首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major quantitative trait locus (QTL) on 3BS from Sumai 3 and its derivatives has been used as a major source of resistance to Fusarium head blight (FHB) worldwide, but resistance genes from other sources are necessary to avoid complete dependence on a single source of resistance. Fifty-nine Asian wheat landraces and cultivars differing in the levels of FHB resistance were evaluated for type II FHB resistance and for genetic diversity on the basis of amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSRs). Genetic relationships among these wheat accessions estimated by cluster analysis of molecular marker data were consistent with their geographic distribution and pedigrees. Chinese resistant landraces had broader genetic diversity than that of accessions from southwestern Japan. The haplotype pattern of the SSR markers that linked to FHB resistance quantitative trait loci (QTLs) on chromosomes 3BS, 5AS and 6BS of Sumai 3 suggested that only a few lines derived from Sumai 3 may carry all the putative QTLs from Sumai 3. About half of the accessions might have one or two FHB resistance QTLs from Sumai 3. Some accessions with a high level of resistance, may carry different FHB resistance loci or alleles from those in Sumai 3, and are worth further investigation. SSR data also clearly suggested that FHB resistance QTLs on 3BS, 5AS, and 6BS of Sumai 3 were derived from Chinese landrace Taiwan Xiaomai.  相似文献   

2.
Fusarium head blight (FHB) resistance is of particular importance in wheat breeding programmes due to the detrimental effects of this fungal disease on human and animal health, yield and grain quality. Segregation for FHB resistance in three European winter wheat populations enabled the identification of resistance loci in well-adapted germplasm. Populations obtained from crosses of resistant cultivars Apache, History and Romanus with susceptible semi-dwarfs Biscay, Rubens and Pirat, respectively, were mapped and analysed to identify quantitative trait loci (QTL) for FHB severity, ear emergence time and plant height. The results of the present study together with previous studies in UK winter wheat indicated that the semi-dwarfing allele Rht-D1b seems to be the major source for FHB susceptibility in European winter wheat. The high resistance level of the cultivars Romanus and History was conditioned by several minor resistance QTL interacting with the environment and the absence of Rht-D1b. In contrast, the semi-dwarf parents contributed resistance alleles of major effects apparently compensating the negative effects of Rht-D1b on FHB reaction. The moderately resistant cultivar Apache contributed a major QTL on chromosome 6A in a genome region previously shown to carry resistance loci to FHB. A total of 18 genomic regions were repeatedly associated with FHB resistance. The results indicate that common resistance-associated genes or genomic regions are present in European winter wheats.  相似文献   

3.
Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing the defense response genes α-1-purothionin, thaumatin-like protein 1 (tlp-1), and β-1,3-glucanase; and (2) to test the resultant transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines carrying the α-1-purothionin, tlp-1, and β-1,3-glucanase transgenes, respectively, that had statistically significant reductions in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed from the nontransgenic parental Bobwhite line for at least one of the disease traits. A β-1,3-glucanase transgenic line had enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together, the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse and field conditions.  相似文献   

4.
Resistance to Fusarium head blight (FHB) is of great importance in wheat breeding programs in the northern hemisphere. In Europe, breeders prefer adapted germplasm as resistance donor because of high grain yield and quality demands. Our objective was to identify chromosomal regions affecting FHB resistance among 455 European soft winter wheat (Triticum aestivum L.) lines using a genome-wide association mapping approach and to analyze the importance of epistatic interactions. All entries were evaluated for FHB resistance by inoculation in two environments and several ratings. Wheat was genotyped by 115 simple sequence repeat markers randomly distributed across the genome and two allele-specific markers for Rht-B1 and Rht-D1 genes. The genome-wide scan revealed nine significant (P < 0.05) marker–phenotype associations on seven chromosomes including dwarfing gene Rht-D1. Using a Bonferroni–Holm correction, three significant associations remained on chromosomes 1B, 1D, and 2D. The proportion of the genotypic variance explained simultaneously by individual markers was 36% and increased to 50% when two digenic epistatic interactions were considered, one of them associated with Rht-B1. In conclusion, new genomic regions on chromosomes 1D and 3A could be found for FHB resistance in European wheat and the effect of epistatic interactions was substantial.  相似文献   

5.
DNA markers for Fusarium head blight resistance QTLs in two wheat populations   总被引:29,自引:0,他引:29  
Genetic resistance to Fusarium head blight (FHB), caused by Fusarium graminearum, is necessary to reduce the wheat grain yield and quality losses caused by this disease. Development of resistant cultivars has been slowed by poorly adapted and incomplete resistance sources and confounding environmental effects that make screening of germplasm difficult. DNA markers for FHB resistance QTLs have been identified and may be used to speed the introgression of resistance genes into adapted germplasm. This study was conducted to identify and map additional DNA markers linked to genes controlling FHB resistance in two spring wheat recombinant inbred populations, both segregating for genes from the widely used resistance source ’Sumai 3’. The first population was from the cross of Sumai 3/Stoa in which we previously identified five resistance QTLs. The second population was from the cross of ND2603 (Sumai 3/Wheaton) (resistant)/ Butte 86 (moderately susceptible). Both populations were evaluated for reaction to inoculation with F. graminearum in two greenhouse experiments. A combination of 521 RFLP, AFLP, and SSR markers were mapped in the Sumai 3/Stoa population and all DNA markers associated with resistance were screened on the ND2603/Butte 86 population. Two new QTL on chromosomes 3AL and 6AS wer found in the ND2603/Butte 86 population, and AFLP and SSR markers were identified that explained a greater portion of the phenotypic variation compared to the previous RFLP markers. Both of the Sumai 3-derived QTL regions (on chromosomes 3BS, and 6BS) from the Sumai 3/Stoa population were associated with FHB resistance in the ND2603/Butte 86 population. Markers in the 3BS QTL region (Qfhs.ndsu-3BS) alone explain 41.6 and 24.8% of the resistance to FHB in the Sumai 3/Stoa and ND2603/Butte 86 populations, respectively. This region contains a major QTL for resistance to FHB and should be useful in marker-assisted selection. Received: 17 August 2000 / Accepted: 16 October 2000  相似文献   

6.
Summary In 3 consecutive years, a set of 17 winter wheat genotypes, representing a wide range of Fusarium head blight resistance, was inoculated with four strains of Fusarium culmorum. Fusarium head blight ratings were analyzed. The interaction between genotypes, strains, and years was described using a Finlay-Wilkinson model and an Additive Main effects and Multiplicative Interaction effects (AMMI) model. The interaction consisted primarily of a divergence of genotypical responses with increasing disease pressure, modified by genotype specific reactions in certain years. The divergence was mainly caused by one very pathogenic strain. The Fusarium head blight resistance in this study can be described as horizontal resistance in terms of Vanderplank, with the exception of three genotypes selected from one particular cross that showed a strain-year combination dependent resistance which was ineffective in 1 year.  相似文献   

7.
We report on the verification of a resistance quantitative trait locus (QTL) on chromosome 1BL (now designated Qfhs.lfl-1BL) which had been previously identified in the winter wheat cultivar Cansas. For a more precise estimation of the QTL effect and its influence on plant height and heading date lines with a more homogeneous genetic background were created and evaluated in four environments after spray inoculation with Fusarium culmorum. Qfhs.lfl-1BL reduced FHB severity by 42% relative to lines without the resistance allele. This QTL did not influence plant height, but significantly delayed heading date by one day. All of the most resistant genotypes of the verification population carried this major QTL displaying its importance for disease resistance. This resistance QTL has not only been found in the cultivar Cansas, but also in the three European winter wheat cultivars Biscay, History and Pirat. A subsequent meta-analysis confirmed the presence of a single QTL on the long arm of chromosome 1B originating from the four mentioned cultivars. Altogether, the results of the present study indicate that Qfhs.lfl-1BL is an important component of FHB resistance in European winter wheat and support the view that this QTL would be effective and valuable in backcross breeding programmes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Genetic diversity in relation to Fusarium head blight (FHB) resistance was investigated among 295 European winter wheat cultivars and advanced breeding lines using 47 wheat SSR markers. Twelve additional wheat lines with known FHB resistance were included as reference material. At least one SSR marker per chromosome arm, including SSR markers reported in the literature with putative associations with QTLs for FHB resistance, were assayed to give an even distribution of SSR markers across the wheat genome. A total of 404 SSR alleles were detected. The number of alleles per locus ranged from 2 to 21, with an average of 8.6 alleles. The polymorphism information content of the SSR markers ranged from 0.13 (Xwmc483) to 0.87 (Xwmc607), with an average of 0.54. Cluster analysis was performed by both genetic distance-based and model-based methods. In general, the dendrogram based on unweighted pair-group method with arithmetic averages showed similar groupings to the model-based analysis. Seven clusters were identified by the model-based method, which did not strictly correspond to geographical origin. The FHB resistance level of the wheat lines was evaluated in field trials conducted over multiple years or locations by assessing the following traits: % FHB severity, % FHB incidence, % diseased kernels, in spray inoculation trials, and % FHB spread and % wilted tips, in point inoculation trials. Association analysis between SSR markers and the FHB disease traits detected markers significantly associated with FHB resistance, including some that have not been previously reported. The percentage of variance explained by each individual marker was, however, rather low. Haplotype analysis revealed that the FHB-resistant European wheat lines do not contain the 3BS locus derived from Sumai 3. The information generated in this study will assist in the selection of parental lines in order to increase the efficiency of breeding efforts for FHB resistance.  相似文献   

9.
Fusarium head blight (FHB) is a devastating disease of wheat and barley which causes extensive losses worldwide. Monogenic, gene-for-gene resistance to FHB has not been reported. The best source of resistance to FHB is a complex, quantitative trait derived from the wheat cv. Sumai 3. Here, we show that the Arabidopsis thaliana NPR1 gene (AtNPR1), which regulates the activation of systemic acquired resistance, when expressed in the FHB-susceptible wheat cv. Bobwhite, confers a heritable, type II resistance to FHB caused by Fusarium graminearum. The heightened FHB resistance in the transgenic AtNPRI -expressing wheat is associated with the faster activation of defense response when challenged by the fungus. PR1 expression is induced rapidly to a high level in the fungus-challenged spikes of the AtNPR1-expressing wheat. Furthermore, benzothiadiazole, a functional analog of salicylic acid, induced PR1 expression faster and to a higher level in the AtNPR1-expressing wheat than in the nontransgenic plants. We suggest that FHB resistance in the AtNPR1-expressing wheat is a result of these plants being more responsive to an endogenous activator of plant defense. Our results demonstrate that NPR1 is an effective candidate for controlling FHB.  相似文献   

10.
Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe [telomorph:Gibberella zeae Schw. (Petch)], is an increasingly important disease of wheat (Triticum aestivum L.). Host-plant resistance is considered to be the most economical means of control, but a lack of unique sources of resistance has hindered efforts to breed resistant varieties. The soft red winter wheat, Ernie, has moderately high FHB resistance and is widely used in U.S. breeding programs; however, the genetics of resistance have not been studied. The objectives of this study were to estimate the genetic effects, gene numbers, and heritability for traits related to FHB resistance in Ernie through generation means analyses and variance analyses of 243 F3-derived F8 and F9 recombinant inbred lines (RILs). Replicated experiments were grown in the greenhouse, inoculated with F. graminearum, and evaluated for disease spread and the FHB index (FHBI). The latter was calculated as the percentage of diseased spikelets in inoculated spikes and is often referred to as type-II resistance. Gene action for both disease spread and FHBI was primarily additive with partial dominance for low disease. Broad-sense heritabilities for spread and FHBI were 78.2% and 78.3%, respectively, while the narrow-sense heritabilities were 51.3% and 55.4%, respectively. Line-mean heritabilities from analyses of variance of RILs were 0.70 and 0.87 for spread and FHBI, respectively. A minimum of four genes conditioned both disease spread and FHBI. These results suggest that breeders should be able to enhance FHB resistance by combining the resistance in Ernie with other complementary additive sources of resistance.  相似文献   

11.

Key message

The QTL Fhb1 was successfully introgressed and validated in three durum wheat populations. The novel germplasm and the QTL detected will support improvement of Fusarium resistance in durum wheat.

Abstract

Durum wheat (Triticum durum Desf.) is particularly susceptible to Fusarium head blight (FHB) and breeding for resistance is hampered by limited genetic variation within this species. To date, resistant sources are mainly available in a few wild relative tetraploid wheat accessions. In this study, the effect of the well-known hexaploid wheat (Triticum aestivum L.) quantitative trait locus (QTL) Fhb1 was assessed for the first time in durum wheat. Three F7-RIL mapping populations of about 100 lines were developed from crosses between the durum wheat experimental line DBC-480, which carries an Fhb1 introgression from Sumai-3, and the European T. durum cultivars Karur, Durobonus and SZD1029K. The RILs were evaluated in field experiments for FHB resistance in three seasons using spray inoculation and genotyped with SSR as well as genotyping-by-sequencing markers. QTL associated with FHB resistance were identified on chromosome arms 2BL, 3BS, 4AL, 4BS, 5AL and 6AS at which the resistant parent DBC-480 contributed the positive alleles. The QTL on 3BS was detected in all three populations centered at the Fhb1 interval. The Rht-B1 locus governing plant height was found to have a strong effect in modulating FHB severity in all populations. The negative effect of the semi-dwarf allele Rht-B1b on FHB resistance was compensated by combining with Fhb1 and additional resistance QTL. The successful deployment of Fhb1 in T. durum was further substantiated by assessing type 2 resistance in one population. The efficient introgression of Fhb1 represents a significant step forward for enhancing FHB resistance in durum wheat.
  相似文献   

12.
Fusarium head blight (FHB) of wheat has, in recent years, been a very important worldwide disease in intensive growing of cereal. The objectives of this study were to evaluate the occurrence of FHB in wheat in Latvia and to identify the Fusarium species involved. This paper describes the distribution of Fusarium species that were isolated from samples representing winter and spring wheat varieties in Latvia, identified both by the classical morphological analyses of J. Leslie and B. Summerell (2006) and by PCR. The FHB incidence range in winter wheat was 1-20%, in spring wheat was 1-42%. The most significant factor affecting the incidence of fusarial head blight in wheat in Latvia was heightened temperature at the time of an thesis of wheat. In winter wheat 9 Fusarium species caused FHB: F. culmorum, F. avenaceum, F. graminearum, F. equiseti, F. poae, F. oxysporum, F. cerealis, F. sporotrichoides and F. verticillioides were identified by morphological characterization, and 5 were confirmed by PCR-analysis. After experience of 5 years, it can be concluded that the most frequent in winter wheat were F. poae and F. culmorum. In spring wheat from F. culmorum was dominant among 8 Fusarium species. Among 13 varieties of spring wheat, three were sensitive ('Chamsin', 'W 166', 'Azurite') and one was resistant ('Granny') to FHB in conditions of high natural infection in 2009. The monitoring surveys demonstrate a significant presence of FHB in spring wheat in conditions of heightened temperature at the time of flowering in Latvia.  相似文献   

13.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schw. (Petch)], is an increasingly important disease of wheat (Triticum aestivum L.). Host-plant resistance provides the best hope for reducing economic losses associated with FHB, but new sources of resistance are limited. The moderately resistant winter wheat cultivar, Ernie, may provide a source of resistance that differs from Sumai 3 but these genes have not been mapped. Also hindering resistance breeding may be associations of resistance with agronomic traits such as late maturity that may be undesirable in some production environments. This research was conducted to identify QTL associated with type II FHB resistance (FHB severity, FHBS), and to determine if they are associated with days to anthesis (DTA), number of spikelets (NOS), and the presence/absence of awns. Two hundred and forty-three F8 recombinant inbred lines from a cross between the resistant cultivar, Ernie and susceptible parent, MO 94-317 were phenotyped for type II FHB resistance using point inoculation in the greenhouse during 2002 and 2003. Genetic linkage maps were constructed using 94 simple sequence repeat (SSR) and 146 amplified fragment length polymorphic (AFLP) markers. Over years four QTL regions on chromosomes 2B, 3B, 4BL and 5A were consistently associated with FHB resistance. These QTL explained 43.3% of the phenotypic variation in FHBS. Major QTL conditioning DTA and NOS were identified on chromosome 2D. Neither the QTL associated with DTA and NOS nor the presence/absence of awns were associated with FHB resistance in Ernie. Our results suggest that the FHB resistance in Ernie appears to differ from that in Sumai 3, thus pyramiding the QTL in Ernie with those from Sumai 3 could result in enhanced levels of FHB resistance in wheat.  相似文献   

14.

Key message

The major QTL for FHB resistance from hexaploid wheat line PI 277012 was successfully introgressed into durum wheat and minor FHB resistance QTL were detected in local durum wheat cultivars. A combination of these QTL will enhance FHB resistance of durum wheat.

Abstract

Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of durum wheat. To combat the disease, great efforts have been devoted to introgress FHB resistance from its related tetraploid and hexaploid wheat species into adapted durum cultivars. However, most of the quantitative trait loci (QTL) for FHB resistance existing in the introgression lines are not well characterized or validated. In this study, we aimed to identify and map FHB resistance QTL in a population consisting of 205 recombinant inbred lines from the cross between Joppa (a durum wheat cultivar) and 10Ae564 (a durum wheat introgression line with FHB resistance derived from the hexaploid wheat line PI 277012). One QTL (Qfhb.ndwp-2A) from Joppa and two QTL (Qfhb.ndwp-5A and Qfhb.ndwp-7A) from 10Ae564 were identified through phenotyping of the mapping population for FHB severity and DON content in greenhouse and field and genotyping with 90K wheat Infinium iSelect SNP arrays. Qfhb.ndwp-2A explained 14, 15, and 9% of the phenotypic variation, respectively, for FHB severity in two greenhouse experiments and for mean DON content across the two greenhouse environments. Qfhb.ndwp-5A explained 19, 10, and 7% of phenotypic variation, respectively, for FHB severity in one greenhouse experiment, mean FHB severity across two field experiments, and mean DON content across the two greenhouse experiments. Qfhb.ndwp-7A was only detected for FHB severity in the two greenhouse experiments, explaining 9 and 11% of the phenotypic variation, respectively. This study confirms the existence of minor QTL in North Dakota durum cultivars and the successful transfer of the major QTL from PI 277012 into durum wheat.
  相似文献   

15.
16.
Fusarium head blight (FHB) caused by Fusarium culmorum is an economically important disease of wheat that may cause serious yield and quality losses under favorable climate conditions. The development of disease-resistant cultivars is the most effective control strategy. Worldwide, there is heavy reliance on the resistance pool originating from Asian wheats, but excellent field resistance has also been observed among European winter wheats. The objective of this study was to map and characterize quantitative traits loci (QTL) of resistance to FHB among European winter wheats. A population of 194 recombinant inbred lines (RILs) was genotyped from a cross between two winter wheats Renan (resistant)/Récital (susceptible) with microsatellites, AFLP and RFLP markers. RILs were assessed under field conditions For 3 years in one location. Nine QTLs were detected, and together they explained 30-45% of the variance, depending on the year. Three of the QTLs were stable over the 3 years. One stable QTL, QFhs.inra.2b, was mapped to chromosome 2B and two QTLs QFhs.inra.5a2 and QFhs.inra5a3, to chromosome 5A; each of these QTLs explained 6.9-18.6% of the variance. Other QTLs were identified on chromosome 2A, 3A, 3B, 5D, and 6D, but these had a smaller effect on FHB resistance. One of the two QTLs on chromosome 5A was linked to gene B1 controlling the presence of awns. Overlapping QTLs for FHB resistance were those for plant height or/and flowering time. Our results confirm that wheat chromosomes 2A, 3A, 3B, and 5A carry FHB resistance genes, and new resistance factors were identified on chromosome arms 2BS and 5AL. Markers flanking these QTLs should be useful tools for combining the resistance to FHB of Asian and European wheats to increase the resistance level of cultivars.  相似文献   

17.
In the soft red winter wheat (Triticum aestivum L.) regions of the US, Fusarium head blight (FHB, caused by Fusarium spp.) resistance derived from locally adapted germplasm has been used predominantly. Two soft red winter wheat cultivars, Massey and Ernie, have moderate resistance to FHB. Mapping populations derived from Becker/Massey (B/M) and Ernie/MO 94-317 (E/MO) were evaluated for FHB resistance and other traits in multiple environments. Eight QTL in B/M and five QTL in E/MO were associated with FHB variables including incidence, severity (SEV), index (IND), Fusarium damaged kernels (FDK), deoxynivalenol (DON), and morphological traits flowering time and plant height. Four QTL were common to both populations. Three of them were located at or near known genes: Ppd-D1 on chromosome 2DS, Rht-B1 on 4BS, and Rht-D1 on 4DS. Alleles for dwarf plant height (Rht-B1b and Rht-D1b) and photoperiod insensitivity (Ppd-D1a) had pleiotropic effects in reducing height and increasing FHB susceptibility. The other QTL detected for FHB variables were on 3BL in both populations, 1AS, 1DS, 2BL, and 4DL in B/M, and 5AL (B1) and 6AL in E/MO. The additive effects of FHB variables ranged from 0.4 mg kg?1 of DON to 6.2 % for greenhouse (GH) SEV in B/M and ranged from 0.3 mg kg?1 of DON to 8.3 % for GH SEV in E/MO. The 4DS QTL had epistasis with Ppd-D1, Qdon.umc-6AL, and Qht.umc-4BS, and additive × additive × environment interactions with the 4BS QTL for SEV, IND, and FDK in E/MO. Marker-assisted selection might be used to enhance FHB resistance through selection of favorable alleles of significant QTL, taking into account genotypes at Rht-B1b, Rht-D1a and Ppd-D1a.  相似文献   

18.
Fusarium head blight (FHB) is a destructive disease that reduces wheat grain yield and quality. To date, the quantitative trait locus on 3BS (Fhb1) from Sumai 3 has shown the largest effect on FHB resistance. Single nucleotide polymorphism (SNP) is the most common form of genetic variation and is suitable for high-throughput marker-assisted selection (MAS). We analyzed SNPs derived from 23 wheat expressed sequence tags (ESTs) that previously mapped near Fhb1 on chromosome 3BS. Using 71 Ning 7840/Clark BC7F7 recombinant inbred lines and the single-base extension method, we mapped seven SNP markers between Xgwm533 and Xgwm493, flanking markers for Fhb1. Five of the SNPs explained 45–54% of the phenotypic variation for FHB resistance. Haplotype analysis of 63 wheat accessions from eight countries based on SNPs in EST sequences, simple sequence repeats, and sequence tagged sites in the Fhb1 region identified four major groups: (1) US-Clark, (2) Asian, (3) US-Ernie, and (4) Chinese Spring. The Asian group consisted of Chinese and Japanese accessions that carry Fhb1 and could be differentiated from other groups by marker Xsnp3BS-11. All Sumai 3-related accessions formed a subgroup within the Asian group and could be sorted out by Xsnp3BS-8. The SNP markers identified in this study should be useful for MAS of Fhb1 and fine mapping to facilitate cloning of the Fhb1 resistance gene.  相似文献   

19.
Large-scale field screening for Fusarium head blight (FHB) resistance in wheat is difficult because environmental factors strongly influences the expression of resistance genes. Marker-assisted selection (MAS) may provide a powerful alternative. Conversion of amplified fragment length polymorphism (AFLP) markers into sequence-tagged site (STS) markers can generate breeder-friendly markers for MAS. In a previous study, one major quantitative trait locus (QTL) on chromosome 3BS was identified by using EcoRI-AFLP and a recombinant inbred population derived from the cross Ning 7840/Clark. Further mapping with PstI-AFLPs identified five markers that were significantly associated with the QTL. Three of them individually explained 38% to 50% of the phenotypic variation for FHB resistance. Two of them (pAGT/mCTG57, pACT/mCTG136) were linked to the QTL in coupling, and another (pAG/mCAA244) was linked to the QTL in repulsion. Successful conversion of one AFLP marker (pAG/mCAA244) yielded a co-dominant STS marker that explains about 50% of the phenotypic variation for FHB resistance in the population. The STS was validated in 14 other cultivars and is the first STS marker for a FHB resistance QTL converted from an AFLP marker.  相似文献   

20.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and F. culmorum, can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. The objective of this study was to identify quantitative trait loci (QTLs) for FHB resistance in a winter wheat population developed by crossing the resistant German cultivar Dream with the susceptible British cultivar Lynx. A total of 145 recombinant inbred lines (RILs) were evaluated following spray inoculation with a F. culmorum suspension in field trials in 2002 in four environments across Germany. Based on amplified fragment length polymorphism and simple sequence repeat marker data, a 1,734 cM linkage map was established assuming that the majority of the polymorphic parts of the genome were covered. The area under disease progress curve (AUDPC) was calculated based on the visually scored FHB symptoms. The population segregated quantitatively for FHB severity. Composite interval mapping analysis for means across the environments identified four FHB resistance QTLs on chromosomes 6AL, 1B, 2BL and 7BS. Individually the QTLs explained 19%, 12%, 11% and 21% of the phenotypic variance, respectively, and together accounted for 41%. The QTL alleles conferring resistance on 6AL, 2BL and 7BS originated from cv. Dream. The resistance QTL on chromosome 6AL partly overlapped with a QTL for plant height. The FHB resistance QTL on 7BS coincided with a QTL for heading date, but the additive effect on heading date was of minor importance. The resistance QTL on chromosome 1B was associated with the T1BL.1RS wheat-rye translocation of Lynx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号