首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Food selectivity and the mechanisms of food selection were analyzed by video microscopy for three species (Spumella, Ochromonas, Cafeteria) of interception-feeding heterotrophic nanoflagellates. The fate of individual prey particles, either live bacteria and/or inert particles, was recorded during the different stages of the particle-flagellate-interaction, which included capture, ingestion, digestion, and egestion. The experiments revealed species-specific differences and new insights into the underlying mechanisms of particle selection by bacterivorous flagellates. When beads and bacteria were offered simultaneously, both particles were ingested unselectively at similar rates. However, the chrysomonads Spumella and Ochromonas egested the inert beads after a vacuole passage time of only 2-3 min, which resulted in an increasing proportion of bacteria in the food vacuoles. Vacuole passage time for starved flagellates was significantly longer compared to that of exponential-phase flagellates for Spumella and Ochromonas. The bicosoecid Cafeteria stored all ingested particles, beads as well as bacteria, in food vacuoles for more then 30 min. Therefore "selective digestion" is one main mechanism responsible for differential processing of prey particles. This selection mechanism may explain some discrepancies of former experiments using inert particles as bacterial surrogates for measuring bacterivory.  相似文献   

2.
The ability of concanavalin A (conA) to disrupt food vacuole elimination at the cytoproct of Tetrahymena pyriformis, strain GL-C, was investigated using fluorescence microscopy and thin section electron microscopy. ConA was found to induce "tails" in Tetrahymena. These tails were specifically stained by fluorescent conA. Thin section observations of conA-treated cells revealed that these tails were the result of abnormal egestion of food vacuole contents at the cytoproct. Tail formation appears to result from an inhibition of endocytosis of food vacuole membrane during egestion. Instead, the food vacuole membrane appears to be cast out of the cell, along with the contents of the vacuole. The mechanism of this inhibition may be related to an apparent absence of microtubules or microfilamentous mat in the cytoproct region of conA-treated cells. Although conA is ingested into food vacuoles in large amounts, conA appears to affect endocytosis only from outside the cell; ingested conA does not appear to be effective. ConA may exert its influence by binding to the cytoproct region. The ability of conA to induce tail formation is inhibited by sugars specific to it. Numerous membranous vesicles are found in association with the oral cilia and cytoproct region of conA-treated cells. These vesicles may be the conA-binding material reported to be secreted by Tetrahymena.  相似文献   

3.
SYNOPSIS. Egestion of carmine particle-containing food vacuoles from the cytoproct of Tetrahymena pyriformis has been analyzed by high-speed cinemicrography. The vacuole may enter into position in the cytoproct ∼ 7 sec before ejection, and forms a distinct bulge beyond the outline of the cell surface for over 2 sec prior to ejection. The ejection process itself requires 20–80 msec.  相似文献   

4.
Evidence from a morphological study of the oral apparatus of Paramecium caudatum using electron microscope techniques have shown the existence of an elaborate structural system which is apparently designed to recycle digestive-vacuole membrane. Disk-shaped vesicles are filtered out of the cytoplasm by a group of microtubular ribbons. The vesicles, after being transported to the cytostome-cytopharynx region in association with these ribbons, accumulate next to the cytopharynx before they become fused with the cytopharyngeal membrane. This fusion allows the nascent food vacuole to grow and increase its membrane surface area. The morphology of this cytostome-cytopharynx region is described in detail and illustrated with a three-dimensional drawing of a portion of this region and a clay sculpture of the oral apparatus of Paramecium. Evidence from the literature for the transformation of food vacuole membrane into disk-shaped vesicles both from condensing food vacuoles in the endoplasm and from egested food vacuoles at the cytoproct is presented. This transformation would complete a system of digestive vacuole membrane recycling.  相似文献   

5.
SYNOPSIS. An electron microscope study of Colpoda maupasi Enriques, isolated from the intestine of the blue-tongued skink Tiliqua nigrolutea, showed that the fine structure of this ciliate is similar in all respects to that of free-living ciliates. The correspondence applies particularly to the structure, distribution and number of mitochondria. This organelle has a rich intramitochondrial structure in the form of microvilli; it is found close to the periphery, near the nuclear apparatus and in other parts of the cytoplasm. It was concluded that the association between Colpoda maupasi and Tiliqua nigrolutea was probably accidental and limited to the cyst stage. Thus electron microscopy confirmed a conclusion arrived at by light microscopy. The presence of numerous food vacuoles made it possible to study stages of digestion within this organelle. Four major types of food vacuole were distinguished. Type 1 food vacuoles are characterized by their large size, the presence of intact bacteria and abundance of water. In type 2 the food vacuole is deprived of water, the bacteria are pressed together and the nuclei have lost their structure. Type 3 food vacuoles contain only bacterial ghosts, cytoplasmic and nuclear material having been digested. Food vacuoles of this type are found only occasionally, suggesting their short duration. It is of interest that during this transient stage the bulk of digestion takes place. In type 4 nothing reminiscent of bacteria is found; there are only myelin figures and vesicles of different sizes. Evaginations and invagnations of the vacuolar membrane and vesicles of different size and structure inside and outside the food vacuoles of types 1, 3 and 4 suggest that extensive communication exists between the cytoplasm and the food vacuole. It seems likely that enzymes are delivered to the food vacuole and digested materials are released from the food vacuole to the cytoplasm.  相似文献   

6.
A modified fluorescence in situ hybridization (FISH) method was used to analyze bacterial prey composition in protistan food vacuoles in both laboratory and natural populations. Under laboratory conditions, we exposed two bacterial strains (affiliated with beta- and gamma-Proteobacteria -- Aeromonas hydrophila and Pseudomonas fluorescens, respectively) to grazing by three protists: the flagellates Bodo saltans and Goniomonas sp., and the ciliate Cyclidium glaucoma. Both flagellate species preferably ingested A. hydrophila over P. fluorescens, while C. glaucoma showed no clear preferences. Differences were found in the digestion of bacterial prey with B. saltans digesting significantly faster P. fluorescens compared to two other protists. The field study was conducted in a reservoir as part of a larger experiment. We monitored changes in the bacterial prey composition available compared to the bacteria ingested in flagellate food vacuoles. Bacteria detected by probe HGC69a (Actinobacteria) and R-BT065 were negatively selected by flagellates. Bacteria detected by probe CF319a were initially positively selected but along with a temporal shift in bacterial cell size, this trend changed to negative selection during the experiment. Overall, our analysis of protistan food vacuole content indicated marked effects of flagellate prey selectivity on bacterioplankton community composition.  相似文献   

7.
Food vacuoles were found in one species of pho‐totrophic Dinophysis, Dinophysis fortii Pavillard, collected in Okkirai Bay. Under transmission electron microscopy, almost 70% of observed food vacuoles were characterized by membranous profiles and contained large numbers of mitochondria. The mitochondria in the food vacuole had different morphologies from those in the D. fortii cytoplasm. This indicates that these vacuoles are not autolytic accumulation bodies, but ‘true’ food vacuoles. Identification of the origin of the contents failed, but the existence of large amounts of foreign mitochondria implies that the contents in the vacuoles were derived from eukaryotic prey. Other than the observation of the food vacuoles, bacterial cells were observed in the flagellar canal. Because the flagellar canal and connecting pusule sacs had been reported to relate to macromolecule uptake, the prey organisms of D. fortii were assumed to be both eukaryotic and prokaryotic organisms.  相似文献   

8.
The influence of prey characteristics such as motility and size as well as of predator characteristics such as satiation and preculturing diet on the feeding process of interception feeding heterotrophic nanoflagellates was investigated. Three species of gram-negative bacteria, one species of gram-positive bacteria, two species of cyanobacteria (Synechococcus) and inert latex particles were fed as prey particles for three species of heterotrophic nanoflagellates (Spumella, Ochromonas, Cafeteria). Ingestion rates depended on the satiation of the flagellates and especially on the filling status of the food vacuoles. In addition, the ingestion rates depended on the characteristics of the food particle and were modified by pre-culturing the flagellates on either Pseudomonas putida or Bacillus subtilis. Digestion was found to be particle-specific. Cyanobacteria were excreted a few minutes after ingestion whereas heterotrophic bacteria were stored and digested in the food vacuoles. The spectrum of ingested particles is not identical to that of digested particles and thus neither the diet of the flagellates nor their impact on bacterial communities can be calculated simply from food vacuole content. "Selective digestion" could be shown to be an important selection mechanism concerning natural food particles. The digestion strategies of Cafeteria on the one hand and Spumella and Ochromonas on the other hand may be an important factor to explain protozoan species composition and succession in the field. In addition to bacterial abundance and grazing pressure by metazooplankton, the bacterial speciescomposition as well as biochemical variations within bacterial species may influence protozoan species composition and abundance.  相似文献   

9.
Mutants (NP1 and PSJ5) of Tetrahymena thermophila strains B and D 1968 exist that are unable to construct a functional oral apparatus and form food vacuoles at 37 C but which do so normally at 30 C. Food vacuole-less cells starved in dilute salt solution released similar amounts of acid phosphatase, beta-N-acetyl-glucosaminidase and alpha-glucosidase activity into the medium as wildtype cells during an 8-h period. Actively growing, food vacuole-less cells had approximately 50% less total protein, acid phosphatase, beta-N-acetyl-glucosaminidase, and alpha-glucosidase per cell than wildtype cells after 72-h growth. During this time food vacuole-less cells released significant amounts of the 3 acid hydrolases into the growth medium. For each hydrolase, the total activity released from growing, food vacuole-less cells was less, on a per cell basis, tahn the amount released from food vacuole formers. The proportion of the total activity secreted by the mutant and the wildtype cells was the same for acid phosphatase and beta-N-acetyl-glucosaminidase and somewhat lower for alpha-glucosidase. It is concluded that the release of a significant amount of acid hydrolase activity from Tetrahymena is independent of food vacuole formation and may be analogous to the secretory activity of other nonphagocytic eukaryotic cells.  相似文献   

10.
ABSTRACT. In ciliates, calmodulin (CaM), as in other cells, has multiple functions, such as activation of regulatory enzymes and modulating calcium‐dependent cellular processes. By immunogold localization, CaM is concentrated at multiple sites in Paramecium. It is seen scattered over the cytosol, but bound to its matrix, and is concentrated at the pores of the contractile vacuole complexes and with at least three microtubular arrays. It was localized peripheral to the nine‐doublet microtubules of the ciliary axonemes. The most striking localization was on the akinetic side only of the cytopharyngeal microtubular ribbons opposite the side where the discoidal vesicles, acidosomes and the 100‐nm carrier vesicles bind and move. CaM was also present at the periphery of the postoral microtubular bundles along which the early vacuole moves and was associated with the cytoproct microtubules that guide the spent digestive vacuoles to the cytoproct. It was not found on the membranes of, or in the interior of nuclei, mitochondria, phagosomes, and trichocysts, and was only sparsely scattered over the cytosolic sides of discoidal vesicles, acidosomes, lysosomes, and digestive vacuoles. Together the associations with specific microtubular arrays and the effects of trifluoperazine and calmidazolium indicate that CaM is involved (i) in vesicle transport to the cytopharynx area for vacuole formation and subsequent vacuole acidification, (ii) in early vacuole transport along the postoral fiber, and (iii) in transporting the spent vacuole to the cytoproct. Higher CaM concentrations subjacent to the cell's pellicle and close to the decorated tubules of the contractile vacuole complex may support a role for CaM in ion traffic.  相似文献   

11.
Summary Digestion in the peritrich ciliateOphrydium versatile O.F.M. involves a complex sequence of intracytotic and exocytotic membrane fusion and recycling events. Food particulates are concentrated in the lower cytopharynx which forms a fusiform-shaped food vacuole. Upon release from the cytopharynx, this food vacuole begins to condense, concentrating the food particulates. Excess membrane is removed intracytotically. These released membranes pieces form discoidal vesicles which are recycled to the base of the cytopharynx, thus providing additional membrane for subsequent food vacuole formation. In the condensed food vacuole, digestion proceeds; hydrolytic enzymes are delivered to the food vacuole via rough endoplasmic reticulum and/or by the cup-shaped coated vesicles (CSCV). As these vesicles fuse with the food vacuole, the food vacuole enlarges, digestion proceeds and an electron-dense membrane coat appears along the luminal surface of the food vacuole. Prior to defecation, the food vacuole undergoes a final condensation; irregularly-shaped, electron dense, single-membrane bound vesicles are cut-off intracytotically from the old food vacuole. These vesicles undergo condensation and invagination to form the cup-shaped coated vesicles (CSCV) which fuse with younger food vacuoles.  相似文献   

12.
SYNOPSIS. Mutants (NP1 and PSJ5) of Tetrahymena thermophila strains B and D 1968 exist that are unable to construct a functional oral apparatus and form food vacuoles at 37 C but which do so normally at 30 C. Food vacuole-less cells starved in dilute salt solution released similar amounts of acid phosphatase, β-N-acetyl-glucosaminidase and ±-glucosidase activity into the medium as wildtype cells during an 8-h period. Actively growing, food vacuole-less cells had ?50% less total protein, acid phosphatase, β-N-acetyl-glucosamin-idase, and ±-glucosidase per cell than wildtype cells after 72-h growth. During this time food vacuole-less cells released significant amounts of the 3 acid hydrolases into the growth medium. For each hydrolase, the total activity released from growing, food vacuole-less cells was less, on a per cell basis, than the amount released from food vacuole formers. The proportion of the total activity secreted by the mutant and the wildtype cells was the same for acid phosphatase and β-N-acetyl-glucosaminidase and somewhat lower for ±-glucosidase. It is concluded that the release of a significant amount of acid hydrolase activity from Tetrahymena is independent of food vacuole formation and may be analogous to the secretory activity of other nonphagocytic eukaryotic cells.  相似文献   

13.
SYNOPSIS. Observations of the ultrastructure of marine scuticociliatids, tentatively assigned to the genus Uronema, were made by light, transmission electron, and scanning electron microscopy. Giant, cortically oriented mitochondria filled the subpellicular, intermeridional areas, and were in close association with the epiplasm immediately under the inner alveolar sac membranes. Reconstructions of serial sections of the posterior poles of ciliates indicated that the intermeridional mitochondria could fuse at that point and the entire chondriome might at times be a single organelle. A system of tubules was observed to be intimately associated with the mitochondria in the posterior region. The tubules anastomosed and were directed posteriorly into the region of the nephridial-contractile vacuole system. The outer surfaces were coated with projections arranged in helical patterns. The system may be regarded as a fluid segregation organelle. The tripartite nature of the polar basal body complex observed by silver impregnation was confirmed by transmission electron microscopy. The 3 structures were the basal body of the caudal cilium and 2 parasomal sacs. A prominent ring around the caudal cilium was observed by scanning electron micrcscopy; it is probably responsible for the silver deposition surrounding the polar basal body complex that can be seen by light microscopy of silver-impregnated specimens. The ultrastructure of the nonmotile caudal cilium and its kinetosome was unremarkable, being like that of the motile, somatic cilia. The micronuclear and macronuclear outer membranes were continuous at several sites. Such interconnections explain the intimate physical relationship between the nuclei during interphase in many ciliates, and could be a structural basis for chemical communication between the 2 nuclear types. Within the cytoplasm surrounding the opening of the cytoproct, numerous clear vesicles were observed. Their position and appearance suggested that the cytoproct may be involved in the elimination of solutions as well as solids. Food vacuoles, cortical microtubules, lamellar vesicles, disc-shaped vesicles, mucocysts, and a contractile vacuole and its pore were also observed.  相似文献   

14.
The foed vacuoles of Paramecium aurelia , when examined in the electron microscope, are seen to be surrounded by small secondary vacuoles 0.05 - 0.2 μ. in diameter. Similar small vacuoles also surround the deepest part of the buccal cavity. Young focd vacuoles, i.e. those containing well preserved bacteria, are encircled by a smooth. vacuolar membrane. In older food vacuoles the vacuolar membrane in a transverse section often appears more wavy with small gulfs and protuberances. It is suggested that the small surrounding vacuoles are formed by the vacuolar membrane of older vacuoles by means of a process similar to pinocytosis. There is no evidence, however, that formation of small surrounding vacuoles takes place by pinocytosis in young food vacuoles. Examination of the cytoplasmic membrane of the deepest parts of the buccal cavity shows a similar prccess of vacuole formation by pinocytosis.  相似文献   

15.
Summary Evidence is presented in support of the hypothesis that the contents of digestive vacuoles in refed starvedTetrahymena pyriformis GL-9 are egested from the cell in approximately the sequence of their order of formation. The investigations involved measurements of the rates of disappearance of digestive vacuoles from the cells and the subsequent appearance of egested globules in the surrounding medium using both cultures and individual cells. The cells were first fed peptone and latex particles for a period and then this type of vacuole formation was suppressed by the addition of excess carmine particles (or the process was repeated with the particles in reverse order). Thus two types of morphologically distinct digestive vacuoles could be produced and observed microscopically. These observations suggest that the temporal nature of the movement of the digestive vacuoles through the cell result in the temporal nature of egestion and that no selective mechanism occurs at egestion. Thus digestive vacuoles are thought to pass through the cell from cytopharynx to cytoproct in approximately the order formed and at approximately constant rate. Under conditions of excess nutrients, where the cells become filled with digestive vacuoles, they seem to be able to maintain an approximately uniform number of digestive vacuoles within themselves by maintaining approximately constant and equal rates of vacuole formation and egestion. The maximum rates of latex or carmine vacuole formation or egestion found in single cells were approximately 0.3–0.4 vacuoles per cell per minute. The results are discussed.  相似文献   

16.
ABSTRACT. In situ hybridization using fluorescent oligonucleotide probes complementary to unique regions of 16S rRNA molecules provides a way of identifying the food vacuole contents of bactivorous protists. Laboratory experiments with Tetrahymena showed rRNAs in food vacuoles are degraded slowly enough to permit their use as hybridization targets for such probes. A probe specific for a hypervariable region of the small subunit rRNA of an unnamed proteobacterium abundant in a local lake was then synthesized. It was used to probe the food vacuoles of the ciliates present in fixed water samples collected from the same lake. The vacuoles of several filter-feeding ciliates bound the probe, indicating that such probes can be used to identify the food vacuole contents of ciliates collected from natural samples.  相似文献   

17.
SYNOPSIS. When the structures involved in digestive events in T. pyriformis are examined at the electron microscope level, some information is added to that long known from light microscopy. The food trapping mechanism consists of the three membranelles, undulating membrane, oral ribs, and a “valve” apparently closing the opening to the cytopharynx. Both of the latter structures are supported by microtubules. Fibers extend internally from the cytopharynx and are closely associated with the food vacuole as it forms. Clear vacuoles resembling pinocytic vacuoles appear to arise from differentiated areas of the pellicle and plasma membrane. These vacuoles may fuse with primary lysosomes. Hydrolases are thus contributed to the pinocytic vacuoles which may then fuse with food vacuoles. When first formed food vacuoles contain no hydrolases but may acquire them directly, from primary lysosomes or from pinocytic vacuoles. Digestion proceeds to completion in the food vacuole, at which time soluble food products are released to the cytoplasm. Undigested materials are lost through the cytopyge. In stationary growth phase cells autophagic vacuoles form containing mitochondria and other cellular particulates. Such vacuoles probably contain hydrolases when formed and they may receive others by fusion with primary lysosomes.  相似文献   

18.
SYNOPSIS. Studies were carried out on the introduction of labeled precursors into the DNA of Paramecium aurelia (syngen 4, stock 51) by way of the bacteria that are used for food. A thymine-requiring strain of Escherichia coli (15 T) was labeled by growth in either H3-methyl thymidine or 2-C14 bromouracil, washed free of the exogenous label, and fed to the paramecia. The tritium label from the bacteria was incorporated almost exclusively into the DNA of the paramecia, whereas it was much less specifically incorporated when introduced directly from the medium. The Cu label from bromouracil was also incorporated mainly into the DNA of the paramecia although a small amount appeared in RNA. The formation of labeled food vacuoles was followed. Food vacuoles were formed at a nearly constant rate, with the total number of vacuoles increasing throughout the cycle. The lifetime of the vacuoles was about 2.5 hours. Incorporation of the label into the DXA of the paramecia begins within a few minutes of the formation of the first labeled vacuole. DNA synthesis begins about 1.5 hr after the previous fission (total cell cycle about 5.8 hr) and progresses at a nearly constant rate throughout the remainder of the cycle.  相似文献   

19.
The effect of temperature on length of time for digestion of bacteria was evaluated, by using fluorescently labeled bacteria (FLB), for phagotrophic flagellates and ciliates isolated from coastal northwest Mediterranean waters. Accumulation of FLB in protozoan food vacuoles was followed until a plateau of FLB per cell occurred; then after a 1:10 dilution of FLB with unlabeled bacteria, disappearance of FLB in food vacuoles was monitored. For both 3- to 5-μm flagellates and 10- to 40-μm ciliates, the absolute linear slopes of FLB uptake and disappearance were nearly identical in individual experiments over a temperature range of 12 to 22°C. We inferred from these results that the leveling off of the uptake curves resulted when equilibrium between ingestion and digestion of bacteria was attained. The time to leveling off then represented the average time needed for complete digestion of the bacteria ingested at the start of the experiment, and the inverse of this time represented a bacterial digestion rate. The digestion rate increased exponentially from 12 to 22°C for both a mixed flagellate assemblage and the oligotrichous ciliate Strombidium sulcatum, with a Q10 of 2.8 for the flagellates and 2.0 for the ciliate. Although bacterial ingestion rates varied greatly, depending on protozoan cell size, total bacterial abundance, and temperature, digestion times appeared to be significantly influenced only by protozoan cell size (or type of protozoan) and by temperature.  相似文献   

20.
Bacterivory by heterotrophic nanoflagellates and ciliates has been widely studied in aquatic environments, but data on the grazing of amoebae, are still scarce. From the water samples of Dianchi Lake (Kunming, Yunnan Province, China), we isolated an amoeba, designated as Naegleria sp. strain W2, which had potent grazing effects on some kind of cyanobacteria. The food selection mechanism and the digestion process of the amoeba were investigated in batch experiments. Predation experiments showed that filamentous cyanobacteria (e.g., Anabaena, Cylindrospermum, Gloeotrichia, and Phormidium) were readily consumed, with clearance rates ranging from 0.332 to 0.513 nL amoeba−1 h−1. The tight threads (Oscilltoria) and aggregates (Aphanizomenon) could not be ingested; however, their sonicated fragments were observed inside food vacuoles, suggesting that their morphologies prevent them from being ingested. Live video microscopy noted that unicellular Chroococcaceae (e.g., Synechococcus, Aphanocapsa, and Microcystis) were excreted after ingestion, indicating that food selection takes place inside food vacuoles. To determine whether the tastes or the toxins prevented them from being digested, heat-killed cells were retested for predation. Digestion rates and ingestion rates of the amoebae for filamentous cyanobacteria were estimated from food vacuole content volume. Through a “cold-chase” method, we found that the food vacuole contents declined exponentially in diluted amoebae cells, and digestion rates were relatively constant, averaging about 1.5% food vacuole content min−1 at 28°C. Ingestion strongly depended on the satiation status of the amoebae, starved amoebae fed at higher rates compared with satiated amoebae. Our results suggest that the food selection and food processing mechanisms of the amoeba are similar to those of interception feeding flagellates; however, filamentous cyanobacteria cannot obtain a refuge under the grazing pressure of phagotrophic amoebae, which may widen our knowledge on the grazing of protists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号