首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endometriosis is a benign, chronic inflammatory disease that commonly occurs in reproductive-aged women. Epithelial - mesenchymal transition (EMT) of endometrial epithelial cells plays an important role in the development of endometriosis. Recepteur d'origine nantais (RON), a receptor tyrosine kinase, has been reported to promote EMT and progression in tumours. However, whether and how RON mediates the EMT and endometriosis development is not known. Here, we found that RON activation could improve the migratory and invasive capabilities, change cellular morphologies, and decrease expression of E-cadherin and increase expression of N-cadherin in endometrial epithelial cells. Inhibition or knockdown of RON expression suppressed the migration and invasion of endometrial epithelial cells. Our studies also indicated that RON played its part in endometrial epithelial cells through protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways. Treatment with a RON inhibitor could decrease the number of ectopic lesions in a mouse model of endometriosis and mediate expression of EMT markers in endometriotic lesions. These data suggest that RON contributed to endometriosis development by promoting EMT of endometrial epithelial cells. Therefore, RON may be a new therapeutic target for endometriosis.  相似文献   

2.
Endometriosis is a chronic inflammatory syndrome and nearly 6%‐10% of women are affected by it during the reproductive period. Previous studies have proved that microRNAs (miRNAs) are implicated in the pathogenesis of ovarian endometriosis. In this study, we aimed to investigate that restored miR‐488 would effectively inhibit the development of endometriosis. The microarray‐based data analysis was performed to screen endometriosis‐related differentially expressed genes (DEGs). The mouse model in endometriosis syndrome was established by being subcutaneously injected with Estradiol benzoate, and the ectopic endometrial tissues and normal endometrial tissues were collected. Additionally, the endometrial glandular epithelial cells were extracted from the endometrial glandular epithelial tissues from normal and endometriosis mice. In order to examine the role of miR‐488 in mice with endometriosis, we measured miR‐488 expression and expression levels of Frizzled‐7 (FZD7), cyclinD1, β‐catenin, and c‐Myc in vivo and in vitro. Finally, we detected the effect of miR‐488 on cell proliferation, apoptosis, migration and invasion in vitro. FZD7 was upregulated in human endometriosis. The data showed higher expression levels of FZD7, β‐catenin, c‐Myc and cyclinD1, and lower miR‐488 expression in mouse endometrial tissues. FZD7 was the target gene of miR‐488. Furthermore, elevated miR‐488 in isolated mouse endometrial glandular endometrial cells inhibited FZD7, the translocation of β‐catenin to nucleus, the activation of Wnt pathway, and the cell proliferation, migration and invasion. Collectively, these findings indicated that up‐regulated miR‐488 may reduce the proliferation, migration and invasion of endometrial glandular epithelial cells through inhibiting the activation of Wnt pathway by down‐regulating FZD7.  相似文献   

3.
Endometriosis is a common gynecological disease characterized by diminished apoptosis, sustained ectopic survival of dysfunctional endometrial cells. Hypoxia has been implicated as a crucial microenvironmental factor that contributes to endometriosis. It has been reported that long non‐coding RNA MALAT1 (lncRNA‐MALAT1) highly expressed in endometriosis and up‐regulated by hypoxia. Hypoxia may also induce autophagy, which might act as cell protective mechanism. However, the relationship between lncRNA‐MALAT1 and autophagy under hypoxia conditions in endometriosis remains unknown. In the present study, we found that both lncRNA‐MALAT1 and autophagy level were up‐regulated in ectopic endometrium from patients with endometriosis, and its expression level correlates positively with that of hypoxia‐inducible factor‐1α (HIF‐1α). In cultured human endometrial stromal cells, both lncRNA‐MALAT1 and autophagy were induced by hypoxia in a time‐dependent manner and lncRNA‐MALAT1 up‐regulation was dependent on HIF‐1α signalling. Our analyses also show that knockdown of lncRNA‐MALAT1 suppressed hypoxia induced autophagy. Furthermore, inhibiting autophagy with specific inhibitor 3‐Methyladenine (3‐MA) and Beclin1 siRNA enhanced apoptosis of human endometrial stromal cells under hypoxia condition. Collectively, our findings identify that lncRNA‐MALAT1 mediates hypoxia‐induced pro‐survival autophagy of endometrial stromal cells in endometriosis.  相似文献   

4.
Rai P  Shivaji S 《PloS one》2011,6(3):e18074

Background

Endometriosis is an estrogen-dependent disease causing pelvic pain and infertility in 10% of reproductive-aged women. Despite a long history of the disease the pathogenesis of endometriosis is poorly understood. It is known that the expression of several proteins is either up or down regulated during endometriosis, but their precise role remains to be determined. DJ-1 is one such protein that is upregulated in eutopic endometrium of women having endometriosis suggesting that DJ-1 may be involved in the pathogenesis of endometriosis.

Methodology and Principal Findings

The role of DJ-1 in the pathogenesis of endometriosis was investigated. For this purpose the influence of DJ-1 on endometrial cell survival, attachment, proliferation, migration, and invasion either by overexpressing DJ-1 in normal endometrial cells or by knocking down DJ-1 expression in endometriotic cells using siRNA was investigated. The results indicated that DJ-1 protects endometrial cells from oxidative stress mediated apoptosis. Overexpression of DJ-1 in normal endometrial epithelial cells increases the adhesion on collagen type IV. However, no significant difference was observed incase of stromal cells. It was further demonstrated that DJ-1 regulates cell proliferation, migration, and invasion in normal endometrial and endometriotic epithelial cells whereas in the case of normal endometrial and endometriotic stromal cells, it regulates cell proliferation and invasion but not migration. Furthermore, the present study also indicated that DJ-1 regulates these cellular processes by modulating PI3K/Akt pathway by interacting and negatively regulating PTEN.

Conclusions

Abnormally high levels of DJ-1 expression may be involved in endometriosis, possibly by stimulating endometrial cell survival, proliferation, migration, and invasion.  相似文献   

5.
Endometriosis is considered to be an estrogen-dependent inflammatory disease, but its etiology is unclear. Thus far, a mechanistic role for steroid receptor coactivators (SRCs) in the progression of endometriosis has not been elucidated. An SRC-1-null mouse model reveals that the mouse SRC-1 gene has an essential role in endometriosis progression. Notably, a previously unidentified 70-kDa SRC-1 proteolytic isoform is highly elevated both in the endometriotic tissue of mice with surgically induced endometriosis and in endometriotic stromal cells biopsied from patients with endometriosis compared to normal endometrium. Tnf?/? and Mmp9?/? mice with surgically induced endometriosis showed that activation of tumor necrosis factor a (TNF-α)-induced matrix metallopeptidase 9 (MMP9) activity mediates formation of the 70-kDa SRC-1 C-terminal isoform in endometriotic mouse tissue. In contrast to full-length SRC-1, the endometriotic 70-kDa SRC-1 C-terminal fragment prevents TNF-α-mediated apoptosis in human endometrial epithelial cells and causes the epithelial-mesenchymal transition and the invasion of human endometrial cells that are hallmarks of progressive endometriosis. Collectively, the newly identified TNF-α-MMP9-SRC-1 isoform functional axis promotes pathogenic progression of endometriosis.  相似文献   

6.
Endometriosis is a chronic, painful disease whose etiology remains unknown. Furthermore, treatment of endometriosis can require laparoscopic removal of lesions, and/or chronic pharmaceutical management of pain and infertility symptoms. The cost associated with endometriosis has been estimated at 22 billion dollars per year in the United States. To further our understanding of mechanisms underlying this enigmatic disease, animal models have been employed. Primates spontaneously develop endometriosis and therefore primate models most closely resemble the disease in women. Rodent models, however, are more cost effective and readily available. The model that we describe here involves an autologous transfer of uterine tissue to the intestinal mesentery (Figure 1) and was first developed in the rat and later transferred to the mouse. The goal of the autologous rodent model of surgically-induced endometriosis is to mimic the disease in women. We and others have previously shown that the altered gene expression pattern observed in endometriotic lesions from mice or rats mirrors that observed in women with the disease. One advantage of performing the surgery in the mouse is that the abundance of transgenic mouse strains available can aid researchers in determining the role of specific components important in the establishment and growth of endometriosis. An alternative model in which excised human endometrial fragments are introduced to the peritoneum of immunocompromised mice is also widely used but is limited by the lack of a normal immune system which is thought to be important in endometriosis. Importantly, the mouse model of surgically induced endometriosis is a versatile model that has been used to study how the immune system, hormones and environmental factors affect endometriosis as well as the effects of endometriosis on fertility and pain.  相似文献   

7.
ABSTRACT: Cecal endometriosis and ileocolic intussusception due to a cecal endometriosis is extremely rare. We report a case of a woman who presented an ileocecal intussusception due to a cecal endometriosis. The patient gave two months history of chronic periombilical pain requiring regular hospital admission and analgesia. The symptoms were not related to menses. A laparotomy was performed and revealed an ileocolic intussusception. The abdominal exploration did not find any endometriosis lesion. Ileocaecal resection was performed. Microscopic examination showed a cystic component, lined by a regular cylindric epithelium. Foci of endometrial tissu were oberved in the cecal subserosa and muscularis mucosal, with irregular endometrial glands lined by cylindric epithelium without atypia immunostained with CK7, and characteristic endometrial stroma immunostained with CD10. Cecal endometriosis and ileocolic intussusception due to a cecal endometriosis is extremely rare. Diagnose of etiology remains challenging due to the absence of clinical and radiological specific characteristics. Virtual slide The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2975867306869166.  相似文献   

8.
Endometriosis is a benign gynecological disease of women of reproductive ages, wherein endometrial cells grow ectopically, decreasing their quality of life due to chronic pelvic pain and severe dysmenorrhea. Although surgery and hormone therapies are gold standards for treating endometriosis, side effects are common and the recurrence rate is nearly 50%. Recent studies are exploring phytochemicals as pharmacological adjuvants for treating endometriosis. Delphinidin is an anthocyanin with anti-inflammatory, antioxidative, and anticancerous properties. In this study, delphinidin showed antiproliferative and apoptotic effects on human endometrial cells. Additionally, treatment with delphinidin decreased the mitochondrial membrane potential and increased cytosolic calcium levels in VK2/E6E7 and End1/E6E7 cells. Delphinidin decreased the phosphorylation of proliferative signaling molecules, including ERK1/2, AKT, P70S6K, and S6, while increasing the phosphorylation of P38 MAPK and P90RSK. These results imply that delphinidin is a novel therapeutic agent for treating and managing endometriosis, and has fewer side effects.  相似文献   

9.
10.

Background

During the development and progression of endometriotic lesions, excess fibrosis may lead to scarring, chronic pain, and altered tissue function. However, the cellular and molecular mechanisms of fibrosis in endometriosis remain to be clarified.

Objectives

The objective of the present study was to investigate whether the Wnt/β-catenin signaling pathway was involved in regulating the cellular and molecular mechanisms of fibrosis in endometriosis in vitro and to evaluate whether fibrosis could be prevented by targeting the Wnt/β-catenin pathway in a xenograft model of endometriosis in immunodeficient nude mice.

Methods

Seventy patients (40 with and 30 without endometriosis) with normal menstrual cycles were recruited. In vitro effects of small-molecule antagonists of the Tcf/β-catenin complex (PKF 115-584 and CGP049090) on fibrotic markers (alpha smooth muscle actin, type I collagen, connective tissue growth factor, fibronectin) and collagen gel contraction were evaluated in endometrial and endometriotic stromal cells from patients with endometriosis. In vitro effects of activation of the Wnt/β-catenin signaling pathway by treatment with recombinant Wnt3a on profibrotic responses were evaluated in endometrial stromal cells of patients without endometriosis. The effects of CGP049090 treatment on the fibrosis of endometriotic implants were evaluated in a xenograft model of endometriosis in immunodeficient nude mice.

Results

Treatment with PKF 115-584 and CGP049090 significantly decreased the expression of alpha smooth muscle actin, type I collagen, connective tissue growth factor and fibronectin mRNAs in both endometriotic and endometrial stromal cells with or without transforming growth factor-β1 stimulation. Both endometriotic and endometrial stromal cell-mediated contraction of collagen gels was significantly decreased by treatment with PKF 115-584 and CGP049090 as compared to that of untreated cells. The animal experiments showed that CGP049090 prevented the progression of fibrosis and reversed established fibrosis in endometriosis.

Conclusion

Aberrant activation of the Wnt/β-catenin pathway may be involved in mediating fibrogenesis in endometriosis.  相似文献   

11.
Pelvic inflammation is a hallmark of endometriosis pathogenesis and a major cause of the disease''s symptoms. Abnormal immune and inflammatory changes may not only contribute to endometriosis-major symptoms, but also contribute to ectopic endometrial tissue growth and endometriosis development. A major pro-inflammatory factors found elevated in peritoneal fluid of women with endometriosis and to be overexpressed in peritoneal fluid macrophages and active, highly vascularized and early stage endometriotic lesions, macrophage migration inhibitory factor (MIF) appeared to induce angiogenic and inflammatory and estrogen producing phenotypes in endometriotic cells in vitro and to be a possible therapeutic target in vivo. Using a mouse model where MIF-knock out (KO) mice received intra-peritoneal injection of endometrial tissue from MIF-KO or syngeneic wild type (WT) mice and vice versa, our current study revealed that MIF genetic depletion resulted in a marked reduction ectopic endometrial tissue growth, a disrupted tissue structure and a significant down regulation of the expression of major inflammatory (cyclooxygenease-2), cell adhesion (αv and β3 integrins), survival (B-cell lymphoma-2) and angiogenic (vascular endothelial cell growth) factorsrelevant to endometriosis pathogenesis, whereas MIF add-back to MIF-KO mice significantly restored endometriosis-like lesions number and size. Interestingly, cross-experiments revealed that MIF presence in both endometrial and peritoneal host tissues is required for ectopic endometrial tissue growth and pointed to its involvement in endometrial-peritoneal interactions. This study provides compelling evidence for the role of MIF in endometriosis development and its possible interest for a targeted treatment of endometriosis.  相似文献   

12.
Interaction between endometrial stromal cells and extracellular matrix (ECM) components has a crucial role in the development of endometriosis. Endometrial stromal cells attach to the mesothelial surface of peritoneum by means of integrins during their initial implantation and growth in endometriosis. Similarly, interaction between integrin and the extracellular matrix is also crucial for the remodeling of the endometrium during early pregnancy. We hypothesized that adhesion of endometrial stromal cells to the extracellular matrix could suppress the immunologic reaction to implanting endometrial cells by inducing the expression of Fas ligand (FasL), a mediator of the apoptotic pathway. Western blot analysis of human endometrial stromal cells plated onto fibronectin, laminin, and collagen IV revealed higher levels of FasL protein expression compared with endometrial stromal cells that plated to BSA-coated plates (control). Immunocytochemistry results from endometrial stromal cells plated to extracellular matrix proteins demonstrated a similar up-regulation of FasL expression. Eutopic endometrial stromal cells from women with endometriosis demonstrated higher FasL expression on control plates and those coated with extracellular matrix proteins compared with those from women without endometriosis. Disruption of actin cytoskeleton in endometrial stromal cells by treatment with cytochalasin D blocked the increase of FasL protein expression that occurred in response to adhesion to the extracellular matrix. These results suggest that attachment of endometrial stromal cells during retrograde menstruation to a new environment such as peritoneum with increased expression of laminin, fibronectin, and collagen IV could lead to an increase in FasL expression. Induction of FasL expression by adhesion of endometrial stromal cells to the extracellular matrix may take part in the development of a relative immunotolerance by inducing apoptosis of cytotoxic T lymphocytes, which will allow further development of ectopic implants.  相似文献   

13.
Endometriosis is defined by the presence of endometrial ectopia. Multiple hypotheses have been postulated to explain the etiology of endometriosis to understand various clinical evidences. The etiology of endometriosis is still unclear.The primary question to understanding the etiology of endometrial ectopia (endometriosis) is determining the origin of eutopic (normally cited) endometrium.According to the new theory, primordial germ cells migrate from hypoblast (yolk sac close to the allantois) to the gonadal ridges. The gonadal ridges which composed of primordial germ cells derive to the: eutopic endometrium, ovary, ovarian ligament and ligamentum teres uteri.There are 2 principal processes in uterine organogenesis: the intersection of gonadal ridges with mesonephral ducts to form the uterine folds with an endometrial cavity and the fusion of the both uterine folds together to form the unicavital (normal) uterus. In the uterine folds there are closer cell-to-cell communications, polypotential germ cells differentiate and grow into myometrium and endometrial layers.Some of the polypotential germ cells fail to reach the ridges and stay in the peritoneal cavity, where they may be transforming into external endometrial heterotopies.The main insight in the etiology of endometriosis is polypotential germ cells origin, which may explain its potency, pathogenesis and expansion.  相似文献   

14.
Endometriosis is a common chronic gynecologic disorder characterized by the presence and growth of endometrial‐like tissue outside of the uterine cavity. Although the exact etiology remains unclear, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of endometriosis. Here, we used the Illumina Human Methylation 450 K BeadChip Array to analyze the genome‐wide DNA methylation profiles of six endometriotic lesions and six eutopic endometria from patients with ovarian endometriosis and six endometria of women without endometriosis. Compared with the eutopic endometria of women with endometriosis, 12,159 differentially methylated CpG sites and 375 differentially methylated promoter regions were identified in endometriotic lesions. GO analyses showed that these putative differentially methylated genes were primarily associated with immune response, inflammatory response, response to steroid hormone stimulus, cell adhesion, negative regulation of apoptosis, and activation of the MAPK activity. In addition, the expression levels of DNMT1, DNMT3A, DNMT3B, and MBD2 in endometriotic lesions and eutopic endometria were significantly decreased compared with control endometria. Our findings suggest that aberrant DNA methylation status in endometriotic lesions may play a significant role in the pathogenesis and progression of endometriosis.  相似文献   

15.
16.
Sato N  Nishida M  Noguchi M 《Human cell》2000,13(3):103-108
To investigate the potential role of the PTEN tumor-suppressor gene in the carcinogenesis of ovarian endometrioid carcinoma and its related subtype, clear cell carcinoma, we examined 20 ovarian endometrioid carcinomas, 24 clear cell carcinomas and 34 solitary endometrial cysts of the ovary for LOH at 10q23.3 and point mutations of the PTEN gene, using a laser-assisted microdissection method. LOH was found in 8 of 19 ovarian endometrioid carcinomas (42.1%), 6 of 22 clear cell carcinomas (27.3%) and 13 of 23 solitary endometrial cysts (56.5%). Somatic mutations in the PTEN gene were identified in 4 of 20 ovarian endometrioid carcinomas (20.0%), 2 of 24 clear cell carcinomas (8.3%) and 7 of 34 solitary endometrial cysts (20.6%). In 5 endometrioid carcinomas with endometriosis, 3 displayed LOH events common to both the carcinoma and the endometriosis. In 7 clear cell carcinomas with endometriosis, 3 displayed LOH events common to both the carcinoma and the endometriosis. In no cases there were LOH events in the endometriosis only. These results indicate that inactivation of the PTEN gene is an early event in the development of both endometrioid and clear cell carcinoma of the ovary. A laser-assisted microdissection method enables us to collect target cells without contamination by non-tumor cells. We expect that this technique will be very useful for investigating genetic alterations in cancerous or precancerous lesions. Early genetic alterations in various precancerous cells detected by light microscopy can be readily identified by the tissue-microdissection method.  相似文献   

17.
18.
Epithelial and stromal communications are essential for normal uterine functions and their dysregulation contributes to the pathogenesis of many diseases including infertility, endometriosis, and cancer. Although many studies have highlighted the advantages of culturing cells in 3D compared to the conventional 2D culture system, one of the major limitations of these systems is the lack of incorporation of cells from non‐epithelial lineages. In an effort to develop a culture system incorporating both stromal and epithelial cells, 3D endometrial cancer spheroids are developed by co‐culturing endometrial stromal cells with cancerous epithelial cells. The spheroids developed by this method are phenotypically comparable to in vivo endometrial cancer tissue. Proteomic analysis of the co‐culture spheroids comparable to human endometrial tissue revealed 591 common proteins and canonical pathways that are closely related to endometrium biology. To determine the feasibility of using this model for drug screening, the efficacy of tamoxifen and everolimus is tested. In summary, a unique 3D model system of human endometrial cancer is developed that will serve as the foundation for the further development of 3D culture systems incorporating different cell types of the human uterus for deciphering the contributions of non‐epithelial cells present in cancer microenvironment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号