首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. Identifying novel regulators of mitochondrial bioenergetics will broaden our understanding of regulatory checkpoints that coordinate complex metabolic pathways. We previously showed that Nur77, an orphan nuclear receptor of the NR4A family, regulates the expression of genes linked to glucose utilization. Here we demonstrate that expression of Nur77 in skeletal muscle also enhances mitochondrial function. We generated MCK-Nur77 transgenic mice that express wild-type Nur77 specifically in skeletal muscle. Nur77-overexpressing muscle had increased abundance of oxidative muscle fibers and mitochondrial DNA content. Transgenic muscle also exhibited enhanced oxidative metabolism, suggestive of increased mitochondrial activity. Metabolomic analysis confirmed that Nur77 transgenic muscle favored fatty acid oxidation over glucose oxidation, mimicking the metabolic profile of fasting. Nur77 expression also improved the intrinsic respiratory capacity of isolated mitochondria, likely due to the increased abundance of complex I of the electron transport chain. These changes in mitochondrial metabolism translated to improved muscle contractile function ex vivo and improved cold tolerance in vivo. Our studies outline a novel role for Nur77 in the regulation of oxidative metabolism and mitochondrial activity in skeletal muscle.  相似文献   

4.
Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43?/?), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43?/? mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43?/? mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.  相似文献   

5.
6.
7.
Nuclear receptor signaling plays an important role in energy metabolism. In this study we demonstrate that the nuclear receptor corepressor RIP140 is a key regulator of metabolism in skeletal muscle. RIP140 is expressed in a fiber type-specific manner, and manipulation of its levels in null, heterozygous, and transgenic mice demonstrate that low levels promote while increased expression suppresses the formation of oxidative fibers. Expression profiling reveals global changes in the expression of genes implicated in both myofiber phenotype and metabolic functions. Genes involved in fatty-acid oxidation, oxidative phosphorylation, and mitochondrial biogenesis are upregulated in the absence of RIP140. Analysis of cultured myofibers demonstrates that the changes in expression are intrinsic to muscle cells and that nuclear receptor-regulated genes are direct targets for repression by RIP140. Therefore RIP140 is an important signaling factor in the regulation of skeletal muscle function and physiology.  相似文献   

8.
Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass. By using B2 receptor knockout mice (B2R-/-) we investigated whether kinin action affects weight gain and physical performance of the animals. Our results show that B2R-/- mice are resistant to high fat diet-induced obesity, have higher glucose tolerance as well as increased mitochondrial mass. These features are accompanied by higher energy expenditure and a lower feed efficiency associated with an increase in the proportion of type I fibers and intermediary fibers characterized by higher mitochondrial content and increased expression of genes related to oxidative metabolism. Additionally, the increased percentage of oxidative skeletal muscle fibers and mitochondrial apparatus in B2R-/- mice is coupled with a higher aerobic exercise performance. Taken together, our data give support to the involvement of kinins in skeletal muscle fiber type distribution and muscle metabolism, which ultimately protects against fat-induced obesity and improves aerobic exercise performance.  相似文献   

9.
10.
Deletion of murine Smn exon 7, the most frequent mutation found in spinal muscular atrophy, has been directed to either both satellite cells, the muscle progenitor cells and fused myotubes, or fused myotubes only. When satellite cells were mutated, mutant mice develop severe myopathic process, progressive motor paralysis, and early death at 1 mo of age (severe mutant). Impaired muscle regeneration of severe mutants correlated with defect of myogenic precursor cells both in vitro and in vivo. In contrast, when satellite cells remained intact, mutant mice develop similar myopathic process but exhibit mild phenotype with median survival of 8 mo and motor performance similar to that of controls (mild mutant). High proportion of regenerating myofibers expressing SMN was observed in mild mutants compensating for progressive loss of mature myofibers within the first 6 mo of age. Then, in spite of normal contractile properties of myofibers, mild mutants develop reduction of muscle force and mass. Progressive decline of muscle regeneration process was no more able to counterbalance muscle degeneration leading to dramatic loss of myofibers. These data indicate that intact satellite cells remarkably improve the survival and motor performance of mutant mice suffering from chronic myopathy, and suggest a limited potential of satellite cells to regenerate skeletal muscle.  相似文献   

11.
Loss of myostatin (mstn) function leads to a decrease in mitochondrial content, a reduced expression of cytochrome c oxidase, and a lower citrate synthase activity in skeletal muscle. These data suggest functional or ultrastructural mitochondrial abnormalities that can impact on muscle endurance characteristics in such phenotype. To address this issue, we investigated subsarcolemmal and intermyofibrillar (IMF) mitochondrial activities, skeletal muscle redox homeostasis, and muscle fiber endurance quality in mstn-deficient mice [mstn knockout (KO)]. We report that lack of mstn induced a decrease in the coupling of IMF mitochondria respiration, with significantly higher basal oxygen consumption. No lysis of mitochondrial cristae or excessive swelling were observed in mstn KO mice compared with wild-type (WT) mice. Concerning redox status, mstn KO gastrocnemius exhibited a significant decrease in lipid peroxidation levels (-56%; P < 0.01 vs. WT) together with a significant upregulation of the antioxidant glutathione system. In contrast, superoxide dismutase and catalase activities were altered in mstn KO, gastrocnemius and soleus with a reduction of up to 80% compared with WT animals. The force production observed after contractile endurance test was significantly lower in extensor digitorum longus and soleus muscles of mstn KO mice compared with the controls (17 ± 3 and 36 ± 5% vs. 28 ± 4 and 56 ± 5%, respectively, P < 0.05). Together, these findings indicate that, besides an increased skeletal muscle mass, genetic mstn inhibition has differential effects on redox homeostasis and mitochondrial function that would have functional consequences on muscle response to endurance exercise.  相似文献   

12.
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy and an important metabolic disorder in women of reproductive age. Insulin resistance (IR) is one of its most important clinical features in patients with PCOS. Androgen excess‐induced mitochondrial dysfunction contributes to skeletal muscle IR in dehydroepiandrosterone (DHEA)‐induced PCOS mice. The effect of androgen excess on the skeletal muscle, however, is incompletely characterized. A nontargeted metabolomics approach was thus applied to analyze the metabolites in skeletal muscle of DHEA‐induced PCOS mice. Data from metabolomic analysis revealed the significant changes in 32 metabolites and the marked impact of five metabolic pathways. ATP production was also found to be significantly reduced in skeletal muscle of DHEA mice. Combined with the quantification of type I and II myofibers and lipid measurement in the skeletal muscle of the mice, the results from the present study supported the role of mitochondrial impairment rather than lipid accumulation in the pathogenesis of skeletal muscle IR in DHEA‐induced PCOS mice. In summary, we show here for the first time the profile of the metabolites in the skeletal muscle of DHEA‐induced PCOS mice which exhibit IR. The work would help better understand the pathology of skeletal muscle IR in PCOS.  相似文献   

13.
14.
Nuclear hormone receptors (NR) have been implicated as regulators of lipid and carbohydrate metabolism. The orphan NR4A subgroup has emerged as regulators of metabolic function. Targeted silencing of neuron-derived orphan receptor 1 (Nor-1)/NR4A3 in skeletal muscle cells suggested that this NR was necessary for oxidative metabolism in vitro. To investigate the in vivo role of Nor-1, we have developed a mouse model with preferential expression of activated Nor-1 in skeletal muscle. In skeletal muscle, this resulted in a marked increase in: 1) myoglobin expression, 2) mitochondrial DNA and density, 3) oxidative enzyme staining, and 4) genes/proteins encoding subunits of electron transport chain complexes. This was associated with significantly increased type IIA and IIX myosin heavy chain mRNA and proteins and decreased type IIB myosin heavy chain mRNA and protein. The contractile protein/fiber type remodeling driving the acquisition of the oxidative type II phenotype was associated with 1) the significantly increased expression of myocyte-specific enhancer factor 2C, and phospho-histone deacetylase 5, and 2) predominantly cytoplasmic HDAC5 staining in the Tg-Nor-1 mice. Moreover, the Nor-1 transgenic line displayed significant improvements in glucose tolerance, oxygen consumption, and running endurance (in the absence of increased insulin sensitivity), consistent with increased oxidative capacity of skeletal muscle. We conclude that skeletal muscle fiber type is not only regulated by exercise-sensitive calcineurin-induced signaling cascade but also by NR signaling pathways that operate at the nexus that coordinates muscle performance and metabolic capacity in this major mass tissue.  相似文献   

15.
16.
ASP-deficient mice (C3 KO) have delayed postprandial TG clearance, are hyperphagic, and display increased energy expenditure. Markers of carbohydrate and fatty acid metabolism in the skeletal muscle and heart were examined to evaluate the mechanism. On a high-fat diet, compared with wild-type mice, C3 KO mice have increased energy expenditure, decreased RQ, lower ex vivo glucose oxidation (-39%, P = 0.018), and higher ex vivo fatty acid oxidation (+68%, P = 0.019). They have lower muscle glycogen content (-25%, P < 0.05) and lower activities for the glycolytic enzymes glycogen phosphorylase (-31%, P = 0.005), hexokinase (-43%, P = 0.007), phosphofructokinase (-51%, P < 0.0001), and GAPDH (-15%, P = 0.04). Analysis of mitochondrial enzyme activities revealed that hydroxyacyl-coenzyme A dehydrogenase was higher (+25%, P = 0.004) in C3 KO mice. Furthermore, Western blot analysis of muscle revealed significantly higher fatty acid transporter CD36 (+40%, P = 0.006) and cytochrome c (a marker of mitochondrial content; +69%, P = 0.034) levels in C3 KO mice, whereas the activity of AMP kinase was lower (-48%, P = 0.003). Overall, these results demonstrate a shift in the metabolic potential of skeletal muscle toward increased fatty acid utilization. Whether this is 1) a consequence of decreased adipose tissue storage with repartitioning toward muscle or 2) a direct result of the absence of ASP interaction with the receptor C5L2 in muscle remains to be determined. However, these in vivo data suggest that ASP inhibition could be a potentially viable approach in correcting muscle metabolic dysfunction in obesity.  相似文献   

17.
18.
Multiple mechanisms regulate muscle fiber diversity.   总被引:4,自引:0,他引:4  
P Gunning  E Hardeman 《FASEB journal》1991,5(15):3064-3070
  相似文献   

19.
The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPARalpha and PPARbeta isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPARalpha-/-, PPARbeta-/-, and double PPARalpha-/- beta-/- mice. Heart and soleus muscle analyses show that the deletion of PPARalpha induces a decrease of the HAD activity (beta-oxidation) while soleus contractile phenotype remains unchanged. A PPARbeta deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPARbeta and PPARalpha functions since double gene deletion PPARalpha-PPARbeta mostly reproduces the null PPARalpha-mediated reduced beta-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPARbeta is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPARalpha in PPARalpha null mice.  相似文献   

20.
Apoptosis Inducing Factor (AIF) is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal and cardiomyocyte apoptosis induced by oxidative stress. Conversely in vitro, AIF has been demonstrated to have a pro-apoptotic role upon induction of the mitochondrial death pathway, once AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. Given that the aif hypomorphic harlequin (Hq) mutant mouse model displays severe sarcopenia, we examined skeletal muscle from the aif hypomorphic mice in more detail. Adult AIF-deficient skeletal myofibers display oxidative stress and a severe form of atrophy, associated with a loss of myonuclei and a fast to slow fiber type switch, both in "slow" muscles such as soleus, as well as in "fast" muscles such as extensor digitorum longus, most likely resulting from an increase of MEF2 activity. This fiber type switch was conserved in regenerated soleus and EDL muscles of Hq mice subjected to cardiotoxin injection. In addition, muscle regeneration in soleus and EDL muscles of Hq mice was severely delayed. Freshly cultured myofibers, soleus and EDL muscle sections from Hq mice displayed a decreased satellite cell pool, which could be rescued by pretreating aif hypomorphic mice with the manganese-salen free radical scavenger EUK-8. Satellite cell activation seems to be abnormally long in Hq primary culture compared to controls. However, AIF deficiency did not affect myoblast cell proliferation and differentiation. Thus, AIF protects skeletal muscles against oxidative stress-induced damage probably by protecting satellite cells against oxidative stress and maintaining skeletal muscle stem cell number and activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号