is improved, though at the expense of education, health care and necessities. As a recommendation, one would look at the fact that the majority of indicators are superior for Detergent 2 relative to Detergent 1and seek to improve the aqueous emissions in Detergent 2 via a change in the formulation. An energy or fossil fuel substitution at the site of production could also improve the societal benefits in terms of education and health care. While societal life cycle assessment remains in its infancy, a methodology does exist. The field can, therefore, be viewed in a similar way to LCA in the early 1990s, with a need to validate, consolidate and, ultimately, built toward a standard. The contribution is aimed at contributing to such a discussion and therefore proposes that a societal life cycle assessment be LCI-derived, geographically specific, based on mid-points, and use employment as an intermediate variable.  相似文献   

5.
The relationship between environmental life cycle costing (ELCC) and sustainability was explored using two detailed wastewater case studies. The case studies were selected to increase the tension between existing market values and values for sustainability; the first case study considered incremental change to an existing plant and the second considered a paradigm shift in wastewater treatment. Pollution control provided the greatest cost savings for the first case study and provided a “win‐win” result—meeting existing standards and saving money. However, benefits for pollution control beyond current standards were not captured, which emphasized the role of standards to internalize as well as limit the values considered in ELCC. In the second case study, the value of water had the potential to change the focus of wastewater design from pollution abatement to resource recovery. However, social acceptance of recovered water and market access for resources created large risk for investment. The ELCC was also sensitive to the discount rate which limited longer‐term considerations. Other sustainability values such as scarcity and ecological thresholds were not captured. The ELCC code of practice suggests including such costs if likely in the foreseeable future; defining these values may also clarify the role of ELCC to evaluate sustainability over the life cycle.  相似文献   

6.
Goal, Scope and Background To enhance the use of life cycle assessment (LCA) as a tool in business decision-making, a methodology for Social life cycle impact assessment (LCIA) is being developed. Social LCA aims at facilitating companies to conduct business in a socially responsible manner by providing information about the potential social impacts on people caused by the activities in the life cycle of their product. The development of the methodology has been guided by a business perspective accepting that companies, on the one hand, have responsibility for the people affected by their business activities, but, on the other hand, must also be able to compete and make profit in order to survive in the marketplace. Methods A combined, bottom-up and top-down approach has been taken in the development of the Social LCIA. Universal consensus documents regarding social issues as well as consideration for the specific business context of companies has guided the determination of damage categories, impact categories and category indicators. Results Discussion, and Conclusion. The main results are the following: (1) Impacts on people are naturally related to the conduct of the companies engaged in the life cycle rather than to the individual industrial processes, as is the case in Environmental LCA. Inventory analysis is therefore focused on the conduct of the companies engaged in the life cycle. A consequence of this view is that a key must be determined for relating the social profiles of the companies along the life cycle to the product. This need is not present in Environmental LCA, where we base the connection on the physical link which exists between process and product. (2) Boundaries of the product system are determined with respect to the influence that the product manufacturer exerts over the activities in the product chain. (3) A two-layer Social LCA method with an optional and an obligatory set of impact categories is suggested to ensure both societal and company relevance of the method. The obligatory set of impact categories encompasses the minimum expectations to a company conducting responsible business. (4) A new area of protection, Human dignity and Well-being, is defined and used to guide the modelling of impact chains. (5) The Universal Declaration of Human Rights serves as normative basis for Social LCA, together with local or country norms based on socio-economic development goals of individual countries. The International Labour Organisation's Conventions and Recommendations, and the Tripartite Declaration of Principles concerning Multinational Enterprises and Social Policy, support development of the impact pathway top-down, starting from the normative basis. (6) The obligatory part of Social LCA addresses the main stakeholder groups, employees, local community and society. Recommendations and Outlook Social LCA is still in its infancy and a number of further research tasks within this new area are identified.  相似文献   

7.
Goal, Scope and Background This paper is concerned with a life cycle assessment (LCA) and life cycle costing (LCC) by the use of the waste input-output (WIO) quantity- and price model of air conditioners with different energy efficiency at the use phase (high-end, low-end and average models) that were available in Japan as of winter 2002. The functional unit is an air conditioner of the 2.5kW type that is used for 10 years, and then subjected to an end-of-life (EoL) process that is consistent with the Japanese law on the recycling of appliances. Methods This is the first simultaneous application of the WIO methodology to an LCA and LCC over the entire life-cycle of a product including the use phase, and represents a methodological extension (in the sense of considering the use phase) and integration (in the sense of a simultaneous application) of previous studies by us (Kondo and Nakamura, Int. J. LCA, 2004, Nakamura and Kondo, Ecol. Econ., 2005, in press). The main body of data is provided by the WIO table for the year 2000, an update of the previous table for 1995 that was used in the above WIO studies. Compared with the WIO table for 1995 that consisted of only about 80 industry sectors, the current one consists of about 400 industry sectors, and includes air conditioner as a separate sector. The data on the purchase price and efficiency of air conditioners indicate wide variations: the cheapest one (the low-end model) costs half of the most expensive one (the high-end model), but its efficiency is about half of the latter. Results and Discussion When the cost in the use and EoL phases is included, the low-end model becomes the most expensive one, and the high-end model with the highest purchase cost the least expensive. This reversal of the relative cost levels is attributed to the difference in the efficiency in the use phase. A sensitivity analysis indicates that a reduction of the electricity price in the use phase by about 40% does not alter the significant superiority of the high-end model over the low-end model. In spite of the largest amount of input in the production phase, the high-end model performs the best in terms of both global warming potential (GWP) and landfill, while the low-end model performs the worst. The use phase generates the largest amount of waste for landfill across the three models, the largest component of which is flyash generated from coal firing power plants. A possible internalization of externality in the form of carbon tax was found to work in favor of the high-end model. The cost advantage of the high-end model, however, is sensitive to the rate of discounting of future costs: discounting at 15% diminishes its advantage over the low-end model. Recommendation and Perspective The results indicate the effectiveness of the pricing based on the life cycle cost for achieving sustainability, that is, for promoting the shift of the demand away from appliances with low environmental performance to the one with higher environmental performance. Acceptance by society of pricing based on life cycle costing would require, among other things, an economy-wide standardization of the LCC concept (in a manner analogous to ISO-LCA) that can be used complementary to ISO-LCA.  相似文献   

8.
Goal, Scope, and Background The main goal of the study is a comprehensive life cycle assessment of kerosene produced in a refinery located in Thessaloniki (Greece) and used in a commercial jet aircraft. Methods The Eco-Indicator 95 weighting method is used for the purpose of this study. The Eco-Indicator is a method of aggregation (or, as described in ISO draft 14042, 'weighting through categories') that leads to a single score. In the Eco-indicator method, the weighing factor (We) applied to an environmental impact index (greenhouse effect, ozone depletion, etc.) stems from the 'main' damage caused by this environmental impact. Results and Discussion The dominant source of greenhouse gas emissions is from kerosene combustion in aircraft turbines during air transportation, which contributes 99.5% of the total CO2 emissions. The extraction and refinery process of crude oil contribute by around 0.22% to the GWP. This is a logical outcome considering that these processes are very energy intensive. Transportation of crude oil and kerosene have little or no contribution to this impact category. The main source of CFC-11 equivalent emissions is refining of crude oil. These emissions derive from emissions that result from electricity production that is used during the operation of the refinery. NOx emissions contribute the most to the acidification followed by SO2 emissions. The main source is the use process in a commercial jet aircraft, which contributes approximately 96.04% to the total equivalent emissions. The refinery process of crude oil contributes by 2.11% mainly by producing SO2 emissions. This is due to the relative high content of sulphur in the input flows of these processes (crude oil) that results to the production of large amount of SO2. Transportation of crude oil by sea (0.76%) produces large amount of SO2 and NOx due to combustion of low quality liquid fuels (heavy fuel oil). High air emissions of NOx during kerosene combustion result in the high contribution of this subsystem to the eutrophication effect. Also, water emissions with high nitrous content during the refining and extraction of crude oil process have a big impact to the water eutrophication impact category. Conclusion The major environmental impact from the life cycle of kerosene is the acidification effect, followed by the greenhouse effect. The summer smog and eutrophication effect have much less severe effect. The main contributor is the combustion of kerosene to a commercial jet aircraft. Excluding the use phase, the refining process appears to be the most polluting process during kerosene's life cycle. This is due to the fact that the refining process is a very complicated energy intensive process that produces large amounts and variety of pollutant substances. Extraction and transportation of crude oil and kerosene equally contribute to the environmental impacts of the kerosene cycle, but at much lower level than the refining process. Recommendation and Perspective The study indicates a need for a more detailed analysis of the refining process which has a very high contribution to the total equivalent emissions of the acidification effect and to the total impact score of the system (excluding the combustion of kerosene). This is due to the relative high content of sulphur in the input flows of these processes (crude oil) that results to the production of large amount of SO2.  相似文献   

9.
- Preamble. This series of two papers analyses and compares the environmental loads of different water production technologies in order to establish, in a global, rigorous and objective way, the less aggressive technology for the environment with the present state of the art of the technology. Further, it is also presented an estimation of the potential environmental loads that the considered technologies could provoke in future, taking into account the most suitable evolution of the technology. - Part 1 presents the assessment of most commercial desalination technologies which are spread worldwide: Reverse Osmosis, Multi Effect Desalination and Multi Stage Flash. Part 2 presents the comparative LCA analysis of a big hydraulic infrastructure, as is to be found in the Ebro River Water Transfer project, with respect to desalination. - DOI: http://dx.doi.org/10.1065/lca2004.09.179.1 - Intention, Goal and Background. In this paper, some relevant results of a research work are presented, the main aim of which consists of performing the environmental assessment of different water production technologies in order to establish, in a global, rigorous and objective way, the less aggressive technology for the environment of potable water supply to the end users. That is, the scope of this paper is mostly oriented to the comparative Life Cycle Assessment of different water production technologies instead of presenting new advancements in the LCA methodology. In Part 1, the environmental loads associated with the most widespread and important commercial desalination technologies all over the world - Reverse Osmosis (RO), Multi Effect Desalination (MED) and Multi Stage Flash (MSF) – are compared. The assessment technique is the Life Cycle Analysis (LCA), which includes the entire life cycle of each technology, encompassing: extraction and processing raw materials, manufacturing, transportation and distribution, operation and final waste disposal.- Methods and Main Features. The software SimaPro 5.0, developed by Dutch PRé Consultants, has been used as the analysis tool, because it is a well known, internationally accepted and validated tool. Different evaluation methods have been applied in the LCA evaluation: CML 2 baseline 2000, Eco-Points 97 and Eco-Indicator 99. Data used in the inventory analysis of this Part 1 come from: a) existing plants in operation; b) data bases implemented in the SimaPro 5.0 software -BUWAL 250, ETH-ESU 96, IDEMAT 2001. Different scenarios have been analyzed in both parts in order to estimate, not only the potential of reduction of the provoked environmental loads with the present state of the art of technology, but also the most likely future trend of technological evolution. In Part 1, different energy production models and the integration of desalination with other productive processes are studied, while the effect of the most likely technological evolution in the midterm, and the estimation of the environmental loads to the water transfer during drought periods are considered in Part 2. Results and Discussion The main contribution to the global environmental impact of desalination technologies comes from the operation, while the other phases, construction and disposal, are almost negligible when compared to it. Energy is very important in desalination, for this reason the environmental loads change a lot depending on the technology used for providing the energy used in the desalination process. Among the different analyzed technologies, RO is the least aggressive desalination technology (one order of magnitude lower than the thermal processes, MSF and MED) for the environment. When integrating thermal desalination with other productive processes taking advantage of the residual heat, the environmental loads of thermal desalination technologies is highly reduced, obtaining similar loads to that of RO. The environmental loads of desalination technologies are significantly reduced when an energy model based on renewable energies is used. Taking into account the technological evolution, which is experiencing the RO, a reduction of its environmental load by about 40% is to be expected in the mid-term. Conclusion The main conclusion of Part 1 is that, with the present state of the art of the technology, RO is clearly the desalination technology with a reduced environmental load (one order of magnitude lower than the thermal processes, MSF and MED). In the case of thermal desalination technologies, their environmental load can be highly reduced (about 1,000 times less) when integrated with other industrial processes. In the case of RO, the scores and the airborne emissions obtained from an electricity production model based on renewable energies are about 65-70 times lower than those obtained when the electricity production model is mainly based on fossil fuels. Recommendations and Outlook Although desalination technologies are energy intensive and provoke an important environmental load, they present a high potential in being reduced since: a) in the mid-term, it is to be expected that the different technologies could improve their efficiency significantly, b) the environmental loads would be highly reduced if the energy production models were not mainly based on fossil fuels and c) the energy consumption, particularly in the case of thermal desalination, can be drastically reduced when integrating desalination with other productive processes. The results presented in this paper indicate that a very interesting and promising field of research is available in order to reduce the environmental load of these vigorous and increasing desalination technologies.  相似文献   

10.
Goal, Scope and Background In contrast to inventory data of energy and transport processes, public inventory data of chemicals are rather scarce. Chemicals are important to consider in LCA, because they are used in the production of many, if not all, products. Moreover, they may cause considerable environmental impacts. For these reasons, it was one goal of the new ecoinvent database to provide LCI data on chemicals. In this paper, the methods and procedures used for establishing LCIs of chemicals in ecoinvent are presented.Methods Three different approaches are suggested for situations of differing data availability. First, in the case of good data availability, the general quality guidelines of ecoinvent can be followed. Second, a procedure is proposed for the translation of aggregated inventory data (cumulative LCI results) from industry into the ecoinvent format. This approach was used, if adequate unit process data was not available. Third, a procedure is put forward for estimating inventory data using stoichiometric equations from technical literature as a main information source. This latter method was used if no other information was available. The application of each of the three procedures is illustrated with the help of a case study.Results and Conclusion When sufficient information is available to follow the general guidelines of ecoinvent, the resulting dataset is characterized by a high degree of detail, and it is thus of high quality. For chemicals, however, the application of the standard procedure is possible in only a few cases. When using industrial data, the main drawback is the fact that those data are often available only as aggregated data, thus being out of tune with the quality guidelines of ecoinvent and its main aim, the harmonization of LCI data. As a third approach, the use of the stoichiometric reaction equation is used for the compilation of LCI datasets of chemicals. This approach represents an alternative to neglecting chemicals completely, but it contains a high risk to not consider important aspects of the life cycle of the respective substance.Outlook Further work in the area of chemicals should focus on an improvement of datasets, so far established by either of the two estimation procedures (APME method; estimation based on technical literature) described. Besides the improvement of already established inventories, the compilation of further harmonized inventories of specific types of chemicals (e.g. solvents) or of chemicals for new industrial sectors (e.g. electronics industry) are in discussion.  相似文献   

11.
Goal, Scope and Background Wood has many applications and it is often in competition with other materials. Chipboard is the most common item of wood-based materials and it has attained the highest economical development in recent years. Relevant up-to-date environmental data are needed to allow the environmental comparison of wood with other materials. There are several examples of Life Cycle Assessment (LCA) evaluations of some wood products and forest-technology systems, but no comprehensive Life Cycle Inventory (LCI) data for particleboard manufacture is available in the literature. The main focus of this study is to generate a comprehensive LCI database for the manufacture of resin-bonded wood particleboards. Methods In this work, International Organization for Standardization (ISO) standards and Ecoindicator 99 methodology were considered to quantify the potential environmental impact associated to the system under study. A Spanish factory considered representative of the 'state of art' was studied in detail. The system boundaries included all the activities taking place inside the factory as well as the activities associated with the production of the main chemicals used in the process, energy inputs and transport. All the data related to the inputs and outputs of the process were obtained by on-site measurements. Results and Discussion LCI methodology was used for the quantification of the impacts of the particleboard manufacture. The inventory data of the three defined subsystems are described: - Wood preparation: a comprehensive inventory of data including storage, debarking, particle production, storage and measurement of particles, drying and combustion of the bark for energy purposes. - Board shaping: data related to particle classification, resin mixing, mattress formation and the pressing stage. - Board finishing: cooling data, finishing, storage and distribution of the final product. The system was characterised with Ecoindicator 99 methodology (hierarchic version) in order to identify the 'hot spots'. Damage to Human Health was mainly produced by the subsystem of Board finishing. The subsystem of Board shaping was the most significant contributor to damage to the Ecosystem Quality and Resources. Conclusions With the final aim of creating a database to identify and characterise the manufacture of particleboard, special attention was paid to the inventory analysis stage of the particleboard industry. A multicriteria approach was applied in order to define the most adequate use of wood wastes. Environmental, economic and social considerations strengthen the hypothesis that the use of forest residues in particleboard manufacture is more sustainable than their use as fuel. Recommendations and Outlook In this work, particleboard was the product analysed, as it is one of the most common wood-based materials. Future work will focus on the study of another key wood board: Medium Density Fibreboard (MDF). Moreover, factors with strong geographical dependence, such as the electricity profile and final transport of the product, will be analysed. In addition, the definition of widespread functional unit to study the use of wood wastes at the end-of-life stage may be another issue of outstanding interest.  相似文献   

12.
Life cycle cost (LCC) computations are a well-established instrument for the evaluation of intertemporal choices in organizations, but they have not been widely adopted by private consumers yet. Consumer investment decisions for products and services with higher initial costs and lower operating costs are potentially subject to numerous cognitive biases, such as present-biased preferences or framing effects. This article suggests a classification for categorizing different cost profiles for eco-innovation and a conceptual model for the influence of LCC information on consumer decisions regarding eco-innovation. It derives hypotheses on the decision-making process for eco-innovation from a theoretical perspective. To verify the hypotheses, the publication reviews empirical studies evaluating the effects of LCC information on consumer investment decisions. It can be concluded that rather than finding ways to make customers pay more for environmentally sound products, the marketing challenge for eco-innovation should be reconceptualized as one of lowering customers' perceived initial cost and increasing awareness of LCC. Most existing studies report a positive effect of LCC information on the purchase likelihood of eco-innovations. Disclosing LCC information provides an important base for long-term thinking on the individual, corporate, and policy levels.  相似文献   

13.
Goal, Scope and Background  Two methods of simplified LCA were evaluated and compared to the results of a quantitative LCA. These are the Environmentally responsible product assessment matrix developed by Graedel and Allenby and the MECO-method developed in Denmark. Methods  We used these in a case study and compared the results with the results from a quantitative LCA. The evaluation also included other criteria, such as the field of application and the level of arbitrariness. Results and Discussion  The MECO-method has some positive qualities compared to the Environmentally responsible product assessment matrix. Examples of this are that it generates information complementary to the quantitative LCA and provides the possibility to consider quantitative information when such is available. Some of the drawbacks with the Environmentally responsible product assessment matrix are that it does not include the whole lifecycle and that it allows some arbitrariness. Conclusions  Our study shows that a simplified and semi-quantitative LCA (such as the MECO-method) can provide information that is complementary to a quantitative LCA. In this case the method generates more information on toxic substances and other impacts, than the quantitative LCA. We suggest that a simplified LCA can be used both as a pre-study to a quantitative LCA and as a parallel assessment, which is used together with the quantitative LCA in the interpretation. Recommendations and Outlook  A general problem with qualitative analyses is how to compare different aspects. Life cycle assessments are comparative. The lack of a quantitative dimension hinders the comparison and can thereby hinder the usefulness of the qualitative method. There are different approaches suggested to semiquantify simplified methods in order to make quantitative comparisons possible. We think that the use of fabricated scoring systems should be avoided. If quantitative information is needed, one should consider performing a simplified quantitative LCA instead.  相似文献   

14.

Background and Objective

. Values in the known weighting methods in Life Cycle Assessment are mostly founded by the societal systems of developed countries. What source of weights and which weighting methods are reliable for a big developing country like China? The purpose of this paper is to find a possible weighting method and available data that will work well for LCA practices conducted in China. Since government policies and decisions play a leading role in the process of environmental protection in developing countries, the weights derived from political statements may be a consensus by representatives of the public.

Methods

'Distance-to-political target' principle is used in this paper to derive weights of five problem-oriented impact categories. The critical policy targets are deduced from the environmental policies issued in the period of the Ninth Five-year (1996-2000) and the Tenth Five-year (2001-2005) Plan for the Development of National Economy and Society of China. Policy targets on two five-year periods are presented and analyzed. Weights are determined by the quotient between the reference levels and target levels of a certain impact category.

Results and Discussion

Since the Tenth Five-year Plan put forward the overall objective to reduce the level of regional pollution by 2005, the weights for AP, EP and POCP for 2000-2005 are more than 1. By comparison between the Ninth Five-year and Tenth Five-year period, the results show that the weights obtained in this paper effectively represent Chinese political environmental priorities in different periods. For the weights derived from China's political targets for the overall period 1995-2005, the rank order of relative importance is ODP>AP>POCP>EP>GWP. They are recommended to the potential users for the broader disparity among the five categories. By comparison with the weights presented by the widespread EDIP method, the result shows that there's a big difference in the relative importance of ozone depletion and global warming.

-

In conclusion, the weighting factors and rank order of impact categories determined in this study represent the characteristics of the big developing country. The derived weighting set can be helpful to LCA practices of products within the industrial systems of China.
  相似文献   

15.
Background Aims, and Scope. As products are, directly and indirectly, main sources for ecological impact, the overall enhancement of products' ecological behaviour is an important contribution to the protection of the Earth's biosphere. This is especially important in a world where the major economical system is based on a constant rise in industrial production, consumption, and disposal of products. The true ecological performance of a product can only be determined by consideration of the impact arising from the entire lifecycle, and by including all known impacts into the assessments. The state of technology provides a standardized framework for such life cycle assessments (LCA) in the ISO 14040 series (see ISO 1997), and numerous databases and software tools are available to support the conduction of LCA. To integrate ecological indicators into decisions of everyday product development, as natural as it is the case today with finite items, design, and costs, indicators based on a consideration of the product's entire life have to be generated with little effort and in short time. Methods This article describes the fundamental principles of a technology designed to integrate lifecycle information into common 3-dimensional product models, like the ones used within modern Computer Aided Design (CAD) systems. Thereby, ecological assessments can be effectively undertaken during product development, where most of the environmental lock-in of a product is defined (see Lewis et al. 2001). Overall effects of alterations in materials or other product properties can be assessed instantly, supporting on the spot decisions to reach an improved product design. Results Next to an information model that manages the product and process representation, the research on which this article is based also deals with the calculation of resulting indicators, database access to ecological indicators, a graphical user interface, and a synchronisation tool for the CAD system Pro/Engineer . The developed concepts have been implemented as a prototype software and validated in different stages. Conclusions The concepts described in this article are a foundation for tools that integrate ecological assessments into everyday product development, on the basis of 3-dimensional CAD systems. Reuse of existing CAD data, an improved understanding of the assessment structure by product developers, and an automated calculation of resulting indicators are approaches to largely enhance the efficiency of product-related ecological assessments.  相似文献   

16.
Goal, Scope and Background The Apeldoorn Workshop (April 15th, 2004, Apeldoorn, NL) brought together specialists in LCA and Risk Assessment to discuss current practices and complications of the life cycle impact assessment (LCIA) ecological toxicity (ecotox) methodologies for metals. The consensus was that the LCIA methods currently available do not appropriately characterize impacts of metals due to lack of fundamental metals chemistry in the models. A review of five methods available to perform ecotox impact assessment for metals has been prepared to provide Life Cycle Assessment (LCA) practitioners with a better understanding of the current state of the science and potential biases related to metals. The intent is to provide awareness on issues related to ecotox impact assessment. Methods In this paper two case studies, one a copper based product (copper tube), the other a zinc-based product (gutter systems), were selected and examined by applying freshwater ecological toxicity impact models – USES-LCA, Eco-indicator 99 (EI 99), IMPACT 2002, EDIP 97, and CalTOX-ETP. Both studies are recent, comprehensive, cradle-to-gate, and peer-reviewed. The objective is to review the LCIA results in the context of the practical concerns identified by the Apeldoorn Declaration, in particular illustrating any inconsistencies such as chemical characterization coverage, species specificity, and relative contribution to impact results. Results and Discussion The results obtained from all five of the LCIA methods for the copper tube LCI pointed to the same substance as being the most important – copper. This result was obtained despite major fundamental differences between the LCIA methods applied. However, variations of results were found when examining the freshwater ecological toxicity potential of zinc gutter systems. Procedural difficulties and inconsistencies were observed. In part this was due to basic differences in model nomenclature and differences in coverage (IMPACT 2002+ and EDIP 97 contained characterization factors for aluminium that resulted in 90% and 22% contribution to burden respectively, the other three methods did not). Differences were also observed relative to the emissions source compartment. In the case of zinc, air emissions were found to be substantial for some ecotox models, whereas, water emissions results were found to be of issue for others. Conclusions This investigation illustrates the need to proceed with caution when applying LCIA ecotox methodologies to life cycle studies that include metals. Until further improvements are made, the deficiencies should be clearly communicated as part of LCIA reporting. Business or policy decisions should not without further discussion be based solely on the results of the currently available methods for assessing ecotoxicity in LCIA. Outlook The outlook to remedy deficiencies in the ecological toxicity methods is promising. Recently, the LCIA Toxic Impacts Task Force of the UNEP/SETAC Life Cycle Initiative has formed a subgroup to address specific issues and guide the work towards establishment of sound characterization factors for metals. Although some measure of precision of estimation of potential impact has been observed, such as in the case of copper, accuracy is also a major concern and should be addressed. Further investigation through controlled experimentation is needed, particularly LCIs composed of a variety of inorganics as well as organics constituents. Support for this activity has come from the scientific community and industry as well. Broader aspects of structure and nomenclature are being collectively addressed by the UNEP/SETAC Life Cycle Initiative. These efforts will bring practical solutions to issues of naming conventions and LCI to LCIA flow assignments.  相似文献   

17.
Goal, Scope and Background The goal of this study is to determine the environmental impact of using one cubic metre of water in the Walloon Region. The whole anthropogenic water cycle is analysed, from the pumping stations to the wastewater treatment plants. The functional unit has been defined as one cubic metre of water at the consumer tap. This study was carried out in the context of the EU Water Framework Directive. It is part of a programme called PIRENE launched by the Walloon Region to fulfil the requirements of this Directive. Methods A model of the whole anthropogenic water cycle in the Walloon Region was developed. The model is mainly based on site-specific data given by the companies working in the field of water production and wastewater treatment. It was used to assess the environmental impact from the pumping station to the wastewater treatment plant using the Eco-Indicator 99 methodology. Eco-Indicator 99 has been adapted in order to better take into account environmental impact of acidification and eutrophication. Characterisation factors have been calculated for COD, nitrogen and phosphate emissions. From the reference model, different scenarios have been elaborated. Results and Discussion On the basis of the inventory, the environmental impact of five scenarios has been evaluated. Acidification and eutrophication is the most important impact category. It is mainly caused by the wastewater that is discharged without any treatment, but also by the effluent of the wastewater treatment plant. So, this impact category has the lowest environmental load when the wastewater treatment rate is high. For the other impact categories, the impact generally increases with the wastewater treatment rate. During wastewater treatment, energy and chemicals are indeed consumed to improve the quality of the final outputs, and thus to reduce the environmental impact related to acidification and eutrophication. A comparison between the scenarios has also shown that the building of the sewer network has a significant contribution to the global environmental load and that the stages before the tap contribute less to the environmental impact than the stage after the tap. Conclusions The three stages that contribute significantly to the global environmental load are: water discharge, wastewater treatment operation and, to a lesser extent, the sewer system. The results show that the wastewater treatment rate must be as high as possible, using either collective or individual wastewater treatment plants. Even a small water discharge without any treatment has a significant environmental impact. Operation of the wastewater treatment plants must also be improved to reduce the environmental impact caused by the effluent of the plants. For new wastewater treatment plants, building plants treating nitrogen and phosphorus should be encouraged. A sensitivity analysis was conducted and showed that the results of the study were not very affected by a modification of key parameters. Impact assessment using the CML methodology has confirmed the results obtained with Eco-Indicator 99.  相似文献   

18.
- Preamble. This series of two papers analyses and compares the environmental loads of different water production technologies in order to establish, in a global, rigorous and objective way, the less aggressive technology for the environment with the present state of the art of technology. Further, an estimation of the potential environmental loads that the considered technologies could provoke in future is also presented, taking into account the most suitable evolution of the technology. - Part 1 presents the assessment of most commercial desalination technologies which are spread worldwide: Reverse Osmosis, Multi Effect Desalination and Multi Stage Flash. Part 2 presents the comparative LCA analysis of a big hydraulic infrastructure, as is to be found in the Ebro River Water Transfer project, with respect to desalination. - Intention, Goal and Background. In this paper some relevant results of a research work are presented, the main aim of which consists of performing the environmental assessment of different water production technologies in order to establish, in a global, rigorous and objective way, the less aggressive technology for the environment for supplying potable water to the end users. The scope of this paper is mostly oriented to the comparative Life Cycle Assessment of different water production technologies instead of presenting new advancements in the LCA methodology. Based on the results obtained in Part 1 (LCA of most widespread commercial desalination technologies), the particular case of a big hydraulic project, which is the Ebro River Water Transfer (ERWT) considered in the Spanish National Hydrologic Plan, versus the production by desalination of the same amount of water to be diverted, is compared in Part 2. The assessment technique is the Life Cycle Analysis (LCA), which includes the entire life cycle of each technology, encompassing: extraction and processing raw materials, manufacturing, transportation and distribution, operation and final waste disposal. Methods and Main Features. The software SimaPro 5.0, developed by Dutch PRé Consultants, has been used as the analysis tool, because it is a well known, internationally accepted and validated tool. Different evaluation methods have been applied in the LCA evaluation: CML 2 baseline 2000, Eco-Points 97 and Eco-Indicator 99. Data used in the inventory analysis of this Part 2 come from: a) desalination: data obtained for existing plants in operation; b) ERWT: Project approved in the Spanish National Hydrologic Plan and its Environmental Impact Evaluation and; c) data bases implemented in the SimaPro software – BUWAL 250, ETH-ESU 96, IDEMAT 2001. Different scenarios have been analyzed in both parts in order to estimate not only the potential of reduction of the provoked environmental loads with the present state of the art of technology, but also the most likely future trend of technological evolution. In Part 1, different energy production models and the integration of desalination with other productive processes are studied, while the effect of the most likely technological evolution in the midterm, and the estimation of the environmental loads to the water transfer during drought periods are considered in Part 2. Results and Discussion As proven in Part 1, RO is a less aggressive desalination technology for the environment. Its aggression is one order of magnitude lower than that of the thermal processes, MSF and MED. The main contribution to the global environmental impact of RO comes from the operation, while the other phases, construction and disposal, are almost negligible when compared to it. In the case of the ERWT, the contribution of the operation phase is also the most important one, but the construction phase has an important contribution too. Its corresponding environmental load, with the present state of the art of technology, is slightly lower than that provoked by the RO desalination technology. However, the results obtained in the different scenarios analyzed show that the potential reduction of the environmental load in the case of the ERWT is significantly lower than that in the case of the RO. The effect of drought periods in the assessed environmental loads of the water transfer is not negligible, obtaining as a result an increasing environmental load per m3 of diverted water. Conclusion The environmental load associated with RO, with the present state of the art of technology, is slightly higher than that provoked by the ERWT. However, considering the actual trend of technological improvement of the RO and the present trend of energy production technology in the address of reducing the fossil fuels\ contribution in the electricity production, the environmental load associated with RO in the short mid-term would be likely to be lower than that corresponding to the ERWT. Recommendations and Outlook Although desalination technologies are energy intensive and provoke an important environmental load, as already explained in Part 1, they present a high potential of reducing it. In respect to ERWT, the results indicate, when the infrastructure of ERWT is completed (by 2010–2012), that the LCA of RO will be likely to be against the water transfer. With the present technological evolution of water production technologies and from the results obtained in this paper, it seems, from an environmental viewpoint, that big hydraulic projects should be considered the last option because they are rigid and long-term infrastructures (several decades and even centuries of operation) that provoke important environmental loads with only a small margin for reducing them.  相似文献   

19.
Sustainability-a term originating from silviculture, which was adopted by UNEP as the main political goal for the future development of humankind-is also the ultimate aim of product development. It comprises three components: environment, economy and social aspects which have to be properly assessed and balanced if a new product is to be designed or an existing one is to be improved. The responsibility of the researchers involved in the assessment is to provide appropriate and reliable instruments. For the environmental part there is already an internationally standardized tool: Life Cycle Assessment (LCA). Life Cycle Costing (LCC) is the logical counterpart of LCA for the economic assessment. LCC surpasses the purely economic cost calculation by taking into account hidden costs and potentially external costs over the life cycle of the product. It is a very important point that different life-cycle based methods (including Social Life Cycle Assessment) for sustainablity assessment use the same system boundaries.  相似文献   

20.
Goal, Scope and Background Calculating LCA outcomes implies the use of parameters, models, choices and scenarios which introduce uncertainty, as they imperfectly account for the variability of both human and environmental systems. The analysis of the uncertainty of LCA results, and its reduction by an improved estimation of key parameters and through the improvement of the models used to convert emissions into regional impacts, such as eutrophication, are major issues for LCA. Methods In a case study of pig production systems, we propose a simple quantification of the uncertainty of LCA results (intra-system variability) and we explore the inter-system variability to produce more robust LCA outcomes. The quantification of the intra-system uncertainty takes into account the variability of the technical performance (crop yield, feed efficiency) and of emission factors (for NH3, N2O and NO3) and the influence of the functional unit (FU) (kg of pig versus hectare used). For farming systems, the inter-system variability is investigated through differentiating the production mode (conventional, quality label, organic (OA)), and the farmer practices (Good Agricultural Practice (GAP) versus Over Fertilised (OF)), while for natural systems, variability due to physical and climatic characteristics of catchments expected to modify nitrate fate is explored. Results and Conclusion For the eutrophication and climate change impact categories, the uncertainty associated with field emissions contributes more to the overall uncertainty than the uncertainty associated with emissions from livestock buildings, with crop yield and with feed efficiency. For acidification, the uncertainty of emissions from livestock buildings is the single most important contributor to the overall uncertainty. The influence of the FU on eutrophication results is very important when comparing systems with different degrees of intensification such as GAP and OA. Concerning the inter-system variability, differences in farmer practices have a larger effect on eutrophication than differences between production modes. Finally, the physical characteristics of the catchment and the climate strongly affect the results for eutrophication. In conclusion, in this case study, the main sources of uncertainty are in the estimation of emission factors, due both to the variability of environmental conditions and to lack of knowledge (emissions of N2O at the field level), but also in the model used for assessing regional impacts such as eutrophication. Recommendation and Perspective Suitable deterministic simulation models integrating the main controlling variables (environmental conditions, farmer practices, technology used) should be used to predict the emissions of a given system as well as their probabilistic distribution allowing the use of stochastic modelling. Finally, our simulations on eutrophication illustrate the necessity of integrating the fate of pollutants in models of impact assessment and highlight the important margin of improvement existing for the eutrophication impact assessment model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号