首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Light response (at 300 ppm CO(2) and 10-50 ppm O(2) in N(2)) and CO(2) response curves [at absorbed photon fluence rate (PAD) of 550 μmol m(-2) s(-1)] of O(2) evolution and CO(2) uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO(3)(-) or NH(4)(+) as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH(4)NO(3). Photosynthetic O(2) evolution in excess of CO(2) uptake was measured with a stabilized zirconia O(2) electrode and an infrared CO(2) analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO(2), mainly NO(2)(-), SO(4)(2-), and oxaloacetate. In NO(3)(-)-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O(2)-CO(2) flux difference rapidly increased to about 1 μmol m(-2) s(-1) at very low PADs and the process was saturated at 50 μmol quanta m(-2) s(-1). At higher PADs the O(2)-CO(2) flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m(-2) s(-1). In NH(4)(+)-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O(2) evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO(2)(-) which successfully competes with CO(2) reduction and saturates at a rate of about 1 μmol O(2) m(-2) s(-1) (9% of the maximum O(2) evolution rate). The high-PAD component of about 1 μmol O(2) m(-2) s(-1), superimposed on NO(2)(-) reduction, may represent oxaloacetate reduction. The roles of NO(2)(-), oxaloacetate, and O(2) reduction in the regulation of ATP/NADPH balance are discussed.  相似文献   

2.
The accumulation of anthropogenic CO? in the Earth's atmosphere, and hence the rate of climate warming, is sensitive to stimulation of plant growth by higher concentrations of atmospheric CO?. Here, we synthesise data from a field experiment in which three developing northern forest communities have been exposed to factorial combinations of elevated CO? and O?. Enhanced net primary productivity (NPP) (c. 26% increase) under elevated CO? was sustained by greater root exploration of soil for growth-limiting N, as well as more rapid rates of litter decomposition and microbial N release during decay. Despite initial declines in forest productivity under elevated O?, compensatory growth of O? -tolerant individuals resulted in equivalent NPP under ambient and elevated O?. After a decade, NPP has remained enhanced under elevated CO? and has recovered under elevated O? by mechanisms that remain un-calibrated or not considered in coupled climate-biogeochemical models simulating interactions between the global C cycle and climate warming.  相似文献   

3.
Commet A  Boswell N  Yocum CF  Popelka H 《Biochemistry》2012,51(18):3808-3818
Hydroxide ion inhibits Photosystem II (PSII) activity by extracting Cl(-) from its binding site in the O(2)-evolving complex (OEC) under continuous illumination [Critchley, C., et al. (1982) Biochim. Biophys. Acta 682, 436]. The experiments reported here examine whether two subunits of PsbO, the manganese-stabilizing protein, bound to eukaryotic PSII play a role in protecting the OEC against OH(-) inhibition. The data show that the PSII binding properties of PsbO affect the pH optimum for O(2) evolution activity as well as the Cl(-) affinity of the OEC that decreases with an increasing pH. These results suggest that PsbO functions as a barrier against inhibition of the OEC by OH(-). Through facilitation of efficient retention of Cl(-) in PSII [Popelkova, H., et al. (2008) Biochemistry 47, 12593], PsbO influences the ability of Cl(-) to resist OH(-)-induced release from its site in the OEC. Preventing inhibition by OH(-) allows for normal (short) lifetimes of the S(2) and S(3) states in darkness [Roose, J. L., et al. (2011) Biochemistry 50, 5988] and for maximal steady-state activity by PSII. The data presented here indicate that activation of H(2)O oxidation occurs with a pK(a) of ~6.5, which could be a function of deprotonation of one or more amino acid residues that reside near the OEC active site on the D1 and CP43 intrinsic subunits of the PSII reaction center.  相似文献   

4.
Protein methylation and acetylation play important roles in biological processes, and misregulation of these modifications is involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI–MS by direct spotting of enzymatic methylation and acetylation reaction mixtures without tedious purification procedures. The quantifiable detection limit for peptides with our method is approximately 10 fmol. This is achieved by increasing the signal-to-noise ratio through the addition of NH4H2PO4 to the matrix solution and reduction of the matrix α-cyanohydroxycinnamic acid concentration to 2 mg/ml. We have demonstrated the application of this method in enzyme kinetic analysis and inhibition studies. The unique feature of this method is the simultaneous quantification of multiple peptide species for investigation of processivity mechanisms. Its wide buffer compatibility makes it possible to be adapted to investigate the activity of any protein methyltransferase or acetyltransferase.  相似文献   

5.
6.
By reacting fluorescein isothiocyanate with meropenem, we have prepared a carbapenem-based fluorescent β-lactam. Fluorescein–meropenem binds both penicillin-binding proteins and β-lactam sensors and undergoes a typical acylation reaction in the active site of these proteins. The probe binds the class D carbapenemase OXA-24/40 with close to the same affinity as meropenem and undergoes a complete catalytic hydrolysis reaction. The visible light excitation and strong emission of fluorescein render this molecule a useful structure–function probe through its application in sodium dodecyl sulfate–polyacrylamide gel electrophoresis assays as well as solution-based kinetic anisotropy assays. Its classification as a carbapenem β-lactam and the position of its fluorescent modification render it a useful complement to other fluorescent β-lactams, most notably Bocillin FL. In this study, we show the utility of fluorescein–meropenem by using it to detect mutants of OXA-24/40 that arrest at the acyl-intermediate state with carbapenem substrates but maintain catalytic competency with penicillin substrates.  相似文献   

7.
The ResT telomere resolvase is responsible for maintaining the hairpin telomeres that cap the linear chromosome and minichromosomes of Borrelia burgdorferi. This enzyme acts at the tandem telomere junctions present within circular dimers resulting from DNA replication. ResT mediates the transesterification steps of resolution using a constellation of active site residues similar to that found in tyrosine recombinases and type IB topoisomerases. By combining this reaction mechanism with a hairpin binding module in its N-terminal domain, ResT reduces a fused telomere dimer into two hairpin monomers. ResT displays a split DNA binding specificity, with the N- and C-terminal domains targeting distinct regions of the telomere. This bi-specificity in binding is likely to be important in protein delivery, substrate selection and regulation of enzyme activity.  相似文献   

8.
Oxidative stress-related damage to the DNA macromolecule produces a multitude of lesions that are implicated in mutagenesis, carcinogenesis, reproductive cell death, and aging. Many of these lesions have been studied and characterized by various techniques. Of the techniques that are available, the comet assay, HPLC-EC, GC-MS, HPLC-MS, and especially HPLC-MS/MS remain the most widely used and have provided invaluable information on these lesions. However, accurate measurement of DNA damage has been a matter of debate. In particular, there have been reports of artifactual oxidation leading to erroneously high damage estimates. Further, most of these techniques measure the end product of a sequence of events and thus provide only limited information on the initial radical mechanism. We report here a qualitative measurement of DNA damage induced by a Cu(II)–H2O2 oxidizing system using immuno-spin trapping (IST) with electron paramagnetic resonance (EPR), MS, and MS/MS. The radical generated is trapped by DMPO immediately upon formation. The DMPO adduct formed is initially EPR active but subsequently is oxidized to the stable nitrone, which can then be detected by IST and further characterized by MS and MS/MS.  相似文献   

9.
Premature truncation alleles in the ALMS1 gene are a frequent cause of human Alstr?m syndrome. Alstr?m syndrome is a rare disorder characterized by early obesity and sensory impairment, symptoms shared with other genetic diseases affecting proteins of the primary cilium. ALMS1 localizes to centrosomes and ciliary basal bodies, but truncation mutations in Alms1/ALMS1 do not preclude formation of cilia. Here, we show that in vitro knockdown of Alms1 in mice causes stunted cilia on kidney epithelial cells and prevents these cells from increasing calcium influx in response to mechanical stimuli. The stunted-cilium phenotype can be rescued with a 5' fragment of the Alms1 cDNA, which resembles disease-associated alleles. In a mouse model of Alstr?m syndrome, Alms1 protein can be stably expressed from the mutant allele and is required for cilia formation in primary cells. Aged mice developed specific loss of cilia from the kidney proximal tubules, which is associated with foci of apoptosis or proliferation. As renal failure is a common cause of mortality in Alstr?m syndrome patients, we conclude that this disease should be considered as a further example of the class of renal ciliopathies: wild-type or mutant alleles of the Alstr?m syndrome gene can support normal kidney ciliogenesis in vitro and in vivo, but mutant alleles are associated with age-dependent loss of kidney primary cilia.  相似文献   

10.
The monogonont rotifer, Brachionus sp. has been regarded as a potential model for reproductive physiology, evolution, and environmental genomics. To uncover the role of the heat shock protein upon temperature stress and hydrogen peroxide (H?O?) exposure, we cloned heat shock protein 20 (Hsp20) and determined its modulatory response under different temperatures and H?O? concentrations. Under different temperature stresses (10 °C and 37 °C), the rotifer Brachionus sp. Hsp20 (Br-Hsp20) gene was highly expressed over time, and reached the maximum level 90 min after exposure, indicating that Br-Hsp20 gene would be involved in the chaperoning process to protect proteins at both low and high temperatures. To test the ability of thermotolerance of the recombinant Br-Hsp20-containing transformed Escherichia coli, we expressed the recombinant Br-Hsp20 protein with 1mM IPTG for 18 h at 30 °C, exposed them at 54 °C with time course (10 to 60 min), and measured cell survival. In this elevated temperature shock (54 °C), the cell survival was significantly higher at the Br-Hsp20 transformed E. coli, compared to the control (vector only). To analyze the modulatory effect of Br-Hsp20 gene on oxidative stress, we initially exposed 0.1 mM H?O? over time and measured antioxidant enzyme activities along with the expression level of Br-Hsp20 mRNA. Upon H?O? exposure, Br-Hsp20 gene was time-dependently upregulated and glutathione peroxidase (GPx), glutathione S-transferase (GST), and glutathione reductase (GR) activities were also elevated at the 12h-exposed group in a dose-dependent manner, indicating that the Br-Hsp20 gene would be an important gene in response to oxidative and temperature stress. Here, we demonstrated the role of the Hsp20 gene in the rotifer, Brachionus sp. providing a better understanding of the ecophysiology at environmental stress in this species.  相似文献   

11.
Photosynthesis rate (An) becomes unstable above a threshold temperature, and the recovery upon return to low temperature varies because of reasons not fully understood. We investigated responses of An, dark respiration and chlorophyll fluorescence to supraoptimal temperatures of varying duration and kinetics in Phaseolus vulgaris asking whether the instability of photosynthesis under severe heat stress is associated with cellular damage. Cellular damage was assessed by Evans blue penetration (enhanced membrane permeability) and by H2O2 generation [3,3′‐diaminobenzidine 4HCl (DAB)‐staining]. Critical temperature for dark fluorescence (F0) rise (TF) was at 46–48 °C, and a burst of respiration was observed near TF. However, An was strongly inhibited already before TF was reached. Membrane permeability increased with temperature according to a switch‐type response, with enhanced permeability observed above 48 °C. Experiments with varying heat pulse lengths and intensities underscored the threshold‐type loss of photosynthetic function, and indicated that the degree of photosynthetic deterioration and cellular damage depended on accumulated heat‐dose. Beyond the ‘point of no return’, propagation of cellular damage and reduction of photosynthesis continued upon transfer to lower temperatures and photosynthetic recovery was slow or absent. We conclude that instability of photosynthesis under severe heat stress is associated with time‐dependent propagation of cellular lesions.  相似文献   

12.
Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and ~200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD.  相似文献   

13.
Kenyan long-distance runners have for decades famously dominated international athletic competitions. Most of the aspiring runners live and train in the highlands of northwest Kenya, in Elgeyo Marakwet County, where they have access to competitive peer groups of budding athletes and an elaborate infrastructure of camps, coaches, and managers. The most promising and successful ones travel abroad to take part in international races, only to quickly return and continue training in the ‘county of champions’. Meanwhile, Kenya is undergoing a rapid transformation, envisioned by the government's development plan, which promises to transform it into a ‘globally competitive and prosperous country’. On the surface, competition is a self-explanatory notion that drives the transnational sports industry and the state's development plan. However, ethnography of the county's capital, Iten, and its community of athletes reveals tensions: Kenyans take up, negotiate, appropriate, and challenge meanings of competition offered by the state and the sports industry on ecological, gendered, and moral grounds. Ethnography of ideologies of competition in Iten, conceptualized as moral, aesthetic, and gendered projects, complicates accounts of competition as a tool for global neoliberal governance. It also provides an alternative to analyses of African subjects’ agency in global circulation of capital, people, and ideas, namely analyses subsumed under signs of marginality, dependence, and subjection.  相似文献   

14.
For the Fe–O2(S = 0) linkages of oxyhemes, valence bond (VB) structures are re-presented for the McClure [FeII(S = 1) + O2(S = 1)], Pauling–Coryell [FeII(S = 0) + O2*(S = 0)], and Weiss [FeIII(S = ½) + O2 ?(S = ½)] models of bonding. The VB structures for the McClure and Weiss models are of the increased-valence type, with more electrons participating in bonding than occur in their component Lewis structures. The Fe–O bond number and O–O bond order for the McClure structure are correlated with measured Fe–O and O–O bond lengths for oxymyoglobin. Back-bonding from O 2 ? to FeIII of the Weiss structure gives a restricted form of the McClure structure. The McClure and Weiss increased-valence structures are used to provide VB formulations of mechanisms for the oxyhemoglobin + NO reaction. The products of these two formulations are Hb+ and NO3 ? (where Hb is hemoglobin) and Hb+ and OONO?, respectively. Because Hb+ and NO3 ? are the observed products, they provide an experimental procedure for distinguishing the McClure and Weiss models. It is also shown that the same type of agreement between McClure-type theory and experiment occurs for oxycoboglobin + NO, cytochrome P450 monooxygenases, and related hydrogen atom transfer reactions. In the appendices, the results of density functional theory and multireference molecular orbital calculations for oxyhemes are related to one formulation of the increased-valence wavefunction for the McClure model, and theory is presented for the calculation of approximate weights for the Lewis structures that are components of the McClure increased-valence structure.  相似文献   

15.
16.
With the arrival of effective symptomatic treatments and the promise of drugs that may delay progression, we now need to identify Alzheimer’s disease (AD) at an early stage of the disease. To diagnose AD earlier and more accurately, attention has been directed toward peripheral biochemical markers. This article reviews promising potential cerebrospinal fluid (CSF) biomarkers for AD focussing on their role in clinical diagnosis. In particular, two biochemical markers, CSF total tau (t-tau) protein and the 42 amino acid form of β-amyloid (Aβ42), perform satisfactorily enough to achieve a role in the clinical diagnostic settings of patients with dementia together with the cumulative information from basic clinical work-up, genetic screening, and brain imaging. These CSF markers are particularly useful to discriminate early or incipient AD from age-associated memory impairment, depression, and some secondary dementias. In order to discriminate AD from other primary dementia disorders, however, more accurate and specific markers are needed. Preliminary evidence strongly suggests that quantification of tau phosphorylated at specific sites in CSF improves early detection, differential diagnosis, and tracking of disease progression in AD.  相似文献   

17.
A rapid and simple method to isolate S100a0 protein from the mixture of bovine S100 protein (S100a0, S100a and S100b) is described. The S100 mixture purified from bovine brain was applied to an anion-exchange column, equilibrated with 50 mM Tris HC1 buffer (pH 8.0) in a high-performance liquid chromatography (HPLC) system. S100a0, S100a and S100b proteins could be eluted separately from the column, which were identified by the immunoassay method, by the Tris-HC1 buffer containing a linear concentration gradient (0.25–0.4) M of NaCl. Immunoreactive S100a0 protein was found in two peak fractions, and each S100a0 fraction could be isolated (S100a0-1 and S100a0-2). Both fractions of S100a0 protein showed a single band at the same position on acrylamide gel electrophoresis, and eluted in a single peak in the same fractions upon gel-filtration column chromatography. There was no significant difference in the amino acid composition between the two S100a0 fractions. Since the S100a0-1 fraction aged for several months at 4°C in the presence of 0.1% NaN3 was found to contain four protein peaks including the fraction corresponding to the S100a0-2 fraction, the difference between the two S100a0 fractions is probably due to some modification of amino acid residues in the molecule, which may occur both in vivo and in vitro.  相似文献   

18.
19.
Studies have shown that both carbon dioxide (CO?) and octenol (1-octen-3-ol) are effective attractants for mosquitoes. The objective of the present study was to evaluate the attractiveness of 1-octen-3-ol and CO? for diurnal mosquitoes in the southeastern Atlantic forest. A Latin square experimental design was employed with four treatments: CDC-light trap (CDC-LT), CDC-LT and 1-octen-3-ol, CDC-LT and CO? and CDC-LT with 1-octen-3-ol and CO?. Results demonstrated that both CDC-CO? and CDC-CO?-1-octen-3-ol captured a greater number of mosquito species and specimens compared to CDC-1-octen-3-ol; CDC-LT was used as the control. Interestingly, Anopheles (Kerteszia) sp. was generally attracted to 1-octen-3-ol, whereas Aedes serratus was the most abundant species in all Latin square collections. This species was recently shown to be competent to transmit the yellow fever virus and may therefore play a role as a disease vector in rural areas of Brazil.  相似文献   

20.
The retention (binding to or association with the plant) of Escherichia coli by cut leaves and fruits after vigorous water washing was compared with that by sprouts. Retention by fruits and leaves was similar but differed from retention by sprouts in rate, effect of wounding and requirement for poly-β,1-6-N-acetyl-D-glucosamine. Escherichia coli was retained by cut ends of lettuce leaves within 5 min while more than 1 h was required for retention by the intact epidermis of leaves and fruits, and more than 1 day for sprouts. Retention after 5 min at the cut leaf edge was specific for E. coli and was not shown by the plant-associated bacteria Agrobacterium tumefaciens and Sinorhizobium meliloti.Escherichia coli was retained by lettuce, spinach, alfalfa, bean, tomato, Arabidopsis thaliana, cucumber, and pepper leaves and fruits faster than by sprouts. Wounding of leaves and fruits but not sprouts increased bacterial retention. Mutations in the exopolysaccharide synthesis genes yhjN and wcaD reduced the numbers of bacteria retained. PgaC mutants were retained by cut leaves and fruits but not by sprouts. There was no significant difference in the retention of an O157 and a K12 strain by fruits or leaves. However, retention by sprouts of O157 strains was significantly greater than K12 strains. These findings suggest that there are differences in the mechanisms of E coli retention among sprouts, and leaves and fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号