首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comment on: Lane DP, et al. Cell Cycle 2011; 10:4272–9  相似文献   

2.
Proteins of the p53 family are expressed in vertebrates and in some invertebrate species. The main function of these proteins is to control and regulate cell cycle in response to various cellular signals, and therefore to control the organism's development. The regulatory functions of the p53 family members originate mostly from their highly-conserved and well-structured DNA-binding domains. Many human diseases (including various types of cancer) are related to the missense mutations within this domain. The ordered DNA-binding domains of the p53 family members are surrounded by functionally important intrinsically disordered regions. In this study, substitution rates and propensities in different regions of p53 were analyzed. The analyses revealed that the ordered DNA-binding domain is conserved, whereas disordered regions are characterized by high sequence diversity. This diversity was reflected both in the number of substitutions and in the types of substitutions to which each amino acid was prone. These results support the existence of a positive correlation between protein intrinsic disorder and sequence divergence during the evolutionary process. This higher sequence divergence provides strong support for the existence of disordered regions in p53 in vivo for if they were structured, they would evolve at similar rates as the rest of the protein.  相似文献   

3.
4.
The p53 family network is a unique cellular processor that integrates information from various pathways and determines cellular choices between proliferation, replication arrest/repair, differentiation, senescence, or apoptosis. The most studied role of the p53 family is the regulation of stress response and tumor suppression. By removing damaged cells from the proliferating pool, p53 family members preserve the integrity of the genome. In addition to this well recognized role, recent data implicate the p53 protein family in a broader role of controlling cell proliferation, differentiation and death. Members of the p53 protein family with opposing activity perform coordination of these processes. Imbalance of p53 protein family may contribute to a significant proportion of congenital developmental abnormalities in humans.  相似文献   

5.
6.
7.
We propose here a novel p53-targeting radio-cancer therapy using p53 C-terminal peptides for patients having mutated p53. Hoechst 33342 staining showed that X-ray irradiation alone efficiently induced apoptotic bodies in wild-type p53 (wt p53) human head and neck cancer cells transfected with a neo control vector (SAS/neo cells), but hardly induced apoptotic bodies in mutation-type p53 (m p53) cells transfected with a vector carrying the m p53 gene (SAS/m p53). In contrast, transfection of p53 C-terminal peptides (amino acid residues 361-382 or 353-374) via liposomes caused a remarkable increase of apoptotic bodies in X-ray-irradiated SAS/m p53 cells, but did not enhance apoptotic bodies in X-ray-irradiated SAS/neo cells. In immunocytochemical analysis, positively stained cells for active type caspase-3 were observed at high frequency after X-ray irradiation in the SAS/m p53 cells pre-treated with p53 C-terminal peptides. In SAS/neo cells, positively stained cells for active type caspase-3 were observed with X-ray irradiation alone. Furthermore, protein extracts from X-ray-irradiated SAS/m p53 cells showed higher DNA-binding activity of p53 to p53 consensus sequence when supplemented in vitro with p53 C-terminal peptides than extracts from non-irradiated SAS/m p53 cells. These results suggest that radiation treatment in the presence of p53 C-terminal peptides is more effective for inducing p53 -mediated apoptosis than radiation treatment alone or p53 C-terminal peptide treatment alone, especially in m p53 cancer cells. This novel tool for enhancement of apoptosis induction in m p53 cells might be useful for p53-targeted radio-cancer therapy.  相似文献   

8.
9.
It was shown previously that the p53 protein can recognize DNA modified with antitumor agent cisplatin (cisPt-DNA). Here, we studied p53 binding to the cisPt-DNA using p53 deletion mutants and via modulation of the p53-DNA binding by changes of the protein redox state. Isolated p53 C-terminal domain (CTD) bound to the cisPt-DNA with a significantly higher affinity than to the unmodified DNA. On the other hand, p53 constructs involving the core domain but lacking the C-terminal DNA binding site (CTDBS) exhibited only small binding preference for the cisPt-DNA. Oxidation of cysteine residues within the CD of posttranslationally unmodified full length p53 did not affect its ability to recognize cisPt-DNA. Blocking of the p53 CTDBS by a monoclonal antibody Bp53-10.1 resulted in abolishment of the isolated CTD binding to the cisPt-DNA. Our results demonstrate a crucial role of the basic region of the p53 CTD (aa 363-382) in the cisPt-DNA recognition.  相似文献   

10.
11.
Structure and function in the p53 family   总被引:4,自引:0,他引:4  
  相似文献   

12.
The tumor suppressor p53 has two DNA binding domains: a central sequence-specific domain and a C-terminal sequence-independent domain. Here, we show that binding of large but not small DNAs by the C terminus of p53 negatively regulates sequence-specific DNA binding by the central domain. Four previously described mechanisms for activation of specific DNA binding operate by blocking negative regulation. Deletion of the C terminus of p53 activates specific DNA binding only in the presence of large DNA. Three activator molecules (a small nucleic acid, a monoclonal antibody against the p53 C terminus, and a C-terminal peptide of p53) stimulate sequence-specific DNA binding only in the presence of both large DNA and p53 with an intact C terminus. Our findings argue that interactions of the C terminus of p53 with genomic DNA in vivo would prevent p53 binding to specific promoters and that cellular mechanisms to block C-terminal DNA binding would be required.  相似文献   

13.
14.
The DNA binding domains of human p53 and Cep-1, its C. elegans ortholog, recognize essentially identical DNA sequences despite poor sequence similarity. We solved the three-dimensional structure of the Cep-1 DNA binding domain in the absence of DNA and compared it to that of human p53. The two domains have similar overall folds. However, three loops, involved in DNA and Zn binding in human p53, contain small alpha helices in Cep-1. The alpha helix in loop L3 of Cep-1 orients the side chains of two conserved arginines toward DNA; in human p53, both arginines are mutation hotspots, but only one contacts DNA. The alpha helix in loop L1 of Cep-1 repositions the entire loop, making it unlikely for residues of this loop to contact bases in the major groove of DNA, as occurs in human p53. Thus, during evolution there have been considerable changes in the structure of the p53 DNA binding domain.  相似文献   

15.
16.
Role of p53 family members in apoptosis   总被引:13,自引:0,他引:13  
  相似文献   

17.
The tumor suppressor protein p53 mediates stress-induced growth arrest or apoptosis and plays a major role in safeguarding genome integrity. In response to DNA damage, p53 can be modified at multiple sites by phosphorylation and acetylation. We report on the characterization of p53 C-terminal phosphorylation by CHK1 and CHK2, two serine/threonine (Ser/Thr) protein kinases, previously implicated in the phosphorylation of the p53 N terminus. Using tryptic phosphopeptide mapping, we have identified six additional CHK1 and CHK2 sites residing in the final 100 amino acids of p53. Phosphorylation of at least three of these sites, Ser366, Ser378, and Thr387, was induced by DNA damage, and the induction at Ser366 and Thr387 was abrogated by small interfering RNA targeting chk1 and chk2. Furthermore, mutation of these phosphorylation sites has a different impact on p53 C-terminal acetylation and on the activation of p53-targeted promoters. Our results demonstrate a possible interplay between p53 C-terminal phosphorylation and acetylation, and they provide an additional mechanism for the control of the activity of p53 by CHK1 and CHK2.  相似文献   

18.
A L Okorokov  F Ponchel    J Milner 《The EMBO journal》1997,16(19):6008-6017
p53 is able to recognize and bind sites of DNA damage and, in some way, damage to cellular DNA activates a p53 response leading to G1 arrest or apoptosis. We have previously shown that 'damaged DNA' induces N-terminal cleavage of p53 to generate p40(DeltaN) and p35 (core) protein products. We now show that the p35 product has protease activity and is able to cleave between residues 23 and 24 of full-length p53 to generate a novel product, p50(DeltaN23). This activity was inhibited by bestatin, an aminopeptidase inhibitor. Residues 23 and 24 lie within the mdm-2 binding domain of p53 and the possibility that p50(DeltaN23) may be resistant to feedback regulation by mdm-2 is discussed. Unexpectedly, interaction with ssDNA induced two further cleavage products of p53, generated by C-terminal cleavage and designated p50(DeltaC) and p40(DeltaC). In vivo generation of a C-terminal cleavage product of endogenous p53 similar in size to p50(DeltaC) correlated with up-regulation of p21 expression in ML-1 cells exposed to either adriamycin or cisplatin. The possible significance of the various p53 cleavage products in relation to the cellular response to DNA damage is discussed.  相似文献   

19.
Role of the newer p53 family proteins in malignancy   总被引:11,自引:0,他引:11  
The most recently identified members of the p53 family, p63 and p73, share certain structural and functional similarities with p53. Both p63 and p73 can bind to canonical p53-DNA-binding sites, transactivate the promoters of known p53 target genes and induce apoptosis. Despite these similarities there are many important differences. In contrast to p53, p63 and p73 give rise to multiple distinct protein isoforms that have different functional properties. Upstream signaling pathways involved in the activation of p63 and p73 differ from those involved in p53 activation. Only a subset of the DNA damaging agents that induce p53 can induce p73. Cellular and viral oncoproteins can discriminate between p53 and the newer family members. In addition, the levels of p63 and p73 are affected by certain states of cellular differentiation. Finally, it is becoming clear that the newest members of the p53 family are not classical tumor suppressor genes. In contrast to the high prevalence of p53 mutations in human cancers, p63 and p73 mutations are rare. Indeed, levels of p73 increase during malignant progression. In addition, unlike p53-/- mice, mice lacking p63 and p73 do not develop tumors, but instead have significant developmental abnormalities. Mutations in p63 have also been detected in humans with the ectodermal dysplastic syndrome EEC. Further studies are required to determine whether qualitative or quantitative differences in the expression of p63 and p73 isoforms are important in the development of human cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号