首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-dimensional, finite element study was undertaken to establish the stresses in the proximal tibia before and after total knee arthroplasty. Equivalent-thickness models in a sagittal plane were created for the natural, proximal tibia and for the proximal tibia with two different types of tibial plateau components. All components simulated bony ingrowth fixation, i.e. no cement layer existed between component and bone. In addition, the interface between component and bone was assumed to be intimately connected, representing complete bony ingrowth and a rigid state of fixation. Two load cases were considered: a joint reaction force acting in conjunction with a patellar ligament force, simulating the knee at 40 degrees of flexion; and a joint reaction force directed along the long axis of the tibia. For the natural tibia model, the pattern of principal stresses for loadcase 1 more closely corresponds to the epiphyseal plate geometry and trabecular morphology than do the principal stress patterns for loadcase 2. Judging from the distribution of principal stresses, loadcase 1 represents a more severe test of implant design than does loadcase 2. The model of the component with a peg predicted that the trabecular bone near the tip of the peg will experience higher than normal stresses, while the bone stresses near the posterior aspect adjacent to the metal tray will be reduced. A component without pegs that incorporates a posterior chamfer and an anterior lip lead to stress distributions closer to those existing in the natural tibia. The interface geometry for this design is based upon the contour of the epiphyseal plate.  相似文献   

2.
Finite element stress analyses were conducted of the canine femoral head before and after implantation of various surface replacement-type components. The femoral head was replaced by four implant geometries; (a) shell, (b) shell with peg, (c) shell with rod, and (d) a new epiphyseal replacement design. All implants were modelled to simulate bony ingrowth along the underside of the shell and along the surfaces of the peg and rod. The results indicated that in the normal femur the forces are transferred from the articular surface through the femoral head cancellous bone to the inferior cortical shell of the femoral neck. After shell-type surface replacement, forces were transferred more distally at the rim of the shell and at the end of the peg or rod, thereby reducing the stresses in the proximal head cancellous bone. Computer simulation of bone remodelling due to proximal bone stress reduction was shown to accentuate the abnormality of the stress fields. Surface replacement with a lower modulus material created a less abnormal redistribution of bone stresses. The new epiphyseal replacement design resulted in stress distributions similar to those in the normal femoral head and minimal shear stresses at the implant/bone interface. These findings suggest that the epiphyseal replacement concept may provide better initial mechanical integrity and create a more benign milieu for adaptive bone remodelling than conventional, shell-type surface replacement components.  相似文献   

3.
Two-dimensional, finite element studies were conducted of the proximal tibia before and after joint arthroplasty. Equivalent-thickness models projected onto the mid-frontal plane were created for the natural, proximal tibia and for the proximal tibia with four different types of tibial plateau components. All components simulated bony ingrowth fixation, i.e. no cement layer existed between component and bone. In addition, the interface between component and bone was assumed to be intimately connected, representing complete bony ingrowth and a rigid state of fixation. Loads consisted of bi-condylar and uni-condylar forces. Results indicated that conventional plateau designs with central posts or multiple pegs led to higher stress magnitudes in the trabecular bone near the distal ends of the post/pegs and stress shielding at more proximal locations. A design without posts or pegs whose interface geometry mimics the epiphyseal plate minimizes bone stress shielding. An implant consisting of separate components covering each condyle was found effective in limiting component tilting and the consequent tensile stresses caused by non-symmetrical, uni-condylar loading.  相似文献   

4.
The stress distribution within the components and the micromotion of the interface significantly influence the long-term function of the taper lock joint in a modular segmental bone replacement prosthesis. Bending-induced gap opening between the cone and the sleeve can lead to an inflow of biological fluids, and thus accelerate implant corrosion. Local areas of high stress can also accelerate the corrosive processes and initiate local yielding, which may lead to a fracture in one of the components. In this study, a 3-D finite element (FE) model of a modular segmental bone replacement prosthesis was developed to study the interface micromotion and component stress distribution under the maximum loads applied during gait for a taper lock joint with multiple material combinations. Bending was the main cause of the local high stresses and interface separation within the taper joint. For Ti6A14V components, cortical bone bridging and ingrowth across the taper lock gap reduced the peak stress by 45% and reduced the contact interface separation by 55%. Such tissue formation around the taper lock joint could also form a closed capsule to restrict the migration of potential wear particles and thus prevent the biologic process of bone resorption induced by metal debris.  相似文献   

5.
In this paper the variation of normal and shear stresses along a path defined on the bone–dental implant interface is investigated. In particular, the effects of implant diameter, collar length and slope, body length, and the effects of four different types of external threads on the interfacial stress distribution are studied. The geometry of the bone is digitized from a CT scan of a mandibular incisor and the surrounding bone. The bone and the implant are assumed to be perfectly bonded. The finite element method with 2D plane strain assumption is used to compute interfacial stresses. Highest continuous interfacial stresses are encountered in the region where the implant collar engages the cortical region, and near the apex of the implant in the subcortical region. Stress concentrations in the interfacial stresses occur near the geometric discontinuities on the implant contour, and jumps in stress values occur where the elastic modulus of the bone transitions between the cortical and trabecular bone values. Among the six contour parameters, the slope and the length of the implant collar, and the implant diameter influence the interfacial stress levels the most, and the effects of changing these parameters are significantly noticed only in the cortical bone (alveolar ridge) area. External threads cause significant stress concentrations in interfacial stresses in otherwise smoothly varying regions. This work shows that the presence of external threads could cause significant variations in both normal and shear stresses along the bone–implant interface, but not reduction in shear stress as previously thought.  相似文献   

6.
Recent development of screen-like bonded weaves of titanium wire for orthopaedic implant anchorage affords a unique opportunity for analytic studies of porous ingrowth micromechanics. The regular geometry of individual wires and the periodicity of the mesh weave are exploited in a series of two-dimensional finite element models, mapping interstitial bone stress fields as a function of ingrowth depth and wire size, shape, and spacing.

When the depth of bone ingrowth was less than one wire diameter, peak bone stresses always occurred at the leading (i.e. deepest) edge of bone ingrowth, immediately adjacent to the wire. As ingrowth depth approached a full wire diameter, peak local bone stresses were 2–9 times the nominal applied host bone stress, with greater stresses occurring for lower screen weave densities. Within multiple screen layers, the top layer consistently experienced the peak stress and transmitted most of the applied load, regardless of the number of underlying screen layers surrounded by bone. Neither wire size variations nor partial wire flattening substantially affected general trends in stress predictions.  相似文献   


7.
Finite element analysis is a useful analytical tool for the design of biomedical implants. The aim of this study was to investigate the behavior of temporomandibular joint implants with multiple design variables of the screws used for fixation of the implant. A commercially available implant with full mandible was analyzed using a finite element software package. The effects of different design variables such as orientation, diameter and stem length of the screws on the stress distribution in bone for two different surgical procedures were investigated. Considering the microstrain in bone as a principal factor, the acceptable ranges for screw diameter and length were determined. Parallel orientation of the screws performed better from a stress point of view when compared to the zig-zag orientation. Sufficient contact between the implant collar and mandibular condyle was shown to reduce the peak stresses which may lead to long term success. The distance between screw holes in the parallel orientation was much closer when compared to the zig-zag orientation. However, the stresses in bone near the screw hole area for the parallel orientation were within acceptable limits.  相似文献   

8.
Dental implantology has high success rates, and a suitable estimation of how stresses are transferred to the surrounding bone sheds insight into the correct design of implant features. In this study, we estimate stress transfer properties of four commercial implants (GMI, Lifecore, Intri and Avinent) that differ significantly in macroscopic geometry. Detailed three-dimensional finite element models were adopted to analyse the behaviour of the bone-implant system depending on the geometry of the implant (two different diameters) and the bone-implant interface condition. Occlusal static forces were applied and their effects on the bone, implant and bone-implant interface were evaluated. Large diameters avoided overload-induced bone resorption. Higher stresses were obtained with a debonded bone-implant interface. Relative micromotions at the bone-implant interface were within the limits required to achieve a good osseointegration. We anticipate that the methodology proposed may be a useful tool for a quantitative and qualitative comparison between different commercial dental implants.  相似文献   

9.
After total hip replacement (THR) impingement of the implant components causes shear stresses at the acetabular implant-bone interface. In the current study the finite element method (FEM) was applied to analyse the shear stresses at a fully bonded implant-bone interface assuming total ingrowth of the cup. The FE model of a press-fit acetabular component and the proximal part of the femoral component incorporates non-linear material and large sliding contact. The model was loaded with a superior-medial joint load of 435 N simulating a two-legged stance. Starting at initial impingement, the femoral component was medially rotated by 20 degrees . The peak tilting shear stress of -2.6 MPa at the impingement site takes effect towards the pole of the cup. The torsional shear stress at the impingement site is zero. On each side of the impingement site, there are extrema of torsional shear stress reaching -1.8 and 1.8 MPa, respectively. The global peak shear stress during impingement may indicate a possible starting point for cup loosening. The pattern of the torsional shear stresses suggests that besides the symmetric lever-out, an additional asymmetrical tilting of the cup occurs that can be explained by the orientation of the applied joint load.  相似文献   

10.
The purpose of this study was to compare the effects of implant inclinations and load times on stress distributions in the peri-implant bone based on immediate- and delayed-loading models. Four 3D FEA models with different inclination angle of the posterior implants (0°, 15°, 30°, 45°) were constructed. A static load of 150?N in the multivectoral direction was applied unilaterally to the cantilever region. The stress distributions in the peri-implant bone were evaluated before and after osseointegration. The principal tensile stress (σmax), mean principal tensile stress (σmax), principal compressive stress (σmin) and mean principal compressive stress (σmin) of the bone and micromotion at the contact interface between the bone and implants were calculated. In all the models, peak principal stresses occurred in the bone surrounding the left tilted implant. The highest σmax and σmin were all observed in the 0° model for both immediate- and delayed-loading models. And the 0° and 15° models showed higher σmax and σmin values. The 0°models showed the largest micromotion. The observed stress distribution was better in the 30° and 45° models than in the 0° and 15° models.  相似文献   

11.
The study focused on the influence of the implant material stiffness on stress distribution and micromotion at the interface of bone defect implants. We hypothesized that a low-stiffness implant with a modulus closer to that of the surrounding trabecular bone would yield a more homogeneous stress distribution and less micromotion at the interface with the bony bed. To prove this hypothesis we generated a three-dimensional, non-linear, anisotropic finite element (FE) model. The FE model corresponded to a previously developed animal model in sheep. A prismatic implant filled a standardized defect in the load-bearing area of the trabecular bone beneath the tibial plateau. The interface was described by face-to-face contact elements, which allow press fits, friction, sliding, and gapping. We assumed a physiological load condition and calculated contact pressures, shear stresses, and shear movements at the interface for two implants of different stiffness (titanium: E=110GPa; composite: E=2.2GPa). The FE model showed that the stress distribution was more homogeneous for the low-stiffness implant. The maximum pressure for the composite implant (2.1 MPa) was lower than for the titanium implant (5.6 MPa). Contrary to our hypothesis, we found more micromotion for the composite (up to 6 microm) than for the titanium implant (up to 4.5 microm). However, for both implants peak stresses and micromotion were in a range that predicts adequate conditions for the osseointegration. This was confirmed by the histological results from the animal studies.  相似文献   

12.
The main objective of this work is the evaluation, by means of the finite element method (FEM) of the mechanical stability and long-term microstructural modifications in bone induced to three different kinds of fractures of the distal femur by three types of implants: the Condyle Plate, the less invasive stabilization system plate (LISS) and the distal femur nail (DFN). The displacement and the stress distributions both in bone and implants and the internal bone remodelling process after fracture and fixation are obtained and analysed by computational simulation. The main conclusions of this work are that distal femoral fractures can be treated correctly with the Condyle Plate, the LISS plate and the DFN. The stresses both in LISS and DFN implant are high especially around the screws. When respect to remodelling, the LISS produces an important resorption in the fractured region, while the other two implants do not strongly modify bone tissue microstructure.  相似文献   

13.
The main objective of this work is the evaluation, by means of the finite element method (FEM) of the mechanical stability and long-term microstructural modifications in bone induced to three different kinds of fractures of the distal femur by three types of implants: the Condyle Plate, the less invasive stabilization system plate (LISS) and the distal femur nail (DFN). The displacement and the stress distributions both in bone and implants and the internal bone remodelling process after fracture and fixation are obtained and analysed by computational simulation. The main conclusions of this work are that distal femoral fractures can be treated correctly with the Condyle Plate, the LISS plate and the DFN. The stresses both in LISS and DFN implant are high especially around the screws. When respect to remodelling, the LISS produces an important resorption in the fractured region, while the other two implants do not strongly modify bone tissue microstructure.  相似文献   

14.
Factors related to micromovements at bone-implant interface have been studied because they are considered adverse to osseointegration. Simplifications are commonly observed in these FEA evaluations. The aim of this study was to clarify the influence of FEA parameters (boundary conditions and bone properties) on the stress distribution in peri-implant bone tissue when micromovements are simulated in implants with different geometries. Three-dimensional models of an anterior section of the jaw with cylindrical or conical titanium implants (4.1 mm in width and 11 mm in length) were created. Micromovement (50, 150, or 250 μm) was applied to the implant. The FEA parameters studied were linear vs. non-linear analyses, isotropic vs. orthogonal anisotropic bone, friction coefficient (0.3) vs. frictionless bone-implant contact. Data from von Mises, shear, maximum, and minimum principal stresses in the peri-implant bone tissue were compared. Linear analyses presented a relevant increase of the stress values, regardless of the bone properties. Frictionless contact reduced the stress values in non-linear analysis. Isotropic bone presented lower stress than orthogonal anisotropic. Conical implants behave better, in regard to compressive stresses (minimum principal), than cylindrical ones, except for nonlinear analyses when micromovement of 150 and 250 μm were simulated. The stress values raised as the micromovement amplitude increased. Non-linear analysis, presence of frictional contact and orthogonal anisotropic bone, evaluated through maximum and minimum principal stress should be used as FEA parameters for implant-micromovement studies.  相似文献   

15.
Aims: Bone structure around basal implants shows a dual healing mode: direct contact areas manifest primary osteonal remodeling, in the void osteotomy-induced spaces, the repair begins with woven bone formation. This woven bone is later converted into osteonal bone. The purpose of this study was to develop a model to accurately represent the interface between bone and basal implant throughout the healing process. The model was applied to the biological scenario of changing load distribution in a basal implant system over time. Methods: Computations were made through finite element analysis using multiple models with changing boneimplant contact definitions which reflected the dynamic nature of the interface throughout the bony healing process. Five stages of bony healing were calculated taking into account the changes in mineral content of bone in the vicinity of the load transmitting implant surfaces. Results: As the bony integration of basal implants proceeds during healing, peak stresses within the metal structure shift geographically. While bony repair may still weaken osteonal bone, woven bone has already matured. This leads to changes in the load distribution between and within the direct contact areas, and bone areas which make later contact with implant. Conclusions: This study shows that basal implants undergo an intrinsic shift of maximum stress regions during osseointegration. Fatigue testing methods in the case of basal implants must therefore take into account this gradual shift from early healing phase until full osseointegration is achieved.  相似文献   

16.
The aim of this study is to evaluate a newly developed bone plate with low-stiffness material in terms of stress distribution. In this numerical study, 3D finite element models of the bone plate with low-stiffness material and traditional bone plates made of stainless steel and Ti alloy have been developed by using the ANSYS software. Stress analyses have been carried out for all three models under the same loading and boundary conditions. Compressive stresses occurring in the intact portion of the bone (tibia) and at the fractured interface at different stages of bone healing have been investigated for all three types of bone-plate systems. The results obtained have been compared and presented in graphs. It has been seen that the bone plate with low-stiffness material offers less stress-shielding to the bone, providing a higher compressive stress at the fractured interface to induce accelerated healing in comparison with Ti alloy and stainless-steel bone plate. In addition, the effects of low-stiffness materials with different Young's modulus on stress distribution at the fractured interface have been investigated in the newly developed bone-plate system. The results showed that when a certain value of Young's modulus of low-stiffness material is exceeded, increase in stiffness of the bone plate does not occur to a large extent and stress distributions and micro-motions at the fractured interface do not change considerably.  相似文献   

17.
Pushout tests can be used to estimate the shear strength of the bone implant interface. Numerous such experimental studies have been published in the literature. Despite this researchers are still some way off with respect to the development of accurate numerical models to simulate implant stability. In the present work a specific experimental pushout study from the literature was simulated using two different bones implant interface models. The implant was a porous coated Ti-6Al-4V retrieved 4 weeks postoperatively from a dog model. The purpose was to find out which of the interface models could replicate the experimental results using physically meaningful input parameters. The results showed that a model based on partial bone ingrowth (ingrowth stability) is superior to an interface model based on friction and prestressing due to press fit (initial stability). Even though the present study is limited to a single experimental setup, the authors suggest that the presented methodology can be used to investigate implant stability from other experimental pushout models. This would eventually enhance the much needed understanding of the mechanical response of the bone implant interface and help to quantify how implant stability evolves with time.  相似文献   

18.
Ceramic hip resurfacing may offer improved wear resistance compared to metallic components. The study is aimed at investigating the effects of stiffer ceramic components on the stress/strain-related failure mechanisms in the resurfaced femur, using three-dimensional finite element models of intact and resurfaced femurs with varying stem–bone interface conditions. Tensile stresses in the cement varied between 1 and 5 MPa. Postoperatively, 20–85% strain shielding was observed inside the resurfaced head. The variability in stem–bone interface condition strongly influenced the stresses and strains generated within the resurfaced femoral head. For full stem–bone contact, high tensile (151–158 MPa) stresses were generated at the cup–stem junction, indicating risk of fracture. Moreover, there was risk of femoral neck fracture due to elevated bone strains (0.60–0.80% strain) in the proximal femoral neck region. Stresses in the ceramic component are reduced if a frictionless gap condition exists at the stem–bone interface. High stresses, coupled with increased strain shielding in the ceramic resurfaced femur, appear to be major concerns regarding its use as an alternative material.  相似文献   

19.
The aim of this study is to predict the evolution of the resonance frequency of the bone-implant interface in a dental implant by means of finite element simulation. A phenomenological interface model able to simulate the mechanical effects of the osseointegration process at the bone-implant interface is applied and compared with some experimental results in rabbits. An early stage of slow bone ingrowth, followed by a faster osseointegration phase until final stability is predicted by the simulations. The evolution of the resonance frequency of the implant and surrounding tissues along the simulation period was also obtained, observing a 3-fold increase in the first principal frequency. These findings are in quantitative agreement with the experimental measurements and suggest that the model can be useful to evaluate the influence of mechanical factors such as implant geometry or implant loading on the indirect evaluation of the process of implant osseintegration.  相似文献   

20.
A numerical optimization procedure has been applied for the shape optimal design of a femoral head surface replacement. The failure modes of the prosthesis that were considered in the formulation of the objective functions concerned the interface stress magnitude and the bone remodelling activity beneath the implant. In order to find a compromising solution between different requirements demanded by the two objective functions, a two step optimization procedure has been developed. Through step 1 the minimization of interface stress was achieved, through step 2 the minimization of bone remodelling was achieved with constraints on interface stresses. The results obtained provided an optimal design that generates limited bone remodelling activity with controlled interface stress distribution. The computational procedure was based on the application of the finite element method, linked to a mathematical programming package and a design sensitivity analysis package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号