首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
P2Y1 [P2 (purinergic type-2)-receptor 1] is a G-protein-coupled ADP receptor that regulates platelet activation and ADP-induced Ca2+ signalling. Studies using P2Y1-knockout mice, G(q)-deficient mice or P2Y1-selective inhibitors have previously identified a key role for P2Y1 in pathophysiological thrombus formation at high shear stress. We provide evidence that a positively charged juxtamembrane sequence within the cytoplasmic C-terminal tail of P2Y1 can bind directly to the cytosolic regulatory protein calmodulin. Deletion by mutagenesis of the calmodulin-binding domain of P2Y1 inhibits intracellular Ca2+ flux in transfected cells. These results suggest that the interaction of calmodulin with the P2Y1 C-terminal tail may regulate P2Y1-dependent platelet aggregation.  相似文献   

2.
3.
There is increasing evidence that extracellular nucleotides act on bone cells via P2 receptors. This study investigated the action of ADP and 2-methylthioADP, a potent ADP analog with selectivity for the P2Y(1) receptor, on osteoclasts, the bone-resorbing multinuclear cells. Using three different assays, we show that ADP and 2-methylthioADP at nanomolar to submicromolar levels caused up to fourfold to sixfold increases in osteoclastic bone resorption. On mature rat osteoclasts, cultured for 1 day on polished dentine disks, peak effects on resorption pit formation were observed between 20 nM and 2 microM of ADP. The same concentrations of ADP also stimulated osteoclast and resorption pit formation in 10-day mouse marrow cultures on dentine disks. In 3-day explant cultures of mouse calvarial bones, the stimulatory effect of ADP on osteoclast-mediated Ca(2+) release was greatest at 5-50 microM and equivalent to the maximal effects of prostaglandin E(2). The ADP effects were blocked in a nontoxic manner by MRS 2179, a P2Y(1) receptor antagonist. Using in situ hybridization and immunocytochemistry, we found evidence for P2Y(1) receptor expression on both osteoclasts and osteoblasts; thus, ADP could exert its actions both directly on osteoclasts and indirectly via P2Y(1) receptors on osteoblasts. As a major ATP degradation product, ADP is a novel stimulator of bone resorption that could help mediate inflammatory bone loss in vivo.  相似文献   

4.
5.
The estrogen-related receptor alpha (ERRalpha) is an orphan member of the superfamily of nuclear hormone receptors expressed in tissues that preferentially metabolize fatty acids. Despite the molecular characterization of ERRalpha and identification of target genes, determination of its physiological function has been hampered by the lack of a natural ligand. To further understand the in vivo function of ERRalpha, we generated and analyzed Estrra-null (ERRalpha-/-) mutant mice. Here we show that ERRalpha-/- mice are viable, fertile and display no gross anatomical alterations, with the exception of reduced body weight and peripheral fat deposits. No significant changes in food consumption and energy expenditure or serum biochemistry parameters were observed in the mutant animals. However, the mutant animals are resistant to a high-fat diet-induced obesity. Importantly, DNA microarray analysis of gene expression in adipose tissue demonstrates altered regulation of several enzymes involved in lipid, eicosanoid, and steroid synthesis, suggesting that the loss of ERRalpha might interfere with other nuclear receptor signaling pathways. In addition, the microarray study shows alteration in the expression of genes regulating adipogenesis as well as energy metabolism. In agreement with these findings, metabolic studies showed reduced lipogenesis in adipose tissues. This study suggests that ERRalpha functions as a metabolic regulator and that the ERRalpha-/- mice provide a novel model for the investigation of metabolic regulation by nuclear receptors.  相似文献   

6.
It is now widely recognized that purinergic signaling plays an important role in the regulation of bone remodeling. One receptor subtype, which has been suggested to be involved in this regulation, is the P2Y2 receptor (P2Y2R). In the present study, we investigated the effect of P2Y2R overexpression on bone status and bone cell function using a transgenic rat. Three-month-old female transgenic Sprague Dawley rats overexpressing P2Y2R (P2Y2R-Tg) showed higher bone strength of the femoral neck. Histomorphometry showed increase in resorptive surfaces and reduction in mineralizing surfaces. Both mineral apposition rate and thickness of the endocortical osteoid layer were higher in the P2Y2R-Tg rats. μCT analysis showed reduced trabecular thickness and structural model index in P2Y2R-Tg rats. Femoral length was increased in the P2Y2R-Tg rats compared to Wt rats. In vitro, there was an increased formation of osteoclasts, but no change in total resorption in cultures from P2Y2R-Tg rats. The formation of mineralized nodules was significantly reduced in the osteoblastic cultures from P2Y2R-Tg rats. In conclusion, our study suggests that P2Y2R is involved in regulation of bone turnover, due to the effects on both osteoblasts and osteoclasts and that these effects might be relevant in the regulation of bone growth.  相似文献   

7.
Altered cytokine production in mice lacking P2X(7) receptors   总被引:31,自引:0,他引:31  
The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel expressed by monocytes and macrophages. To directly address the role of this receptor in interleukin (IL)-1 beta post-translational processing, we have generated a P2X(7)R-deficient mouse line. P2X(7)R(-/-) macrophages respond to lipopolysaccharide and produce levels of cyclooxygenase-2 and pro-IL-1 beta comparable with those generated by wild-type cells. In response to ATP, however, pro-IL-1 beta produced by the P2X(7)R(-/-) cells is not externalized or activated by caspase-1. Nigericin, an alternate secretion stimulus, promotes release of 17-kDa IL-1 beta from P2X(7)R(-/-) macrophages. In response to in vivo lipopolysaccharide injection, both wild-type and P2X(7)R(-/-) animals display increases in peritoneal lavage IL-6 levels but no detectable IL-1. Subsequent ATP injection to wild-type animals promotes an increase in IL-1, which in turn leads to additional IL-6 production; similar increases did not occur in ATP-treated, LPS-primed P2X(7)R(-/-) animals. Absence of the P2X(7)R thus leads to an inability of peritoneal macrophages to release IL-1 in response to ATP. As a result of the IL-1 deficiency, in vivo cytokine signaling cascades are impaired in P2X(7)R-deficient animals. Together these results demonstrate that P2X(7)R activation can provide a signal that leads to maturation and release of IL-1 beta and initiation of a cytokine cascade.  相似文献   

8.
The effects of ADP on the biology of dendritic cells have been studied much less than those of ATP or adenosine. In this study, we showed that adenosine-5'-O-(2-thiodiphosphate) (ADPβS) induced intracellular Ca(2+) transients in murine dendritic cells (DCs). This effect was abolished by AR-C69931MX, a dual P2Y(12) and P2Y(13) receptor antagonist. RT-PCR experiments revealed the expression of both P2Y(12) and P2Y(13) mRNA in DCs. The Ca(2+) response to ADPβS was maintained in P2Y(13)-deficient DCs, whereas it was abolished completely in P2Y(12)(-/-) DCs. ADPβS stimulated FITC-dextran and OVA capture in murine DCs through macropinocytosis, and this effect was abolished in P2Y(12)(-/-) DCs. ADPβS had a similar effect on FITC-dextran uptake by human monocyte-derived DCs. OVA loading in the presence of ADPβS increased the capacity of DCs to stimulate OVA-specific T cells, whereas ADPβS had no effect on the ability of DCs to stimulate allogeneic T cells. Moreover, after immunization against OVA, the serum level of anti-OVA IgG1 was significantly lower in P2Y(12)(-/-) mice than that in wild-type controls. In conclusion, we have shown that the P2Y(12) receptor is expressed in murine DCs and that its activation increased Ag endocytosis by DCs with subsequent enhancement of specific T cell activation.  相似文献   

9.
The action of cyclic-ADP-ribose was studied on calcium release from sarcoplasmic reticulum of skeletal muscles of neonatal and adult wild-type and RyR3-deficient mice. cADPR increased calcium efflux from microsomes, enhanced caffeine-induced calcium release, and, in 20% of the tests, triggered calcium release in single muscle fibers. These responses occurred only in the diaphragm of adult RyR3-deficient mice. cADPR action was abolished by ryanodine, ruthenium red, and 8-brome-cADPR. These results strongly favor a specific action of cADPR on RyR1. The responsiveness of RyR1 appears in adult muscles when RyR3 is lacking.  相似文献   

10.
11.
While high levels of glucose and saturated fatty acids are known to have detrimental effects on beta cell function and survival, the signalling pathways mediating these effects are not entirely known. In a previous study, we found that ADP regulates beta cell insulin secretion and beta cell apoptosis. Using MIN6c4 cells as a model system, we investigated if autocrine/paracrine mechanisms of ADP and purinergic receptors are involved in this process. High glucose (16.7 mmol/l) and palmitate (100 μmol/l) rapidly and potently elevated the extracellular ATP levels, while mannitol was without effect. Both tolbutamide and diazoxide were without effect, while the calcium channel blocker nifedipine, the volume-regulated anion channels (VRAC) inhibitor NPPB, and the pannexin inhibitor carbenoxolone could inhibit both effects. Similarly, silencing the MDR1 gene also blocked nutrient-generated ATP release. These results indicate that calcium channels and VRAC might be involved in the ATP release mechanism. Furthermore, high glucose and palmitate inhibited cAMP production, reduced cell proliferation in MIN6c4 and increased activated Caspase-3 cells in mouse islets and in MIN6c4 cells. The P2Y13-specific antagonist MRS2211 antagonized all these effects. Further studies showed that blocking the P2Y13 receptor resulted in enhanced CREB, Bad and IRS-1 phosphorylation, which are known to be involved in beta cell survival and insulin secretion. These findings provide further support for the concept that P2Y13 plays an important role in beta cell apoptosis and suggest that autocrine/paracrine mechanisms, related to ADP and P2Y13 receptors, contribute to glucolipotoxicity.  相似文献   

12.
Novel non-nucleoside tricyclic platelet ADP receptor (P2Y(12)) antagonists have been discovered that bind reversibly and with high affinity to the platelet receptor. Condensation of various 2-aminobenzothiazoles with chlorosulfonylacetyl chloride affords these novel tricyclic heterocycles, which are novel and unpredicted products of this reaction.  相似文献   

13.
Nucleotides signal through purinergic receptors such as the P2 receptors, which are subdivided into the ionotropic P2X receptors and the metabotropic P2Y receptors. The diversity of functions within the purinergic receptor family is required for the tissue-specificity of nucleotide signalling. In the present study, hetero-oligomerization between two metabotropic P2Y receptor subtypes is established. These receptors, P2Y1 and P2Y11, were found to associate together when co-expressed in HEK293 cells. This association was detected by co-pull-down, immunoprecipitation and FRET (fluorescence resonance energy transfer) experiments. We found a striking functional consequence of the interaction between the P2Y11 receptor and the P2Y1 receptor where this interaction promotes agonist-induced internalization of the P2Y11 receptor. This is remarkable because the P2Y11 receptor by itself is not able to undergo endocytosis. Co-internalization of these receptors was also seen in 1321N1 astrocytoma cells co-expressing both P2Y11 and P2Y1 receptors, upon stimulation with ATP or the P2Y1 receptor-specific agonist 2-MeS-ADP. 1321N1 astrocytoma cells do not express endogenous P2Y receptors. Moreover, in HEK293 cells, the P2Y11 receptor was found to functionally associate with endogenous P2Y1 receptors. Treatment of HEK293 cells with siRNA (small interfering RNA) directed against the P2Y1 receptor diminished the agonist-induced endocytosis of the heterologously expressed GFP-P2Y11 receptor. Pharmacological characteristics of the P2Y11 receptor expressed in HEK293 cells were determined by recording Ca2+ responses after nucleotide stimulation. This analysis revealed a ligand specificity which was different from the agonist profile established in cells expressing the P2Y11 receptor as the only metabotropic nucleotide receptor. Thus the hetero-oligomerization of the P2Y1 and P2Y11 receptors allows novel functions of the P2Y11 receptor in response to extracellular nucleotides.  相似文献   

14.
No G(i)-linked P2Y receptors have been cloned to date but the presence of such receptors is thought to be restricted to platelets and certain clonal cell lines. Using the functional approach of [(35)S]guanosine 5'-[gamma-thio]-triphosphate autoradiography, we uncovered the widespread presence of such receptors in the CNS. Under conditions in which the prominent signal due to tonic adenosine receptor activity is masked, ADP and ATP stimulated G-protein activity in multiple grey and white matter regions. Localization in the grey matter suggests inhibitory auto-/heteroreceptor function. In the white matter, activated G proteins appeared as 'hot spots' (presumed oligodendrocyte progenitors) with scattered distribution along the main fibre tracts. Responses to ATP were diminished under conditions that inhibited degradation, suggesting that prior conversion to ADP explained agonist action. Uracil nucleotides were ineffective but 2-methylthio-ADP activated G proteins approximately 500-fold more potently than ADP, although both were similarly degraded. Throughout the brain, ADP-dependent G-protein activity was reversed by 2-hexylthio-AdoOC(O)Asp(2), a non-phosphate ATP analogue, whereas selective P2Y(1) receptor antagonists proved ineffective. A similar receptor was also disclosed from the adrenal medulla. These data witness a hitherto unrecognized abundance of G(i/o)-linked ADP receptors in the nervous system. Biochemical and pharmacological behaviour suggests striking similarities to the elusive platelet P2Y(ADP) receptor.  相似文献   

15.
Neuropeptide Y (NPY) acting through Y1 receptors reduces anxiety- and depression-like behavior in rodents, whereas Y2 receptor stimulation has the opposite effect. This study addressed the implication of Y4 receptors in emotional behavior by comparing female germ line Y4 knockout (Y4−/−) mice with control and germ line Y2−/− animals. Anxiety- and depression-like behavior was assessed with the open field (OF), elevated plus maze (EPM), stress-induced hyperthermia (SIH) and tail suspension tests (TST), respectively. Learning and memory were evaluated with the object recognition test (ORT). In the OF and EPM, both Y4−/− and Y2−/− mice exhibited reduced anxiety-related behavior and enhanced locomotor activity relative to control animals. Locomotor activity in a familiar environment was unchanged in Y4−/− but reduced in Y2−/− mice. The basal rectal temperature exhibited diurnal and genotype-related alterations. Control mice had temperature minima at noon and midnight, whereas Y4−/− and Y2−/− mice displayed only one temperature minimum at noon. The magnitude of SIH was related to time of the day and genotype in a complex manner. In the TST, the duration of immobility was significantly shorter in Y4−/− and Y2−/− mice than in controls. Object memory 6 h after initial exposure to the ORT was impaired in Y2−/− but not in Y4−/− mice, relative to control mice. These results show that genetic deletion of Y4 receptors, like that of Y2 receptors, reduces anxiety-like and depression-related behavior. Unlike Y2 receptor knockout, Y4 receptor knockout does not impair object memory. We propose that Y4 receptors play an important role in the regulation of behavioral homeostasis.  相似文献   

16.
17.
Lee EW  Grant DS  Movafagh S  Zukowska Z 《Peptides》2003,24(1):99-106
Which of Y1-Y5 receptors (Rs) mediate NPY's angiogenic activity was studied using Y2R-null mice and R-specific antagonists. In Y2R-null mice, NPY-induced aortic sprouting and in vivo Matrigel capillary formation were decreased by 50%; Y1R-antagonist blocked the remaining response. NPY-induced sprouting was equally inhibited by Y2R- (and Y5R- but less by Y1R-) antagonists in wild type mice. Spontaneous and NPY-induced revascularization of ischemic gastrocnemius muscles were similarly reduced in Y2R-null mice. Thus, NPY-induced angiogenesis, spontaneous and ischemic, is primarily mediated by Y2Rs. However, Y5Rs and, to a lesser degree Y1Rs, also may play a role in NPY-mediated angiogenesis.  相似文献   

18.
P2Y receptors have been implicated in the calcium mobilization by the response to neuroexcitatory substances in neurons and astrocytes, but little is known about P2Y receptors in microglia cells. In the present study, the effects of ADP on the intracellular calcium concentration ([Ca2+]i) in cultured dorsal spinal cord microglia were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescence indicator that could monitor real-time alterations of [Ca2+]i. Here we show that ADP (0.01–100 μM) causes a rapid increase in [Ca2+]i with a dose-dependent manner in cultured microglia. The action of ADP on [Ca2+]i was significantly blocked by MRS2211 (a selective P2Y13 receptor antagonist), but was unaffected by MRS2179 (a selective P2Y1 receptor antagonist) or MRS2395 (a selective P2Y12 receptor antagonist), which suggest that P2Y13 receptor may be responsible for ADP-evoked Ca2+ mobilization in cultured microglia. P2Y13-evoked Ca2+ response can be obviously inhibited by BAPTA-AM and U-73122, respectively. Moreover, removal of extracellular Ca2+ (by EGTA) also can obvious suppress the Ca2+ mobilization. These results means both intracellular calcium and extracellular calcium are potentially important mechanisms in P2Y13 receptor-evoked Ca2+ mobilization. However, P2Y13 receptor-evoked Ca2+ response was not impaired after CdCl2 and verapamil administration, which suggest that voltage-operated Ca2+ channels may be not related with P2Y13-evoked Ca2+ response. In addition, Ca2+ mobilization induced by ADP was abolished by different store-operated Ca2+ channels (SOCs) blocker, 2-APB (50 μM) and SKF-96365 (1 mM), respectively. These observations suggest that the activation of P2Y13 receptor might be involved in the effect of ADP on [Ca2+]i in cultured dorsal spinal cord microglia. Furthermore, our results raise a possibility that P2Y13 receptor activation causes Ca2+ release from Ca2+ store, which leads to the opening of SOCs.  相似文献   

19.
During rodent development there are two surges of circulating corticosterone: one just prior to birth and then one in the third postnatal week. Prior studies have shown that the latter controls the rate of intestinal development in the postnatal period. To date, a role for the earlier surge in the prenatal phase of intestinal development has not been investigated. We hypothesized that the late fetal surge of circulating corticosterone is involved in both morphologic and functional maturation of the intestinal epithelium, and thus that such maturation would be delayed if glucocorticoid action was abrogated. The hypothesis was tested by studying intestinal development in mice lacking a functional glucocorticoid receptor (GR). After GR+/- mice were bred onto a C57Bl/6 background, heterozygote matings yielded the expected ratios of -/-, +/-, and +/+ offspring. Analysis of GR mRNA in intestines of +/+ and -/- fetuses confirmed expression in wild-type mice but not in the GR-null mice. Intestinal histology of GR+/+ and -/- littermates at E13.5, E15.5, and E18.5 showed no effect of GR genotype on morphologic development. Further studies at E18.5 showed that GR-/- mice have normal functional maturation of the intestinal epithelium as assessed by: lactase activity in the enterocyte lineage, normal numbers of goblet and enteroendocrine cells, and normal numbers of proliferating cells in the intestinal crypts. Neither the minerolocorticoid receptor (MR) nor the pregnane X receptor (PXR) showed compensatory up-regulation in GR-/- mice. We conclude that, in contrast to our original hypothesis, the rodent intestine passes through a phase of glucocorticoid independence (late fetal) prior to becoming responsive to glucocorticoids in the postnatal period. These findings have implications for the clinical use of corticosteroids to enhance intestinal maturation in preterm infants.  相似文献   

20.
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号