首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Sialic acids are structurally unique nine-carbon keto sugars occupying the interface between the host and commensal or pathogenic microorganisms. An important function of host sialic acid is to regulate innate immunity, and microbes have evolved various strategies for subverting this process by decorating their surfaces with sialylated oligosaccharides that mimic those of the host. These subversive strategies include a de novo synthetic pathway and at least two truncated pathways that depend on scavenging host-derived intermediates. A fourth strategy involves modification of sialidases so that instead of transferring sialic acid to water (hydrolysis), a second active site is created for binding alternative acceptors. Sialic acids also are excellent sources of carbon, nitrogen, energy, and precursors of cell wall biosynthesis. The catabolic strategies for exploiting host sialic acids as nutritional sources are as diverse as the biosynthetic mechanisms, including examples of horizontal gene transfer and multiple transport systems. Finally, as compounds coating the surfaces of virtually every vertebrate cell, sialic acids provide information about the host environment that, at least in Escherichia coli, is interpreted by the global regulator encoded by nanR. In addition to regulating the catabolism of sialic acids through the nan operon, NanR controls at least two other operons of unknown function and appears to participate in the regulation of type 1 fimbrial phase variation. Sialic acid is, therefore, a host molecule to be copied (molecular mimicry), eaten (nutrition), and interpreted (cell signaling) by diverse metabolic machinery in all major groups of mammalian pathogens and commensals.  相似文献   

4.
5.
6.
Expression of the FimB recombinase, and hence the OFF-to-ON switching of type 1 fimbriation in Escherichia coli, is inhibited by sialic acid (Neu(5)Ac) and by GlcNAc. NanR (Neu(5)Ac-responsive) and NagC (GlcNAc-6P-responsive) activate fimB expression by binding to operators (O(NR) and O(NC1) respectively) located more than 600 bp upstream of the fimB promoter within the large (1.4 kb) nanC-fimB intergenic region. Here it is demonstrated that NagC binding to a second site (O(NC2)), located 212 bp closer to fimB, also controls fimB expression, and that integration host factor (IHF), which binds midway between O(NC1) and O(NC2), facilitates NagC binding to its two operator sites. In contrast, IHF does not enhance the ability of NanR to activate fimB expression in the wild-type background. Neither sequences up to 820 bp upstream of O(NR), nor those 270 bp downstream of O(NC2), are required for activation by NanR and NagC. However, placing the NanR, IHF and NagC binding sites closer to the fimB promoter enhances the ability of the regulators to activate fimB expression. These results support a refined model for how two potentially key indicators of host inflammation, Neu(5)Ac and GlcNAc, regulate type 1 fimbriation.  相似文献   

7.
连翘既是传统的中药材,又是优良的城市绿化树种,具有重要的经济价值和生态价值.但是连翘基因资料非常匮乏,限制了其分子生物学和基因功能的研究.本研究以连翘根、茎、叶、花和果实等器官的混合样品作为材料,利用Illumina Hi SeqTM 2500测序平台对其进行转录组测序.共获得23164327条干净数据(clean reads),总碱基数为4678791021 bp.Clean reads经de novo组装后获得45112条unigenes.进一步利用五大公共数据库进行同源比对,注释了28699条unigenes.其中,473个基因参与了连翘次生物质的合成和代谢,包括81个与苯丙氨酸和苯丙烷代谢相关的基因.对这81个基因的分析表明,有4个基因编码苯丙氨酸脱氨酶,1个基因编码肉桂酸4-羟化酶,2个基因编码4-香豆酰:辅酶A连接酶.这3个酶催化了连翘中主要药用活性物质苯乙醇苷和木脂素前体肉桂酸衍生物的生物合成.此外,还发现了2个松脂醇-落叶松树脂醇还原酶和1个开环异落叶松脂醇脱氢酶编码基因,这2个酶是木脂素合成的关键酶.最后,分析了长度在1 kb以上的12721个unigenes的基因结构,检测到3199个SSR位点,并对其中40个位点进行了验证.本研究不仅为连翘基因克隆和分子生物学研究提供了丰富的基础数据信息,而且为连翘遗传多样性研究、指纹图谱构建和分子标记辅助选育奠定了分子基础.  相似文献   

8.
Milbemycins A3/A4 are important 16-membered macrolides which have been commercialized and widely used as pesticide and veterinary medicine. However, similar to other milbemycin producers, the production of milbemycins A3/A4 in Streptomyces bingchenggensis is usually accompanied with undesired by-products such as C5-O-methylmilbemycins B2/B3 (α-class) and β1/β2 (β-class) together with nanchangmycin. In order to obtain high yield milbemycins A3/A4-producing strains that produce milbemycins A3/A4 as main components, milD, a putative C5-O-methyltransferase gene of S. bingchenggensis, was biofunctionally investigated by heterologous expression in Escherichia coli. Enzymatic analysis indicated that MilD can catalyze both α-class (A3/A4) and β-class milbemycins (β11) into C5-O-methylmilbemycins B2/B3 and β1, respectively, suggesting little effect of furan ring formed between C6 and C8a on the C5-O-methylation catalyzed by MilD. Deletion of milD gene resulted in the elimination of C5-O-methylmilbemycins B2/B3 and β1/β2 together with an increased yield of milbemycins A3/A4 in disruption strain BCJ13. Further disruption of the gene nanLD encoding loading module of polyketide synthase responsible for the biosynthesis of nanchangmycin led to strain BCJ36 that abolished the production of nanchangmycin. Importantly, mutant strain BCJ36 (?milD?nanLD) produced milbemycins A3/A4 as main secondary metabolites with a yield of 2312?±?47 μg/ml, which was approximately 74 % higher than that of the initial strain S. bingchenggensis BC-109-6 (1326?±?37 μg/ml).  相似文献   

9.
Guo X  Liu T  Deng Z  Cane DE 《Biochemistry》2012,51(4):879-887
Incubation of recombinant module 2 of the polyether nanchangmycin synthase (NANS), carrying an appended thioesterase domain, with the ACP-bound substrate (2RS)-2-methyl-3-ketobutyryl-NANS_ACP1 (2-ACP1) and methylmalonyl-CoA in the presence of NADPH gave diastereomerically pure (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (4a). These results contrast with the previously reported weak discrimination by NANS module 2+TE between the enantiomers of the corresponding N-acetylcysteamine-conjugated substrate analogue (±)-2-methyl-3-ketobutyryl-SNAC (2-SNAC), which resulted in formation of a 5:3 mixture of 4a and its (2S,4S)-diastereomer 4b. Incubation of NANS module 2+TE with 2-ACP1 in the absence of NADPH gave unreduced 3,5,6-trimethyl-4-hydroxypyrone (3) with a k(cat) of 4.4 ± 0.9 min?1 and a k(cat)/K(m) of 67 min?1 mM?1, corresponding to a ~2300-fold increase compared to the k(cat)/K(m) for the diffusive substrate 2-SNAC. Covalent tethering of the 2-methyl-3-ketobutyryl thioester substrate to the NANS ACP1 domain derived from the natural upstream PKS module of the nanchangmycin synthase significantly enhanced both the stereospecificity and the kinetic efficiency of the sequential polyketide chain translocation and condensation reactions catalyzed by the ketosynthase domain of NANS module 2.  相似文献   

10.
11.
GUS continues to be the reporter of choice for many gene fusion applications, due to the unparalleled sensitivity of the encoded enzyme and the ease with which it can be quantified in cell-free extracts and visualized histochemically in cells and tissues. A compatible and functionally equivalent reporter gene would facilitate dual promoter studies and internal standardization of expression analyses in the same plant. A search for a candidate enzyme activity not found in plants, which might form the basis of a novel GUS-compatible reporter system, led us to investigate nanH, a Clostridium perfringens gene which encodes the so-called 'small' cytoplasmic sialidase. Expression of the native, AT-rich nanH gene in transgenic plants did not, however, result in detectable sialidase activity. For this reason, a codon-optimized derivative, NAN, was synthesized which possesses a GC content similar to that found in highly expressed plant genes. NAN enzyme activity was expressed at high levels in both stably and transiently transformed cells, possessed kinetic and stability properties similar to those of GUS, and showed optimal activity in GUS buffer. Moreover, NAN and GUS activity could be visualized simultaneously in polyacrylamide gels using the corresponding methylumbelliferone-based substrates, and in whole seedlings and tissue sections using the histochemical substrates 5-bromo-4-chloro-3-indolyl alpha-d-N-acetylneuraminic acid (X-NeuNAc) and 5-bromo-6-chloro-3-indolyl beta-d-glucuronide (X-GlucM), respectively.  相似文献   

12.
13.
14.
ABSTRACT: BACKGROUND: In the postgenome era, a prediction of response to treatment could lead to better dose selection for patients in radiotherapy. To identify a radiosensitive gene signature and elucidate related signaling pathways, four different microarray experiments were reanalyzed before radiotherapy. RESULTS: Radiosensitivity profiling data using clonogenic assay and gene expression profiling data from four published microarray platforms applied to NCI-60 cancer cell panel were used. The survival fraction at 2 Gy (SF2, range from 0 to 1) was calculated as a measure of radiosensitivity and a linear regression model was applied to identify genes or a gene set with a correlation between expression and radiosensitivity (SF2). Radiosensitivity signature genes were identified using significant analysis of microarrays (SAM) and gene set analysis was performed using a global test using linear regression model. Using the radiation-related signaling pathway and identified genes, a genetic network was generated. According to SAM, 31 genes were identified as common to all the microarray platforms and therefore a common radiosensitivity signature. In gene set analysis, functions in the cell cycle, DNA replication, and cell junction, including adherence and gap junctions were related to radiosensitivity. The integrin, VEGF, MAPK, p53, JAK-STAT and Wnt signaling pathways were overrepresented in radiosensitivity. Significant genes including ACTN1, CCND1, HCLS1, ITGB5, PFN2, PTPRC, RAB13, and WAS, which are adhesion-related molecules that were identified by both SAM and gene set analysis, and showed interaction in the genetic network with the integrin signaling pathway. CONCLUSIONS: Integration of four different microarray experiments and gene selection using gene set analysis discovered possible target genes and pathways relevant to radiosensitivity. Our results suggested that the identified genes are candidates for radiosensitivity biomarkers and that integrin signaling via adhesion molecules could be a target for radiosensitization.  相似文献   

15.
16.
Acute lung injury is a complex illness with a high mortality rate (>30%) and often requires the use of mechanical ventilatory support for respiratory failure. Mechanical ventilation can lead to clinical deterioration due to augmented lung injury in certain patients, suggesting the potential existence of genetic susceptibility to mechanical stretch (6, 48), the nature of which remains unclear. To identify genes affected by ventilator-induced lung injury (VILI), we utilized a bioinformatic-intense candidate gene approach and examined gene expression profiles from rodent VILI models (mouse and rat) using the oligonucleotide microarray platform. To increase statistical power of gene expression analysis, 2,769 mouse/rat orthologous genes identified on RG_U34A and MG_U74Av2 arrays were simultaneously analyzed by significance analysis of microarrays (SAM). This combined ortholog/SAM approach identified 41 up- and 7 downregulated VILI-related candidate genes, results validated by comparable expression levels obtained by either real-time or relative RT-PCR for 15 randomly selected genes. K-mean clustering of 48 VILI-related genes clustered several well-known VILI-associated genes (IL-6, plasminogen activator inhibitor type 1, CCL-2, cyclooxygenase-2) with a number of stress-related genes (Myc, Cyr61, Socs3). The only unannotated member of this cluster (n = 14) was RIKEN_1300002F13 EST, an ortholog of the stress-related Gene33/Mig-6 gene. The further evaluation of this candidate strongly suggested its involvement in development of VILI. We speculate that the ortholog-SAM approach is a useful, time- and resource-efficient tool for identification of candidate genes in a variety of complex disease models such as VILI.  相似文献   

17.
18.
19.
20.
The MYC oncogene has been implicated in the regulation of up to thousands of genes involved in many cellular programs including proliferation, growth, differentiation, self-renewal, and apoptosis. MYC is thought to induce cancer through an exaggerated effect on these physiologic programs. Which of these genes are responsible for the ability of MYC to initiate and/or maintain tumorigenesis is not clear. Previously, we have shown that upon brief MYC inactivation, some tumors undergo sustained regression. Here we demonstrate that upon MYC inactivation there are global permanent changes in gene expression detected by microarray analysis. By applying StepMiner analysis, we identified genes whose expression most strongly correlated with the ability of MYC to induce a neoplastic state. Notably, genes were identified that exhibited permanent changes in mRNA expression upon MYC inactivation. Importantly, permanent changes in gene expression could be shown by chromatin immunoprecipitation (ChIP) to be associated with permanent changes in the ability of MYC to bind to the promoter regions. Our list of candidate genes associated with tumor maintenance was further refined by comparing our analysis with other published results to generate a gene signature associated with MYC-induced tumorigenesis in mice. To validate the role of gene signatures associated with MYC in human tumorigenesis, we examined the expression of human homologs in 273 published human lymphoma microarray datasets in Affymetrix U133A format. One large functional group of these genes included the ribosomal structural proteins. In addition, we identified a group of genes involved in a diverse array of cellular functions including: BZW2, H2AFY, SFRS3, NAP1L1, NOLA2, UBE2D2, CCNG1, LIFR, FABP3, and EDG1. Hence, through our analysis of gene expression in murine tumor models and human lymphomas, we have identified a novel gene signature correlated with the ability of MYC to maintain tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号