首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transamidation reactions catalyzed by cathepsins   总被引:5,自引:0,他引:5  
  相似文献   

2.
Esteratic reactions catalyzed by subtilisins   总被引:8,自引:0,他引:8  
  相似文献   

3.
Transesterification reactions catalyzed by papain   总被引:1,自引:0,他引:1  
  相似文献   

4.
Transesterification reactions catalyzed by subtilisins   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
In this study, naphthalene dioxygenase is shown to catalyze the oxidation of methylphenols and chlorophenols by p- and/or o-hydroxylation reactions. For instance, m-cresol was oxidized to methylhydroquinone with formation of 3- and 4-methylcatechol as minor products. 2-Chlorophenol was exclusively oxidized to chlorohydroquinone, which is an important building block for pharmaceutical products and other organic compounds. The oxygen incorporated in the p-hydroxylation reaction from m-cresol is derived from water with consumption of O2.  相似文献   

7.
Lamb AL 《Biochemistry》2011,50(35):7476-7483
One of the fundamental questions of enzymology is how catalytic power is derived. This review focuses on recent developments in the structure--function relationships of chorismate-utilizing enzymes involved in siderophore biosynthesis to provide insight into the biocatalysis of pericyclic reactions. Specifically, salicylate synthesis by the two-enzyme pathway in Pseudomonas aeruginosa is examined. The isochorismate-pyruvate lyase is discussed in the context of its homologues, the chorismate mutases, and the isochorismate synthase is compared to its homologues in the MST family (menaquinone, siderophore, or tryptophan biosynthesis) of enzymes. The tentative conclusion is that the activities observed cannot be reconciled by inspection of the active site participants alone. Instead, individual activities must arise from unique dynamic properties of each enzyme that are tuned to promote specific chemistries.  相似文献   

8.
Chemical reactions catalyzed by various DNA polymerases are discussed, including DNA chain extension, the 3′→5′-exonuclease proofreading activity, and some other pathways of replicative repair. The contribution of DNA polymerases to the fidelity of the template-dependent synthesis is analyzed by the examples of some most typical DNA polymerases. Deceased.  相似文献   

9.
Evidence suggesting that a single enzyme catalyzes mannosyl transfer from GDP-mannose to both dolichyl phosphate and to phenyl phosphate was obtained as follows: (a) The two activities were coeluted from columns of DEAE-cellulose and Sepharose CL-6B, (b) both reactions demonstrated similar kinetic constants for the glycosyl donor and for guanosine nucleoside inhibitors, (c) both reactions were sensitive to inhibition by low concentrations of nonionic detergents, and (d) both activities were found to be thermally inactivated at similar rates upon incubation at 55 degrees. The reaction conditions required for optimal mannosyl transfer by the purified enzyme preparation to the hydrophobic and water soluble acceptors, however, were found to be quite different. Whereas mannosyl transfer from GDP-mannose to dolichyl phosphate occurred at maximal rates only in the presence of specific phospholipids, the rate of mannosyl transfer to phenyl phosphate was essentially unaffected by the addition of phospholipid. These results indicate that dolichyl-mannosyl-phosphate-synthase, which has some of the properties of an intrinsic membrane protein, does not have an absolute requirement for phospholipid for catalytic activity, but rather that phospholipid is required for interaction of the enzyme with the long chain polyisoprenol substrate dolichyl phosphate.  相似文献   

10.
Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.  相似文献   

11.
Cytochromes P450 (P450s) catalyze monooxygenation of a wide range of less reactive organic molecules under mild conditions. By contrast with the general reductive oxygen activation pathway of P450s, an H2O2-shunt pathway does not require any supply of electrons and protons for the generation of a highly reactive intermediate (compound I). Because the low cost of H2O2 allows us to use it in industrial-scale synthesis, the H2O2-shunt pathway is an attractive process for monooxygenation reactions. This review focuses on the P450-catalyzed monooxygenation of organic molecules using H2O2 as the oxidant.  相似文献   

12.
Microcalorimetry and high-performance liquid chromatography (HPLC) have been used to conduct a thermodynamic investigation of reactions catalyzed by PABA synthase, the enzyme located at the first step in the shikimic acid metabolic pathway leading from chorismate to 4-aminobenzoate (PABA). The overall biochemical reaction catalyzed by the PabB and PabC components of PABA synthase is: chorismate(aq)+ammonia(aq)=4-aminobenzoate(aq)+pyruvate(aq)+H(2)O(l). This reaction can be divided into two partial reactions involving the intermediate 4-amino-4-deoxychorismate (ADC): chorismate(aq)+ammonia(aq)=ADC(aq)+H(2)O(l) and ADC(aq)=4-aminobenzoate(aq)+pyruvate(aq). Microcalorimetric measurements were performed on all three of these reactions at a temperature of 298.15 K and pH values in the range 8.72-8.77. Equilibrium measurements were performed on the first partial (ADC synthase) reaction at T=298.15 K and at pH=8.78. The saturation molality of 4-aminobenzoate(cr) in water is (0.00382+/-0.0004) mol kg(-1) at T=298.15 K. The results of the equilibrium and calorimetric measurements were analyzed in terms of a chemical equilibrium model that accounts for the multiplicity of ionic states of the reactants and products. These calculations gave thermodynamic quantities at the temperature 298.15 K and an ionic strength of zero for chemical reference reactions involving specific ionic forms. For the reaction: chorismate(2-)(aq)+NH(4)(+)(aq)=ADC(-)(aq)+H(2)O(l), K=(10.8+/-4.2) and Delta(r)H(m)(o)=-(35+/-15) kJ mol(-1). For the reaction: ADC(-)(aq)=4-aminobenzoate(-)(aq)+pyruvate(-)(aq)+H(+)(aq), Delta(r)H(m)(o)=-(139+/-23) kJ mol(-1). For the reaction: chorismate(2-)(aq)+NH(4)(+)(aq)=4-aminobenzoate(-)(aq)+pyruvate(-)(aq)+H(2)O(l)+H(+)(aq), Delta(r)H(m)(o)=-(174+/-6) kJ mol(-1). Thermodynamic cycle calculations were used to calculate thermodynamic quantities for three additional reactions that utilize L-glutamine rather than ammonia and that are pertinent to this branch point of the shikimic acid pathway. The quantities obtained in this study permit the calculation of the position of equilibrium of these reactions as a function of temperature, pH, and ionic strength. Values of the apparent equilibrium constants and the standard transformed Gibbs energy changes Delta(r)G'(m)(o) under approximately physiological conditions are given.  相似文献   

13.
Mechanism of reactions catalyzed by selenocysteine beta-lyase   总被引:1,自引:0,他引:1  
The reaction mechanism of selenocystine beta-lyase has been studied and it was found that elemental selenium is released enzymatically from selenocysteine, and reduced to H2Se nonenzymatically with dithiothreitol or some other reductants that are added to prepare selenocysteine from selenocystine in the anaerobic reaction system. 1H and 13C NMR spectra of L-alanine formed in 2H2O have shown that an equimolar amount of [beta-2H1]- and [beta-2H2]alanines are produced. The deuterium isotope effect at the alpha position was observed; kH/kD = 2.4. These results indicated that the alpha hydrogen of selenocysteine was removed by a base at the active site, and was incorporated into the alpha position of alanine, a product, without exchange of a solvent deuterium. When the enzyme was incubated with L-selenocysteine in the absence of added pyridoxal 5'-phosphate, the activity decreased with prolonged incubation time. However, the activity was recovered by addition of 5'-phosphate. The spectrophotometric study showed that the inactivated enzyme was the apo form. The apoenzyme was activated by a combination of pyridoxamine 5'-phosphate and various alpha-keto acids such as alpha-ketoglutarate and pyruvate. Thus, the enzyme is inactivated through transamination between selenocysteine and the bound pyridoxal 5'-phosphate to produce pyridoxamine 5'-phosphate and a keto acid derived from selenocysteine. The pyridoxal enzyme, an active form, is regenerated by addition of alpha-keto acids. This regulatory mechanism is analogous to those of aspartate beta-decarboxylase [EC 4.1.1.12], arginine racemase [EC 5.1.1.9], and kynureninase [EC 3.7.1.3] [K. Soda and K. Tanizawa (1979) Adv. Enzymol. 49, 1].  相似文献   

14.
Microcalorimetry and high performance liquid chromatography have been used to conduct a thermodynamic investigation of reactions catalyzed by anthranilate synthase, the enzyme located at the first step in the biosynthetic pathway leading from chorismate to tryptophan. One of the overall biochemical reactions catalyzed by anthranilate synthase is: chorismate(aq) + ammonia(aq) = anthranilate(aq) + pyruvate(aq) + H2O(l). This reaction can be divided into two partial reactions involving the intermediate 2-amino-4-deoxyisochorismate (ADIC): chorismate(aq) + ammonia(aq) = ADIC(aq) + H2O(l) and ADIC(aq) = anthranilate(aq) + pyruvate(aq). The native anthranilate synthase and a mutant form of it that is deficient in ADIC lyase activity but has ADIC synthase activity were used to study the overall ammonia-dependent reaction and the first of the above two partial reactions, respectively. Microcalorimetric measurements were performed on the overall reaction at a temperature of 298.15 K and pH 7.79. Equilibrium measurements were performed on the first partial (ADIC synthase) reaction at temperatures ranging from 288.15 to 302.65 K, and at pH values from 7.76 to 8.08. The results of the equilibrium and calorimetric measurements were analyzed in terms of a chemical equilibrium model that accounts for the multiplicity of ionic states of the reactants and products. These calculations gave thermodynamic quantities at the temperature 298.15 K and an ionic strength of zero for chemical reference reactions involving specific ionic forms. For the reaction: chorismate2-(aq) + NH4+(aq) = anthranilate-(aq) + pyruvate-(aq) + H+(aq) + H2O(l), delta rHmo = -(116.3 +/- 5.4) kJ mol-1. For the reaction: chorismate2-(aq) + NH4+(aq) = ADIC-(aq) + H2O(l), K = (20.3 +/- 4.5) and delta rHmo = (7.5 +/- 0.6) kJ mol-1. Thermodynamic cycle calculations were used to calculate thermodynamic quantities for three additional reactions that are pertinent to this branch point of the chorismate pathway. The quantities obtained in this study permit the calculation of the position of equilibrium of these reactions as a function of temperature, pH, and ionic strength. Values of the apparent equilibrium constants and the standard transformed Gibbs energy changes delta rG'mo under approximately physiological conditions are given.  相似文献   

15.
Gas phase transesterification reactions catalyzed by lipolytic enzymes   总被引:1,自引:0,他引:1  
Porcine pancreatic lipase and Fusarium solani cutinase were used to catalyze transesterification reactions between methyl propionate, ethyl propionate, and a series of primary alcohols at high temperatures in a continuous packed-bed gas-solid reactor, in which the solid phase is composed of the enzyme and the substrates and products are in a gaseous form. In this type of system, enzyme activity was found to depend essentially on the water activity (A(w)) of the enzyme preparation.  相似文献   

16.
A homogeneous glutamate decarboxylase isolated from pig brain contains 0.8 mol of tightly bound pyridoxal 5-phosphate/enzyme dimer. Upon addition of exogenous pyridoxal 5-phosphate (pyridoxal-5-P), the enzyme acquires maximum catalytic activity. Preincubation of the enzyme with L-glutamate (10 mM) brings about changes in the absorption spectrum of bound pyridoxal-5-P with the concomitant formation of succinic semialdehyde. However, the rate of this slow secondary reaction, i.e. decarboxylative transamination, is 10(-4) times the rate of normal decarboxylation. It is postulated that under physiological conditions enzymatically inactive species of glutamate decarboxylase, generated by the process of decarboxylative transamination, are reconstituted by pyridoxal-5-P produced by the cytosolic enzymes pyridoxal kinase and pyridoxine-5-P oxidase. The catalytic activity of resolved glutamate decarboxylase is recovered by preincubation with phospho-pyridoxyl-ethanolamine phosphate. The experimental evidence is consistent with the interpretation that the resolved enzyme binds the P-pyridoxyl analog, reduces the stability of the covalent bond of the phospho-pyridoxyl moiety, and catalyzes the formation of pyridoxal-5-P.  相似文献   

17.
The retroviral integrase catalyzes two successive chemical reactions essential for integration of the retroviral genome into a host chromosome: 3' end processing, in which a dinucleotide is cleaved from each 3' end of the viral DNA; and the integration reaction itself, in which the resulting recessed 3' ends of the viral DNA are joined to the host DNA. We have examined the stereospecificity of human immunodeficiency virus type 1 integrase for phosphorothioate substrates in these reactions and in a third reaction, disintegration, which is macroscopically the reverse of integration. Integrase preferentially catalyzed end processing and integration of a substrate with the (R(p))-phosphorothioate stereoisomer at the reaction center and disintegration of a substrate with an (S(p))-phosphorothiate at the reaction center. These results suggest a model for the architecture of the active site of integrase, and its interactions with key features of the viral and target DNA.  相似文献   

18.
Cytochrome P450 (P450) enzymes are some of the most versatile redox proteins known. The basic P450 reactions include C-hydroxylation, heteroatom oxygenation, heteroatom release (dealkylation), and epoxide formation. Mechanistic explanations for these reactions have been advanced. A number of more complex P450 reactions also occur, and these can be understood largely in the context of the basic chemical mechanisms and subsequent rearrangements. The list discussed here updates a 2001 review and includes chlorine oxygenation, aromatic dehalogenation, formation of diindole products, dimer formation via Diels-Alder reactions of products, ring coupling and also ring formation, reductive activation (e.g., aristolochic acid), ring contraction (piperidine nitroxide radical), oxidation of troglitazone, cleavage of amino oxazoles and a 1,2,4-oxadiazole ring, bioactivation of a dihydrobenzoxathiin, and oxidative aryl migration.  相似文献   

19.
Cytochrome P450s promote a variety of rearrangement reactions both as a consequence of the nature of the radical and other intermediates generated during catalysis, and of the neighboring structures in the substrate that can interact either with the initial radical intermediates or with further downstream products of the reactions. This article will review several kinds of previously published cytochrome P450-catalyzed rearrangement reactions, including changes in stereochemistry, radical clock reactions, allylic rearrangements, “NIH” and related shifts, ring contractions and expansions, and cyclizations that result from neighboring group interactions. Although most of these reactions can be carried out by many members of the cytochrome P450 superfamily, some have only been observed with select P450s, including some reactions that are catalyzed by specific endoperoxidases and cytochrome P450s found in plants.  相似文献   

20.
The values of kcat/Km for the reactions of four substrates, p-nitrophenyl acetate (PNPA), propionyl-beta-methylthiocholine (PrMSCh), 3,3-dimethylbutyl thioacetate (DBTA), and acetylthiocholine (AcSCh), with acetylcholinesterase were determined as a function of increasing viscosity (eta rel) in sucrose-containing and in glycerol-containing buffers. Glycerol, or possibly some contaminant of it, was found to be a nonspecific inhibitor and sucrose a nonspecific activator of the enzyme as reflected in the dependence of kcat/Km values measured for PNPA and PrMSCh upon the concentration of these reagents. The rates of reactions of these two substrates, the first neutral and the second cationic, are chemically limited rather than diffusion limited, and they thus serve as quantitative controls or internal standards to monitor the effects of the viscosogens on the enzyme, which are not related to diffusion. The additional effect on kcat/Km over the controls observed for the rapidly reacting substrates AcSCh (cationic) and DBTA (neutral) serves as a measure of the extent to which these values of kcat/Km measure diffusion-controlled processes. The reaction rate of DBTA with the enzyme is 24% diffusion controlled as measured in glycerol-containing buffers and 16-20% as determined in sucrose-containing buffers, while that for AcSCh is 100% (in glycerol) and 24-40% (in sucrose) diffusion controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号