首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity in both humans and rodents is characterized by adipocyte hypertrophy and the presence of death adipocytes surrounded by macrophages forming "crown-like structures." However, the biochemical pathways involved in triggering adipocyte death as well as the role of death adipocytes in adipose tissue remodeling and macrophage infiltration remain poorly understood. We now show that induction of adipocyte hypertrophy by incubation of mature adipocytes with saturated fatty acids results in lysosomal destabilization and cathepsin B (ctsb), a key lysosomal cysteine protease, activation and redistribution into the cytosol. ctsb activation was required for the lysosomal permeabilization, and its inhibition protected cells against mitochondrial dysfunction. With the use of a dietary murine model of obesity, ctsb activation was detected in adipose tissue of these mice. This is an early event during weight gain that correlates with the presence of death adipocytes, and precedes macrophage infiltration of adipose tissue. Moreover, ctsb-deficient mice showed decreased lysosomal permeabilization in adipocytes and were protected against adipocyte cell death and macrophage infiltration to adipose tissue independent of body weight. These data strongly suggest that ctsb activation and lysosomal permeabilization in adipocytes are key initial events that contribute to the adipocyte cell death and macrophage infiltration into adipose tissue associated with obesity. Inhibition of ctsb activation may be a new therapeutic strategy for the treatment of obesity-associated metabolic complications.  相似文献   

2.
The main parenchymal cells of the adipose organ are adipocytes. White adipocytes store energy, whereas brown adipocytes dissipate energy for thermogenesis. These two cell types with opposing functions can both originate from endothelial cells, and co-exist in the multiple fat depots of the adipose organ – a feature that I propose is crucial for this organ’s plasticity. This poster review provides an overview of the adipose organ, describing its anatomy, cytology, physiological function and histopathology in obesity. It also highlights the remarkable plasticity of the adipose organ, explaining theories of adipocyte transdifferentiation during chronic cold exposure, physical exercise or lactation, as well as in obesity. White-to-brown adipocyte transdifferentiation is of particular medical relevance, because animal data indicate that higher amounts of brown adipose tissue are positively associated with resistance to obesity and its co-morbidities, and that ‘browning’ of the adipose organ curbs these disorders.  相似文献   

3.
The growth and function of tissues are critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data points to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

4.
Apolipoprotein A5 (apoA5) has an important role in lipid metabolism, specifically for triglyceride‐rich lipoproteins. Recently, evidence has emerged for an association between genetic variability at the APOA5 locus and increased risk of obesity and metabolic syndrome. However, its mechanism of action remains to be fully elucidated. Importantly, an intracellular role of apoA5 has been indicated since apoA5 is associated with cytoplasmic lipid droplets and affects intrahepatic triglyceride accumulation, as well as affecting intravascular triglyceride metabolism. Given that adipocytes provide the largest storage depot for energy in the form of triglyceride within the lipid droplets, and play a crucial role in the development of obesity, we highlight recent findings discussing the interaction of apoA5 with adipocytes or adipose tissue, indicating that apoA5 may act as a novel regulator to modulate triglyceride storage in adipocytes. We review the association of APOA5 gene polymorphisms with obesity and metabolic syndrome, and propose potential mechanisms by which apoA5 may increase susceptibility to these conditions. This review provides new insights into the physiological role of apoA5 and identifies a potential therapeutic target for obesity and associated disorders.  相似文献   

5.
Lycopene (LYC), one of the major carotenoids in tomatoes, has been preclinically and clinically used to obesity and type 2 diabetes management. However, whether its ability of countering body weight gain is related to induction of brown-like adipocyte phenotype in white adipose tissues (WAT) remains largely unknown. Activation of peroxisome proliferator-activated receptor γ (PPARγ) serves the brown-like phenotype conversion and energy expenditure. Here, we show that LYC treatment promotes glucose consumption and improves insulin sensitivity, as well as fosters white adipocytes browning through up-regulating mRNA and protein expression levels of PPARγ, uncoupling protein 1, PPARγ coactivator-1α and PR domain-containing 16 in the differentiated 3T3-L1 adipocytes and primary adipocytes, as well as in the WAT of HFD-exposed obese mice. In addition, LYC treatment attenuates body weight gain and improves serum lipid profiles as well as promotes brown adipose tissue activation in obese mice. Moreover, PPARγ is induced with LYC intervention in mitochondria respiration and browning in white adipocytes and tissues. Taken together, these results suggest that LYC counteracts obesity and improves glucose and lipid metabolism through induction of the browning via up-regulation of PPARγ, which offers a new perspective of this compound to combat obesity and obesity-related disorders.  相似文献   

6.
Li Y  Jiang C  Wang X  Zhang Y  Shibahara S  Takahashi K 《Peptides》2007,28(5):1129-1143
Adrenomedullin (AM) is a multifunctional regulatory peptide that is produced and secreted by various types of cells. The production and the secretion of AM have been demonstrated in cultured adipocytes and adipose tissues. Inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and lipopolysaccharide are strong stimulators for AM expression in adipocytes. Furthermore, AM expression in the adipose tissue is increased in obesity, and plasma concentrations of AM are increased in obese subjects. One possible (patho)physiological role of AM secreted by adipose tissue may be actions against complications of the metabolic syndrome characterized by obesity, type 2 diabetic mellitus and hypertension, via its antioxidant and potent vasodilator effects. These findings indicate that AM is a new member of the adipokine family.  相似文献   

7.
Adipose tissue is a major endocrine organ, releasing signaling and mediator proteins, termed adipokines, via which adipose tissue communicates with other organs. Expansion of adipose tissue in obesity alters adipokine secretion, which may contribute to the development of metabolic diseases. Although recent profiling studies have identified numerous adipokines, the amount of overlap from these studies indicates that the adipokinome is still incompletely characterized. Therefore, we conducted a complementary protein profiling on concentrated conditioned medium derived from primary human adipocytes. SDS-PAGE/liquid chromatography-electrospray ionization tandem MS and two-dimensional SDS-PAGE/matrix-assisted laser desorption ionization/time of flight MS identified 347 proteins, 263 of which were predicted to be secreted. Fourty-four proteins were identified as novel adipokines. Furthermore, we validated the regulation and release of selected adipokines in primary human adipocytes and in serum and adipose tissue biopsies from morbidly obese patients and normal-weight controls. Validation experiments conducted for complement factor H, αB-crystallin, cartilage intermediate-layer protein, and heme oxygenase-1 show that the release and expression of these factors in adipocytes is regulated by differentiation and stimuli, which affect insulin sensitivity, as well as by obesity. Heme oxygenase-1 especially reveals to be a novel adipokine of interest. In vivo, circulating levels and adipose tissue expression of heme oxygenase-1 are significantly increased in obese subjects compared with lean controls. Collectively, our profiling study of the human adipokinome expands the list of adipokines and further highlights the pivotal role of adipokines in the regulation of multiple biological processes within adipose tissue and their potential dysregulation in obesity.  相似文献   

8.
Regulation of the nitric oxide system in human adipose tissue   总被引:8,自引:0,他引:8  
Nitric oxide (NO) is involved in adipose tissue biology by influencing adipogenesis, insulin-stimulated glucose uptake, and lipolysis. The enzymes responsible for NO formation in adipose cells are endothelial NO synthase (eNOS) and inducible NO synthase (iNOS), whereas neuronal NO synthase (bNOS) is not expressed in adipocytes. We characterized the expression pattern and the influence of adipogenesis, obesity, and weight loss on genes belonging to the NO system in human subcutaneous adipose cells by combining in vivo and in vitro studies. Expression of most of the genes known to belong to the NO system (eNOS, iNOS, subunits of the soluble guanylate cyclase, and both genes encoding cGMP-dependent protein kinases) in human adipose tissue and isolated human adipocytes was detected. In vitro adipogenic differentiation increased the expression level of iNOS significantly, whereas eNOS expression levels were not influenced. The genes encoding eNOS, iNOS, and cGMP-dependent protein kinase 1 were expressed at higher levels in obese women. Expression of these genes, however, was not influenced by 5% weight loss. Insulin and angiotensin II (Ang II) increased NO production by human preadipocytes in vitro. Increased eNOS and iNOS expression in adipocytes and local effects of insulin and Ang II may increase adipose tissue production of NO in obesity.  相似文献   

9.
全球性肥胖症及其代谢疾病已经严重影响人类健康。因此,对其进行治疗变得愈加重要。新近研究表明,激活棕色和米色脂肪可能成为对抗肥胖的有效途径。白色脂肪棕色化可使储存能量的白色脂肪转化为具有类似棕色脂肪产热特性的米色脂肪,来增加耗能,对抗肥胖。本文综述了棕色和米色脂肪激活剂及其作用机制的研究进展,并从纳米技术的角度展望了其在肥胖症治疗中的应用前景。  相似文献   

10.
Monocyte chemotactic protein-1 and its role in insulin resistance   总被引:2,自引:0,他引:2  
PURPOSE OF REVIEW: In obesity, there is a strong link between increased adipose tissue mass and development of insulin resistance in tissues such as liver and muscle. Under these conditions, adipose tissue synthesizes various pro-inflammatory chemokines such as monocyte chemotactic protein-1. This review provides a summary of recent knowledge on the role of monocyte chemotactic protein-1 in adipose tissue inflammation and insulin resistance. RECENT FINDINGS: Monocyte chemotactic protein-1 is a proinflammatory adipokine that is believed to play a role in the pathogenesis of obesity and diabetes. New in-vitro data demonstrate that monocyte chemotactic protein-1 has the ability to induce insulin resistance in adipocytes and skeletal muscle cells. By using mice that either overexpress monocyte chemotactic protein-1 or are deficient in monocyte chemotactic protein-1 or its receptor, exciting new insights have been obtained into the role of monocyte chemotactic protein-1 in adipose tissue inflammation and insulin resistance. SUMMARY: Monocyte chemotactic protein-1 is an adipokine with insulin-resistance-inducing capacity that is related to increased adipose tissue mass in obesity and insulin resistance. It plays an important role in adipose tissue inflammation by recruiting macrophages into fat. Monocyte chemotactic protein-1 is thus a therapeutic target, and may represent an important factor linking adipose tissue inflammation, obesity and type 2 diabetes.  相似文献   

11.
The three beta AR (beta-adrenergic receptor) subtypes (beta(1)AR, beta(2)AR, and beta(3)AR) are members of the large family of G protein-coupled receptors, each of which is coupled to G alpha s and increases in intracellular cAMP levels. In white adipose tissues, catecholamine activation of the beta ARs leads to the mobilization of stored fatty acids and regulates release of several adipokines, whereas in brown adipose tissue they stimulate the specialized process of adaptive nonshivering thermogenesis. Noteworthy, in most models of obesity the beta AR system is dysfunctional, and its ability to stimulate lipolysis and thermogenesis are both impaired. Nevertheless, selective agonists for the beta(3)AR, a subtype that is found predominantly in adipocytes, have been able to prevent or reverse obesity and accompanying insulin resistance in animal models. Whether this is a viable therapeutic option for human obesity is much debated with regard to the existence of brown adipocytes in humans or their ability to be recruited. Nevertheless, probing the physiological changes in adrenoceptor function in rodent obesity, as well as the process by which beta(3)AR agonists promote a thermogenic shift in fuel use, have yielded unexpected new insights into beta AR signaling and adipocyte physiology. These include the recent discovery of an essential role of p38 MAPK in mediating adaptive thermogenesis, as well as the accessory role of the ERK MAPK pathway for the control of lipolysis. Because these metabolic events were traditionally ascribed solely to the cAMP/protein kinase A system, the integration of these signaling mechanisms may pose new therapeutic directions in the quest to counter the obesity epidemic in our midst.  相似文献   

12.
Androgens and body fat distribution   总被引:2,自引:0,他引:2  
An important sex difference in body fat distribution is generally observed. Men are usually characterized by the android type of obesity, with accumulation of fat in the abdominal region, whereas women often display the gynoid type of obesity, with a greater proportion of their body fat in the gluteal-femoral region. Accordingly, the amount of fat located inside the abdominal cavity (intra-abdominal or visceral adipose tissue) is twice as high in men compared to women. This sex difference has been shown to explain a major portion of the differing metabolic profiles and cardiovascular disease risk in men and women. Association studies have shown that circulating androgens are negatively associated with intra-abdominal fat accumulation in men, which explains an important portion of the link between low androgens and features of the metabolic syndrome. In women, the low circulating sex hormone-binding globulin (SHBG) levels found in abdominal obesity may indirectly indicate that elevated free androgens are related to increased visceral fat accumulation. However, data on non SHBG-bound and total androgens are not unanimous and difficult to interpret for total androgens. These studies focusing on plasma levels of sex hormones indirectly suggest that androgens may alter adipose tissue mass in a depot-specific manner. This could occur through site-specific modulation of preadipocyte proliferation and/or differentiation as well as lipid synthesis and/or lipolysis in mature adipocytes. Recent results on the effects of androgens in cultured adipocytes and adipose tissue have been inconsistent, but may indicate decreased adipogenesis and increased lipolysis upon androgen treatment. Finally, adipose tissue has been shown to express several steroidogenic and steroid-inactivating enzymes. Their mere presence in fat indirectly supports the notion of a highly complex enzymatic system modulating steroid action on a local basis. Recent data obtained in both men and women suggest that enzymes from the aldoketoreductase 1C family are very active and may be important modulators of androgen action in adipose tissue.  相似文献   

13.
The prevalence of obesity has reached epidemic proportions and is associated with several co-morbid conditions including diabetes, dyslipidemia, cancer, atherosclerosis and gallstones. Obesity is associated with low systemic inflammation and an accumulation of adipose tissue macrophages (ATMs) that are thought to modulate insulin resistance. ATMs may also modulate adipocyte metabolism and take up lipids released during adipocyte lipolysis and cell death. We suggest that high levels of free cholesterol residing in adipocytes are released during these processes and contribute to ATM activation and accumulation during obesity and caloric restriction. Db/db mice were studied for extent of adipose tissue inflammation under feeding conditions of ad libitum (AL) and caloric restriction (CR). The major finding was a marked elevation in epididymal adipose ABCG1 mRNA levels with obesity and CR (6-fold and 16-fold, respectively) over that seen for lean wild-type mice. ABCG1 protein was also elevated for CR as compared to AL adipose tissue. ABCG1 is likely produced by cholesterol loaded ATMs since this gene is not highly expressed in adipocytes and ABCG1 expression is sterol mediated. Our data supports the concept that metabolic changes in adipocytes due to demand lipolysis and cell death lead to cholesterol loading of ATMs. Based on finding cholesterol-loaded peritoneal leukocytes with elevated levels of ABCG1 in CR as compared to AL mice, we suggest that pathways for cholesterol trafficking out of adipose tissue involve ATM egress as well as ABCG1 mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

14.
Exchangeable apolipoproteins play an important role in systemic lipid metabolism, especially for lipoproteins with which they are associated. Recently, emerging evidence has suggested that exchangeable apolipoproteins, such as apolipoprotein A4 (apoA4), apolipoprotein A5 (apoA5), apolipoprotein C3 (apoC3) and apolipoprotein E (apoE), also exert important effects on intracellular lipid homeostasis. There is a close link between lipid metabolism in adipose tissue and liver because the latter behaves as the metabolic sensor of dysfunctional adipose tissue and is a main target of lipotoxicity. Given that the energy balance between these two major lipogenic organs is intimately involved in the pathogenesis of obesity and non‐alcoholic fatty liver disease (NAFLD), we here review recent findings concerning the intracellular function of exchangeable apolipoproteins in triglyceride metabolism in adipocytes and hepatocytes. These apolipoproteins may act as mediators of crosstalk between adipose tissue and liver, thus influencing development of obesity and hepatosteatosis. This review provides new insights into the physiological role of exchangeable apolipoproteins and identifies latent targets for therapeutic intervention of obesity and its related disorders.  相似文献   

15.
Obesity is an increasing problem, with a growing number of people worldwide classed as overweight and at high risk for developing other serious conditions, such as coronary heart disease and diabetes. The expansion of the size and number of adipocytes is the key characteristic of obesity. Rimonabant, a novel anti-obesity drug, not only exhibits its central effects such as reducing food intake but also influences lipid metabolism in adipocytes through blocking endocannabinoid system. The endocannabinoid system has multiple biological effects, and it has become new target of cardiometabolic risk control. Recently, the connection of adiopocytes and atherosclerosis has been extensively explored. It is believed that adipocytes play critical roles in the development of atherosclerosis. Adipocyte is itself recognized as an important site of production of inflammation-related proteins (adipokines), which is influenced by energy and lipid metabolism in adipocytes. The endocannabinoid system may regulate lipogenesis and adipokines' production in adipocytes. We hypothesize that adipocytes will be a link between endocannabinoid system and atherosclerosis. Exploring the effect and mechanism of endocannabinoid system on adipocyte is thus likely to be very helpful for further understanding the critical role that adipocytes plays in the development and progress of obesity and atherosclerosis, and may provide potential therapeutic options for obesity and atherosclerosis.  相似文献   

16.
The mechanotransduction of adipocytes is not well characterized in the literature. In this study, we employ stochastic modeling fitted to experiments for characterizing the influence of mechanical stretching delivered to adipocyte monolayers on the probabilities of commitment to the adipocyte lineage, mitosis, and growth after mitosis in 3T3-L1 adipocytes. We found that the probability of a cell to become committed to the adipocyte lineage in a single division when cultured on an elastic substrate was 0.025, which was indistinguishable between cultures that were radially stretched (to 12% strain) and control cultures. The probability of undergoing mitosis however was different between the groups, being 0.4 in the stretched cultures and 0.6 in the controls. The probability of growing after mitosis was affected by the stretching as well and was 0.9 and 0.8 in the stretched and control groups, respectively. We conclude that static stretching of the substrate of adipocyte cultures influences the mitotic potential of the cells as well as the growth potential post-mitosis. The present work provides better understanding of the mechanotransduction of adipocytes and in particular quantify how stretching influences the likelihood of cell proliferation and differentiation and, consequently, adipogenesis in the adipocyte cultures.  相似文献   

17.
Obesity-associated health complications are thought to be in part due to the low-grade proinflammatory state that characterizes this disease. The calcium sensing receptor (CaSR), which is expressed in human adipose cells, plays an important role in diseases involving inflammation. To assess the relevance of this protein in adipose pathophysiology, we evaluated its expression in adipocytes under obesity-related proinflammatory conditions. As in primary adipose cells, we established that LS14, a recently described human adipose cell line, expresses the CaSR. Differentiated LS14 and primary adipose cells were exposed overnight to cytokines typically involved in obesity-related inflammation (interleukin (IL)1β, IL6 and tumor necrosis factor (TNF)α). The cytokines increased CaSR abundance in differentiated adipocytes. We incubated LS14 cells with medium previously conditioned (CM) by adipose tissue from subjects with a wide range of body mass index (BMI). Cells exposed to CM from subjects of higher BMI underwent a greater increase in CaSR protein, likely resulting from the greater proinflammatory cytokines secreted from obese tissue. Our observations that proinflammatory factors increase CaSR levels in adipocytes, and the reported ability of CaSR to elevate cytokine levels, open new aspects in the study of obesity inflammatory state pathophysiology, providing a potential novel therapeutic prevention and treatment target.  相似文献   

18.
Obesity is characterized by low-grade and chronic inflammation, a phenomenon explained with a new term, metaflammation. Recent studies suggest that adipocytes may play an important role in the physiological regulation of immune responses in fat deposits via toll-like receptor (TLR) signaling cascades. This study investigates the role of the visceral as well as subcutaneous adipose tissues in the development of metaflammation by characterizing the tissue-specific expression profiles of TLRs and downstream signaling molecules and explores the differential responsiveness of TLR-mediated proinflammatory signaling cascades to diet-induced obesity (DIO) and obesity induced by a leptin gene deficiency. The obesity that was induced by a high-fat diet or leptin deficiency up-regulated the expression of TLR1-9 and TLR11-13 in murine adipose tissues, a phenomenon linked with downstream nuclear factor κB, interferon regulatory factors, and STAT-1 activation, and up-regulated the expression of cytokines and chemokines via MyD88-dependent and MyD88-independent cascades. The extent of the obesity-induced up-regulation of most TLR genes and related proinflammatory signaling cascades was much greater in the epididymal adipose tissues than in the subcutaneous fat tissues of the mice with DIO. Furthermore, the magnitudes of the obesity-induced up-regulation of the TLR1, TLR4, TLR5, TLR8, TLR9, and TLR12 genes and most of the downstream signaling molecules and target cytokine genes in the visceral adipose tissue were greater in the DIO mice than in the ob/ob mice. These results suggest that TLRs and related proinflammatory signaling molecules that are overexpressed in enlarged adipose tissues may play an important role in the obesity-associated phenomenon of metaflammation.  相似文献   

19.
20.
The adipose organ   总被引:1,自引:0,他引:1  
In mammals, the adipose tissues are contained in a multi-depot organ: the adipose organ. It consists of several subcutaneous and visceral depots. Some areas of these depots are brown and correspond to brown adipose tissue, while many are white and correspond to white adipose tissue. The organ is rich of vessels and parenchymal nerve fibers, but their density is higher in the brown areas. White areas contain a variable amount of brown adipocytes and their number varies with age, strain and environmental conditions. All adipocytes of the adipose organ express a specific adrenoceptor: ss3AR. Recent data have stressed the plasticity of the adipose organ in adult animals, and in parallel with the cytological variations there are also vascular as well as neural variations. Of note, treatment of genetically and diet induced obese rats with ss3 adrenoceptor agonists ameliorate their pathological condition and this is accompanied by the appearance of brown adipocytes in white areas of the adipose organ. This drug-induced modification of the anatomy of the organ is also obtained by the treatment with PPARgamma agonists in rats and dogs. We have previously shown that the transformation of white adipose tissue into brown adipose tissue in rats treated with ss3 adrenoceptor agonists is due to a direct transformation of differentiated unilocular adipocytes (transdifferentiation). We recently also showed that the absence of ss3 adrenoceptors strongly depress this type of plasticity in the adipose organ. All together these experiments strongly suggest the possibility to modulate the plasticity of the adipose organ with therapeutic implications for obesity and related disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号