首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular mobility of the fluorescent probe, N-(carboxymethyl)imide of 4-(dimethylamino)naphthalic acid (K-35) in three types of binding sites on a human serum albumin (HSA) molecule has been studied. The time-resolved decay of K-35 polarized fluorescence in HSA has been studied and it has been shown that probe molecules bound to different sites have different fluorescence decay time, which poses problems in the interpretation of polarization decay. However, it has been found that, in the case of rather slow thermal rotation of the probe, the decay of each of vertical and horizontal polarized fluorescence components can be approximated by three exponentials corresponding to three types of binding sites. The mobility of the probe in different sites was estimated. The mobility was different but hindered by tens of times in all sites as compared with the rotation of K-35 in water. The slowest motion occurred in the sites of the first type localized in the region of the well known first drug-binding site: here the rotational correlation was close to 72 ns or more. In the sites of the second type, the time was about 40 ns, and in the sites of the third type, the time was about 10 ns. It was found that the higher the rotation rate, the higher the fluorescence quenching rate. Probably, it is this motion that is responsible for different fluorescence decay times in different HSA sites.  相似文献   

2.
Fluorescent probe N-(carboxyphenyl)imide of 4-(dimethylamino)naphthalic acid, K-35, is used as an indicator of structural changes of human serum albumin molecules in pathology. The probe occupies albumin binding pockets where the probe environment is of very high polarity; probably, the pocket(s) contains protein polar groups and water molecules. At the same time rather small Stokes shift of K-35 fluorescence spectrum shows that the polar group motion is of one-two order of value lower than mobility of polar molecules in polar fluids. K-35 fluorescence decay in HSA can be described as a sum of three exponentials with time constants close to tau1=9 ns; tau2=3.6 ns and tau3=1.0 ns. A difference between excitation maxima of these three decay components shows that environment of these three species of K-35 molecules has been different before excitation. Different r values are probably a consequence of non-identical structure of several binding sites, or a binding site(s) can have a variable conformation.  相似文献   

3.
Fluorescent probe N-(carboxyphenyl)imide of 4-(dimethylamino)naphthalic acid, K-35, is used as an indicator of structural changes of human serum albumin molecules in pathology. The probe occupies albumin binding pockets where the probe environment is of very high polarity; probably, the pockets contain protein polar groups and also water molecules. At the same time the rather small Stokes shift of K-35 fluorescence spectrum shows that the polar group motion is one-two orders of magnitude lower than the mobility of polar molecules in polar fluids. K-35 fluorescence decay in HSA can be described as a sum of three exponentials with time constants close to τ1 = 9 ns; τ2 = 3.6 ns and τ3 = 1.0 ns. The difference between excitation maxima of these three decay components shows that the environment of these three species of K-35 molecules has been different before excitation. Different τ values are probably a consequence of nonidentical structure of several binding sites, or the binding site(s) can have variable conformation.  相似文献   

4.
A study was made of the binding of a fluorescent probe K-35 (N-(carboxyphenyl)imide of 4-(dimethylamino)naphthalic acid), used as an indicator of albumin structural changes in pathology, to human serum albumin (HSA). Based on the data on the fluorescence decay of the probe, four types of site of K-35 binding to HSA have been recognized, which differ in fluorescence decay time (τ) and binding constant (K). Probe molecules bound to the first type of site have a decay time of 8–10 ns; this value corresponds to a high fluorescence quantum yield of about 0.7. These sites have a maximal binding constant, K 1 = 5 · 104 M−1. The τ2 of the second type of site is close to 3.6 ns and K 2 = 1 · 104 M−1, which is much lower than K 1; however, the number of these sites is several times greater. The number of sites of the third type and the binding constant are close to those of the second type, but the decay time τ3 is 1 ns, which is significantly lower than τ2. The binding of K-35 to sites of the second and the third types is characterized by a positive cooperativity. Their properties are similar but not completely identical. The total number of sites of these three types is about two per one HSA molecule. There are also one-two sites of the fourth type where bound K-35 molecules have a very short decay time τ4 ≪ 1, i.e., are virtually nonfluorescent, and K 4 = 1 · 104 M−1. The major contribution to the steady-state fluorescence is made by probe molecules bound to sites of the first and second types. As a rule, the concentration of albumin binding sites in blood is significantly higher than the concentration of metabolites and xenobiotics transferred by albumin. Therefore, the metabolite—or the probe in these experiments—is distributed among different sites in accordance with their K i n i values (n i is the number of sites of the i-th type per albumin molecule). The low occupancy of the sites results in an approximately equal number of K-35 molecules bound to different sites of types 1, 2, and 3. The competition of K-35 with phenylbutazone, a marker of the albumin drug-binding site I, allows one to suggest that the K-35 site of the first type is localized exactly in the drug site I region, while the sites of the second and third types are close to it.  相似文献   

5.
The fluorescence dye 1-anilino-naphthalene-8-sulphonic acid (ANS) was used as a probe of non-polar binding sites in the enzyme plasma amine oxidase. Steady fluorescence measurements indicate that ANS binds to a single binding site of the dimeric enzyme with a dissociation constant of 5 microns. This binding site is different from the catalytic binding site. Nanosecond emission anisotropy measurements were performed on the ANS-enzyme in an effort to detect independent rotation of the subunits in the native enzyme. The observed rotational correlation time (phi = 105 ns) corresponds to the rotation of a rigid dimeric macromolecule. A rotational correlation time of 120 ns was obtained with the enzyme labelled with pyrenebutyric acid. It is concluded that the dimeric enzyme does not exhibit any modes of flexibility due to independent rotation of the subunits in the nanosecond range.  相似文献   

6.
利用荧光光谱法、紫外光谱法并结合计算机模拟技术在分子水平上研究了胡椒碱与人血清白蛋白(human serum albumin HSA)的键合作用.同步荧光及紫外光谱图表明,胡椒碱对HSA微环境有影响.位点竞争试验证明,胡椒碱分子键合在HSA的位点Ⅱ区.通过荧光光谱滴定数据求得不同温度下(300K 310K和318 K)药物与蛋白相互作用的结合常数及结合位点数.分子模拟的结果显示了胡椒碱与HSA的键合区域和键合模式,表明药物与蛋白有较强的键合作用;维持药物与蛋白质的相互作用力主要是疏水用,兼有氢键(位于氨基酸残基Arg 257,Arg 222及Arg218位).通过实验数据计算得到的热力学参数(ΔH0与ΔS0的值分别为原33.11 kJ·mol-1和原18.90 J·mol原1·K-1)确定了胡椒碱与HSA分子的相互作用力类型主要为氢键兼范德华力.  相似文献   

7.
In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra‐red spectroscopy (FT‐IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern–Volmer quenching constants and binding constants for the MS–HSA system at 293, 298 and 303 K were obtained from the Stern–Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS–HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three‐dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS–HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied.  相似文献   

8.
1. The fluorescent fatty acid probe 11-(dansylamino)undecanoic acid (DAUDA) binds with high affinity to bovine and human serum albumin (BSA and HSA) at three sites. 2. The Kd of the primary binding site could not be determined; however, the two secondary sites appeared to be equivalent, with an apparent Kd of 8 x 10(-7) M for both BSA and HSA. 3. The spectral characteristics of DAUDA when bound to the primary site of the two albumins were different, with HSA producing a greater fluorescence enhancement and emission maximum at a shorter wavelength (480 nm) than for BSA (495 nm). 4. Displacement studies indicated that the DAUDA-binding sites were not equivalent to the primary long-chain fatty acid-binding sites on albumin, but corresponded to the bilirubin sites. Fatty acyl-CoAs also bind to the bilirubin sites, as do medium-chain fatty acids. 5. The solubility, stability and spectral properties of DAUDA make it an excellent probe for investigating the bilirubin-binding sites of albumin, particularly HSA.  相似文献   

9.
D E Waskiewicz  G G Hammes 《Biochemistry》1982,21(25):6489-6496
The lipoic acids of the alpha-ketoglutarate dehydrogenase multienzyme complex from Escherichia coli have been modified with two fluorescent probes, N-(1-pyrenyl)-maleimide and 5-[[[(iodoacetyl)amino]ethyl]amino]-naphthylene-1-sulfonic acid. Time-resolved fluorescence polarization of partially labeled complexes (18-77% inhibition of enzyme activity) reveals a complex depolarization process: one component of the anisotropy is characterized by a rotational correlation time much longer than the time scale of the measurements (less than or equal to 400 ns), reflecting the overall rotation of the complex, while a second component of the anisotropy decays with a rotational correlation time of 320 (+/- 50) ns. This decay is essentially independent of viscosity and is consistent with a model in which the depolarization is due to the dissociation from and rotation of lipoic acids between binding sites on the multienzyme complex. The sum of the rate constants characterizing the association and dissociation with the binding sites is approximately 3 x 10(6) s-1. In addition, approximately 5% of the anisotropy of the N-(1-pyrenyl)maleimide-labeled complex decays with a rotational correlation time of 25 ns; this can be attributed to local motion of the probe. At high extents of N-(1-pyrenyl)maleimide labeling (90-95% inhibition of enzyme activity), the anisotropy decay can be described by a constant term plus a rotational correlation time of about 1 microseconds. The increase in the correlation time probably reflects interactions between pyrene moieties. The N-(1-pyrenyl)maleimide-labeled dihydrolipoyl transsuccinylase core of the multienzyme complex has been isolated, and the anisotropy is constant over the observed time range of 300 ns. This suggests that the native structure is necessary for observation of lipoic acid movement within the complex. Fluorescent-labeled limited trypsin digestion fragments of the alpha-ketoglutarate dehydrogenase complex also have been isolated, and anisotropy measurements reveal substantial mobility of the label within the fragments. The time-resolved anisotropy of FAD in the native complex and in the isolated dihydrolipoyl dehydrogenase indicates some rapid local mobility of the FAD (rotational correlation time of 12 ns) that is viscosity independent, as well as a component of the anisotropy that is constant over the 35-ns time scale of the experiments.  相似文献   

10.
11.
Electron paramagnetic resonance (EPR) was used to investigate the spin-labelled fatty acid (SLFA) binding equilibrium to human (HSA) and bovine (BSA) serum albumin. The number of 5-doxyl stearate (5-DS) and 16-doxyl stearate (16-DS) binding sites on HSA and BSA were found to be equal, while the association constants, KA values (especially those of the primary binding site) were different. The applied EPR spectra analysis permitting a quantitative distinguishing between slow macromolecular rotation (pi c) and fast anisotropic motion (steric restriction, S) of bound SLFA, allowed SLFA oxazolidinyl ring mobility to be estimated. The 5-DS nitroxide radical is completely immobilized within the HSA protein matrix (S approximately 1.0, pi c approximately 56 +/- 1 ns). The 5-DS when bound to BSA exhibited the presence of more extensive fluctuations (lower S and pi c values) and its immersion depth with respect to BSA surface was calculated to be 4 +/- 2 A. The 16-DS oxazolidinyl radical bound to HSA was found to undergo moderated fluctuations (both S and pi c are smaller with respect to 5-DS) and it is buried deeper within the protein core (rimm = 10 +/- 2 A with respect to BSA surface). The tetrapyrrole ligands hematoporphyrin (Hp) and hematoporphyrin derivative (HpD) were found to induce well detectable changes in the SLFA binding patterns to serum albumin. The action mode was determined to be different for 16-DS (primary) and 5-DS (secondary) serum albumin binding sites: (i) 5-DS is extruded from several binding sites accompanied by an increase in KA in the remaining ones; (ii) simultaneous binding of 16-DS and Hp consists of cooperative and non-cooperative phases (both the number of the independent sites and the parameter of cooperativity, alpha, being dependent on Hp/HSA ratio); (iii) in principal the mobilities of 5-DS and 16-DS bound to HSA are changed, depending on the porphyrin/HSA ratio; and (iv) the effective immersion depth of the paramagnetic centres with respect to the protein surface is increased when Hp is present as a second ligand (rimm = 7 +/- 2 and 16 +/- 2 A for 5-DS and 16-DS, respectively).  相似文献   

12.
Fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), and molecular modeling methods were employed to analyze the binding of glycyrrhetinic acid (GEA) to human serum albumin (HSA) under physiological conditions with GEA concentrations from 4.0x10(-6) to 4.5x10(-5) mol L(-1). The binding of GEA to HSA was via two types of sites: the numbers of binding site for the first type was near 0.45 and for the second type it was approximately 0.75. The binding constants of the second type binding site were lower than those of the first type binding site at corresponding temperatures, the results suggesting that the first type of binding site had high affinity and the second binding site involved other sites with lower binding affinity and selectivity. The fluorescence titration results indicated that GEA quenched the fluorescence intensity of HSA through static mechanism. The FTIR spectra evidence showed that the protein secondary structure changed with reduction of alpha-helices about 26.2% at the drug to protein molar ratio of 3. Thermodynamic analysis showed that hydrogen bonds were the mainly binding force in the first type of binding site, and hydrophobic interactions might play a main role in the second type of binding site. Furthermore, the study of computational modeling indicated that GEA could bind to the site I of HSA and hydrophobic interaction was the major acting force for the second type of binding site, which was in agreement with the thermodynamic analysis.  相似文献   

13.
5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone is one of the bioactive components isolated from Artemisia plants possessing antitumor therapeutic activities. In this paper, its binding properties and binding sites located on human serum albumin (HSA) have been studied using UV absorption spectroscopy, fluorescence spectroscopy and Fourier transform infrared (FT-IR) spectra. The results of fluorescence titration revealed that 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone could strongly quench the intrinsic fluorescence of HSA by static quenching and there was only one class of binding sites on HSA for this drug. The binding constants at four different temperatures (289, 298, 310, and 318 K) were 1.93, 1.56, 1.22, and 0.93x10(5) L mol-1, respectively. The FT-IR spectra evidence showed that the protein secondary structure changed with reduction of alpha-helices about 27.6% at the drug to protein molar ratio of 3. The thermodynamic functions standard enthalpy change (DeltaH0) and standard entropy change (DeltaS0) for the reaction were calculated to be -18.70 kJ mol-1 and 36.62 J mol-1 K-1 according to the van't Hoff equation. These results and the molecular modeling study suggested that hydrophobic interaction was the predominant intermolecular force stabilizing the complex, and 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone could bind to the site I of HSA (the Warfarin Binding site).  相似文献   

14.
The time decay of fluorescence anisotropy was monitored as a function of pH and temperature for complexes of 2,6-toluidinylnaphthalenesulfonate with calmodulin, with its proteolytic fragments, and with the 1:1 complex of calmodulin and melittin. For all the conditions examined the anisotropy decay of native calmodulin involved at least two rotational modes. These corresponded to a short correlation time of 2-3 ns, reflecting a localized motion in the vicinity of the binding site and a longer correlation time which arises from the rotation of a major portion of the molecule. The relative amplitudes of the two rotational modes were dependent upon temperature in the range 11-40 degrees C, the contribution of the more rapid mode increasing with temperature. The maximum immobilization of the probe occurred at pH 5.0 and 12 degrees C. While these results indicate the presence of internal rotations in Ca2+-liganded calmodulin, the magnitude of the longer correlation time is consistent with the crystallographic structure.  相似文献   

15.
The binding of Promen (6-propionyl-2-methoxynapthalene) to human serum albumin (HSA) was measured by fluorescence spectroscopy, finding only one class of binding sites on the protein. Hydrophobic interactions play an important role to stabilize the complex. Attempts were made to characterize its binding site using as competitors warfarin, phenylbutazone and diazepam, which bind in a specific site or region on the HSA. Fluorescence polarization measurements and spectrofluorimetric results suggest that diazepam and Promen bind at different but interacting binding sites on the HSA. The changes in the fluorescence emission of the bound Promen in the presence of these drugs, allow to use Promen to detect unspecific interactions with the site II on the HSA.  相似文献   

16.
The binding affinity of human serum albumin (HSA) to three antimalarial indolone-N-oxide derivatives, INODs, was investigated under simulated physiological conditions using fluorescence spectroscopy in combination with UV-vis absorption and circular dichroism (CD) spectroscopy. Analysis of fluorescence quenching data of HSA by these compounds at different temperatures using Stern-Volmer and Lineweaver-Burk methods revealed the formation of a ground state indolone-HSA complex with binding affinities of the order 10(4) M(-1). The thermodynamic parameters ΔG, ΔH, and ΔS, calculated at different temperatures, indicated that the binding reaction was endothermic and hydrophobic interactions play a major role in this association. The conformational changes of HSA were investigated qualitatively using synchronous fluorescence and quantitatively using CD. Site marker competitive experiments showed that the binding process took place primarily at site I (subdomain IIA) of HSA. The number of binding sites and the apparent binding constants were also studied in the presence of different ions.  相似文献   

17.
A method has been developed for the measurement of the rotational motion of membrane components. In this method fluorescent molecules whose transition dipole moments lie in a given direction are preferentially destroyed with a short intense burst of polarized laser radiation. The fluorescence intensity, excited with a low intensity observation beam of polarized laser radiation, changes with time as the remaining fluorescent molecules rotate. The feasibility of the method has been demonstrated in a study of the rotation of the fluorescent lipid probe, dil ([bis,-2-(N-octadecyl-3,3-dimethyl-1-benzo[b]pyrrole]-trimethincyanine iodide) incorporated into membranes composed of distearoylphosphatidylcholine (DSPC) or dipalmitoylphosphatidylcholine (DPPC) and 0.20 mol% cholesterol, below the main chain-melting transition temperatures of the phosphatidylcholines. Rotation times in the 0.6-800 s range were observed. The fluorescence recovery (or decay) curves are in satisfactory agreement with theoretical calculations.  相似文献   

18.
Binding affinities of flavonols namely quercetin, myricetin, and kaempferol to human serum albumin (HSA) were determined fluorimetrically and the order was observed to be myricetin > quercetin > kaempferol demonstrating structure–activity relationship. Quercetin-coated silver nanoparticles (AgNPs) show higher binding affinity to HSA compared to free quercetin with binding constants 6.04 × 107 M?1 and 4.2 × 106 M?1, respectively. Using site-specific markers it is concluded that free quercetin and that coated on AgNPs bind at different sites. Significant structural changes in circular dichroism (CD) spectra of HSA were recorded with quercetin-coated AgNPs compared to free quercetin. These results were further substantiated by time-resolved fluorescence spectroscopy where fluorescence life time of the tryptophan residue in HSA–quercetin-coated AgNPs complex decreased to 3.63 ns from 4.22 ns in HSA–quercetin complex. Isothermal calorimetric studies reveal two binding modes for quercetin-coated AgNPs and also higher binding constants compared to free quercetin. These higher binding affinities are attributed to altered properties of quercetin when coated on AgNPs enabling it to reach the binding sites other than site II where free quercetin mainly binds.  相似文献   

19.
The binding of fisetin with human serum albumin (HSA) has been studied at different pH using UV-Vis, FTIR, CD and fluorescence spectroscopic techniques. The binding constants were found to increase with the rise in pH of the media. The negative ΔH° (kJ mol-1) and positive ΔS° (J mol-1 K-1) indicate that fisetin binds to HSA via electrostatic interactions with an initial hydrophobic association that result in a positive ΔS° . In presence of potassium chloride (KCl) the binding constants were found to be decrease. The α-helical content of HSA increased after binding with fisetin as analyzed from both CD and FTIR methods. The site marker displacement studies using fluorescence anisotropy suggest that fisetin binds to the hydrophobic pocket (Site 1, subdomain IIA) of HSA which is in good accordance with the molecular docking study. The change in accessible surface area (ASA) of residues of HSA was calculated to get a better insight into the binding.  相似文献   

20.
11-(Dansylamino) undecanoic acid (DAUDA) is a dansyl-type fluorophore and has widely used as a probe to determine the binding site for human serum albumin (HSA). Here, we reported that structure of HSA-Myristate-DAUDA ternary complex and identified clearly the presence of two DAUDA molecules at fatty acid (FA) binding site 6 and 7 of HSA, thus showing these two sites are weak FA binding sites. This result also show that DAUDA is an appropriate probe for FA site 6 and 7 on HSA as previous studied, but not a good probe of FA binding site 1 that is likely bilirubin binding site on HSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号