首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The conformational entropy of proteins can make significant contributions to the free energy of ligand binding. NMR spin relaxation enables site-specific investigation of conformational entropy, via order parameters that parameterize local reorientational fluctuations of rank-2 tensors. Here we have probed the conformational entropy of lactose binding to the carbohydrate recognition domain of galectin-3 (Gal3), a protein that plays an important role in cell growth, cell differentiation, cell cycle regulation, and apoptosis, making it a potential target for therapeutic intervention in inflammation and cancer. We used 15N spin relaxation experiments and molecular dynamics simulations to monitor the backbone amides and secondary amines of the tryptophan and arginine side chains in the ligand-free and lactose-bound states of Gal3. Overall, we observe good agreement between the experimental and computed order parameters of the ligand-free and lactose-bound states. Thus, the 15N spin relaxation data indicate that the molecular dynamics simulations provide reliable information on the conformational entropy of the binding process. The molecular dynamics simulations reveal a correlation between the simulated order parameters and residue-specific backbone entropy, re-emphasizing that order parameters provide useful estimates of local conformational entropy. The present results show that the protein backbone exhibits an increase in conformational entropy upon binding lactose, without any accompanying structural changes.  相似文献   

2.
Two species of Propionibacterium were analysed regarding their binding to glycosphingolipids. Bacteria were labeled with 125I and selective interaction with glycolipids on thin-layer chromatograms was revealed by autoradiography. The carbohydrate site in common for active molecular species appeared to be lactose. The two bacteria differed, however, in the overall binding pattern on the chromatogram, probably due to recognition of separate epitopes on lactose. P. freudenreichii bound only to lactosylceramide while P. granulosum also recognized substituted lactosylceramide: Gal alpha 1----3Gal beta 1----4Glc beta Cer, GlcNAc beta 1----3Gal beta 1----4Glc beta Cer and Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4Glc beta Cer were active, but Gal-alpha 1----4Gal beta 1----4Glc beta Cer was inactive. Also, there was an interesting dependence on ceramide structure in the case of lactosylceramide. P. freudenreichii bound to lactosylceramide with sphingosine and non-hydroxy fatty acids but not to species with sphingosine and 2-hydroxy fatty acids, phytosphingosine and non-hydroxy fatty acids or phytosphingosine and 2-hydroxy fatty acids. For P. granulosum the situation was reversed. This may be explained by an influence of ceramide structure on the presentation of the two lactose epitopes at the assay surface. These results were supported by curves from the binding of labeled bacteria to glycolipids coated in microtiter wells and in part by binding to glycolipid-coated chicken erythrocytes.  相似文献   

3.
A hallmark of oligosaccharides is their often limited spatial flexibility, allowing them to access a distinct set of conformers in solution. Viewing each individual or even the complete ensemble of conformations as potential binding partner(s) for lectins in protein–carbohydrate interactions, it is pertinent to address the question on the characteristics of bound state conformation(s) in solution. Also, it is possible that entering the lectin’s binding site distorts the low-energy topology of a glycosidic linkage. As a step to delineate the strategy of ligand selection for galactosides, a common physiological docking point, we have performed a NMR study on two non-homologous lectins showing identical monosaccharide specificity. Thus, the conformation of lactose analogues bound to bovine heart galectin-1 and to mistletoe lectin in solution has been determined by transferred nuclear Overhauser effect measurements. It is demonstrated that the lectins select the syn conformation of lactose and various structural analogues (Galβ(1→4)Xyl, Galβ(1→3)Xyl, Galβ(1→2)Xyl, and Galβ(1→3)Glc) from the ensemble of presented conformations. No evidence for conformational distortion was obtained. Docking of the analogues to the modeled binding sites furnishes explanations, in structural terms, for exclusive recognition of the syn conformer despite the non-homologous design of the binding sites.  相似文献   

4.
Helicobacter pylori, like many other microbes, has the ability to bind to carbohydrate epitopes. Several sugar sequences have been reported as active for the bacterium, including some neutral, sulfated, and sialylated structures. We investigated structural requirements for the sialic acid-dependent binding using a number of natural and chemically modified gangliosides. We have chosen for derivatization studies two kinds of binding-active glycolipids, the simple ganglioside S-3PG (Neu5Ac alpha 3Gal beta 4GlcNAc beta 3Gal beta 4Glc beta 1Cer, sialylparagloboside) and branched polyglycosylceramides (PGCs) of human origin. The modifications included oxidation of the sialic acid glycerol chain, reduction of the carboxyl group, amidation of the carboxyl group, and lactonization. Binding experiments confirmed a preference of H. pylori for 3-linked sialic acid and penultimate 4-linked galactose. As expected, neolacto gangliosides (with Gal beta 4GlcNAc in the core structure) were active in our assays, whereas gangliosides with lacto (Gal beta 3GlcNAc) and ganglio (Gal beta 3GalNAc) carbohydrate chains were not. Negative binding results were also obtained for disialylparagloboside (with terminal NeuAc alpha 8NeuAc) and NeuAc alpha 6-containing glycolipids. Chemical studies revealed dependence of the binding on Neu5Ac and its glycerol and carboxyl side chains. Most of the derivatizations performed on these groups abolished the binding; however, some of the amide forms turned out to be active, and one of them (octadecylamide) was found to be an excellent binder. The combined data from molecular dynamics simulations indicate that the binding-active configuration of the terminal disaccharide of S-3PG is with the sialic acid in the anticlinal conformation, whereas in branched PGCs the same structural element most likely assumes the synclinal presentation.  相似文献   

5.
Galectins are a family of lectins with a conserved carbohydrate recognition domain that interacts with β-galactosides. By binding cell surface glycoconjugates, galectin-1 (gal-1) is involved in cell adhesion and migration processes and is an important regulator of tumor angiogenesis. Here, we used heteronuclear NMR spectroscopy and molecular modeling to investigate lactose binding to gal-1 and to derive solution NMR structures of gal-1 in the lactose-bound and unbound states. Structure analysis shows that the β-strands and loops around the lactose binding site, which are more open and dynamic in the unbound state, fold in around the bound lactose molecule, dampening internal motions at that site and increasing motions elsewhere throughout the protein to contribute entropically to the binding free energy. CD data support the view of an overall more open structure in the lactose-bound state. Analysis of heteronuclear single quantum coherence titration binding data indicates that lactose binds the two carbohydrate recognition domains of the gal-1 dimer with negative cooperativity, in that the first lactose molecule binds more strongly (K1 = 21 ± 6 × 103 M− 1) than the second (K2 = 4 ± 2 × 103 M− 1). Isothermal calorimetry data fit using a sequential binding model present a similar picture, yielding K1 = 20 ± 10 × 103 M− 1 and K2 = 1.67 ± 0.07 × 103 M− 1. Molecular dynamics simulations provide insight into structural dynamics of the half-loaded lactose state and, together with NMR data, suggest that lactose binding at one site transmits a signal through the β-sandwich and loops to the second binding site. Overall, our results provide new insight into gal-1 structure-function relationships and to protein-carbohydrate interactions in general.  相似文献   

6.
Calcium-dependent lectin I from Pseudomonas aeruginosa (PA-IL) binds specifically to oligosaccharides presenting an α-galactose residue at their nonreducing end, such as the disaccharides αGal1–2βGalOMe, αGal1–3βGalOMe, and αGal1–4βGalOMe. This provides a unique model for studying the effect of the glycosidic linkage of the ligands on structure and thermodynamics of the complexes by means of experimental and theoretical tools. The structural features of PA-IL in complex with the three disaccharides were established by docking and molecular dynamics simulations and compared with those observed in available crystal structures, including PA-IL·αGal1–2βGalOMe complex, which was solved at 2.4 Å resolution and reported herein. The role of a structural bridge water molecule in the binding site of PA-IL was also elucidated through molecular dynamics simulations and free energy calculations. This water molecule establishes three very stable hydrogen bonds with O6 of nonreducing galactose, oxygen from Pro-51 main chain, and nitrogen from Gln-53 main chain of the lectin binding site. Binding free energies for PA-IL in complex with the three disaccharides were investigated, and the results were compared with the experimental data determined by titration microcalorimetry. When the bridge water molecule was included in the free energy calculations, the simulations predicted the correct binding affinity trends with the 1–2-linked disaccharide presenting three times stronger affinity ligand than the other two. These results highlight the role of the water molecule in the binding site of PA-IL and indicate that it should be taken into account when designing glycoderivatives active against P. aeruginosa adhesion.  相似文献   

7.
The B-subunits of cholera toxin (CTB) and Escherichia coli heat-labile enterotoxin (LTB) are structurally and functionally related. However, the carbohydrate binding specificities of the two proteins differ. While both CTB and LTB bind to the GM1 ganglioside, LTB also binds to N-acetyllactosamine-terminated glycoconjugates. The structural basis of the differences in carbohydrate recognition has been investigated by a systematic exchange of amino acids between LTB and CTB. Thereby, a CTB/LTB hybrid with a gain-of-function mutation resulting in recognition of blood group A and B determinants was obtained. Glycosphingolipid binding assays showed a specific binding of this hybrid B-subunit, but not CTB or LTB, to slowly migrating non-acid glycosphingolipids of human and animal small intestinal epithelium. A binding-active glycosphingolipid isolated from cat intestinal epithelium was characterized by mass spectrometry and proton NMR as GalNAcalpha3(Fucalpha2)Galbeta4(Fucalpha3)Glc NAcbeta3Galbeta4Glc NAcbeta3Galbeta4Glcbeta1Cer. Comparison with reference glycosphingolipids showed that the minimum binding epitope recognized by the CTB/LTB hybrid was Galalpha3(Fucalpha2)Galbeta4(Fucalpha3)GlcNAc beta. The blood group A and B determinants bind to a novel carbohydrate binding site located at the top of the B-subunit interfaces, distinct from the GM1 binding site, as found by docking and molecular dynamics simulations.  相似文献   

8.
A single water molecule (w135), buried within the structure of rat intestinal fatty acid binding protein (I-FABP), is investigated by NMR, molecular dynamics simulations, and analysis of known crystal structures. An ordered water molecule was found in structurally analogous position in 24 crystal structures of nine different members of the family of fatty acid binding proteins. There is a remarkable conservation of the local structure near the w135 binding site among different proteins from this family. NMR cross-relaxation measurements imply that w135 is present in the I-FABP:ANS (1-sulfonato-8-(1')anilinonaphthalene) complex in solution with the residence time of >300 ps. Mean-square positional fluctuations of w135 oxygen observed in MD simulations (0.18 and 0.13 A2) are comparable in magnitude to fluctuations exhibited by the backbone atoms and result from highly constrained binding pocket as revealed by Voronoi volumes (averages of 27.0 +/- 1.8 A3 and 24.7 +/- 2.2 A3 for the two simulations). Escape of w135 from its binding pocket was observed only in one MD simulation. The escape process was initiated by interactions with external water molecules and was accompanied by large deformations in beta-strands D and E. Immediately before the release, w135 assumed three distinct states that differ in hydrogen bonding topology and persisted for about 15 ps each. Computer simulations suggest that escape of w135 from the I-FABP matrix is primarily determined by conformational fluctuations of the protein backbone and interactions with external water molecules.  相似文献   

9.
The binding of recombinant fragments of the C-terminal cell-binding domains of the two large exotoxins, toxin A (TcdA) and toxin B (TcdB), expressed by Clostridium difficile and a library consisting of the most abundant neutral and acidic human milk oligosaccharides (HMOs) was examined quantitatively at 25°C and pH 7 using the direct electrospray ionization mass spectrometry (ES-MS) assay. The results of the ES-MS measurements indicate that both toxin fragments investigated, TcdB-B1 and TcdA-A2, which possess one and two carbohydrate binding sites, respectively, bind specifically to HMOs ranging in size from tri- to heptasaccharides. Notably, five of the HMOs tested bind to both toxins: Fuc(α1-2)Gal(β1-4)Glc, Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc, Fuc(α1-2)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc, Gal(β1-3)[Fuc(α1-4)]GlcNAc(β1-3)Gal(β1-4)Glc and Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc. However, the binding of the HMOs is uniformly weak, with apparent affinities ≤10(3?)M(-1). The results of molecular docking simulations, taken together with the experimental binding data, suggest that a disaccharide moiety (lactose or lactosamine) represents the core HMO recognition element for both toxin fragments. The results of a Verocytotoxicity neutralization assay reveal that HMOs do not significantly inhibit the cytotoxic effects of TcdA or TcdB. The absence of protection is attributed to the very weak intrinsic affinities that the toxins exhibit towards the HMOs.  相似文献   

10.
Structural analysis of minimally sized lectins will offer insights into fundamentals of intermolecular recognition and potential for biomedical applications. We thus moved significantly beyond the natural limit of lectin size to determine the structure of synthetic mini-lectins in solution, their carbohydrate selectivity and the impact of ligand binding on their conformational behavior. Using three disaccharide (Thomsen-Friedenreich antigen; Gal beta 1,3GalNAc alpha 1,R)-binding pentadecapeptides without internal disulfide bridges as role models, we successfully tested a combined strategy with different techniques of NMR spectroscopy, electrospray ionization mass spectrometry, and molecular modeling. In solution, the peptides invariably displayed flexibility with rather limited restrictions, shown by NMR experiments including nearly complete resonance assignments and molecular dynamics simulations. The occurrence of aromatic/nonpolar amino acids in the sequence did not lead to formation of a hydrophobic core known from microbial chitinase modules. Selectivity of disaccharide binding was independently observed by mass spectrometry and NMR analysis. Specific ligand interaction yielded characteristic NMR signal alterations but failed to reduce conformational flexibility significantly. We have thereby proven effectiveness of our approach to analyze even low-affinity interactions (not restricted to carbohydrates as ligands). It will be useful to evaluate the impact of rational manipulation of lead peptide sequences.  相似文献   

11.
Thomsen-Friedenreich antigen (Galbeta1-3GalNAc), generally known as T-antigen, is expressed in more than 85% of human carcinomas. Therefore, proteins which specifically bind T-antigen have potential diagnostic value. Jacalin, a lectin from jack fruit (Artocarpus integrifolia) seeds, is a tetramer of molecular mass 66kDa. It is one of the very few proteins which are known to bind T-antigen. The crystal structure of the jacalin-T-antigen complex has been determined at 1.62A resolution. The interactions of the disaccharide at the binding site are predominantly through the GalNAc moiety, with Gal interacting only through water molecules. They include a hydrogen bond between the anomeric oxygen of GalNAc and the pi electrons of an aromatic side-chain. Several intermolecular interactions involving the bound carbohydrate contribute to the stability of the crystal structure. The present structure, along with that of the Me-alpha-Gal complex, provides a reasonable qualitative explanation for the known affinities of jacalin to different carbohydrate ligands and a plausible model of the binding of the lectin to T-antigen O-linked to seryl or threonyl residues. Including the present one, the structures of five lectin-T-antigen complexes are available. GalNAc occupies the primary binding site in three of them, while Gal occupies the site in two. The choice appears to be related to the ability of the lectin to bind sialylated sugars. In either case, most of the lectin-disaccharide interactions are at the primary binding site. The conformation of T-antigen in the five complexes is nearly the same.  相似文献   

12.
This review summarizes selected studies on galectin-3 (Gal3) as an example of the dynamic behavior of a carbohydrate-binding protein in the cytoplasm and nucleus of cells. Within the 15-member galectin family of proteins, Gal3 (Mr ∼ 30,000) is the sole representative of the chimera subclass in which a proline- and glycine-rich NH2-terminal domain is fused onto a COOH-terminal carbohydrate recognition domain responsible for binding galactose-containing glycoconjugates. The protein shuttles between the cytoplasm and nucleus on the basis of targeting signals that are recognized by importin(s) for nuclear localization and exportin-1 (CRM1) for nuclear export. Depending on the cell type, specific experimental conditions in vitro, or tissue location, Gal3 has been reported to be exclusively cytoplasmic, predominantly nuclear, or distributed between the two compartments. The nuclear versus cytoplasmic distribution of the protein must reflect, then, some balance between nuclear import and export, as well as mechanisms of cytoplasmic anchorage or binding to a nuclear component. Indeed, a number of ligands have been reported for Gal3 in the cytoplasm and in the nucleus. Most of the ligands appear to bind Gal3, however, through protein–protein interactions rather than through protein–carbohydrate recognition. In the cytoplasm, for example, Gal3 interacts with the apoptosis repressor Bcl-2 and this interaction may be involved in Gal3's anti-apoptotic activity. In the nucleus, Gal3 is a required pre-mRNA splicing factor; the protein is incorporated into spliceosomes via its association with the U1 small nuclear ribonucleoprotein (snRNP) complex. Although the majority of these interactions occur via the carbohydrate recognition domain of Gal3 and saccharide ligands such as lactose can perturb some of these interactions, the significance of the protein's carbohydrate-binding activity, per se, remains a challenge for future investigations.  相似文献   

13.
Human Galectin-8 (Gal-8) is a member of the galectin family which shares an affinity for β-galactosides. The tandem-repeat Gal-8 consists of a N- and a C-terminal carbohydrate recognition domain (N- and C-CRD) joined by a linker peptide of various length. Despite their structural similarity both CRDs recognize different oligosaccharides. While the molecular requirements of the N-CRD for high binding affinity to sulfated and sialylated glycans have recently been elucidated by crystallographic studies of complexes with several oligosaccharides, the binding specificities of the C-CRD for a different set of oligosaccharides, as derived from experimental data, has only been explained in terms of the three-dimensional structure for the complex C-CRD with lactose. In this study we performed molecular dynamics (MD) simulations using the recently released crystal structure of the Gal-8C-CRD to analyse the three-dimensional conditions for its specific binding to a variety of oligosaccharides as previously defined by glycan-microarray analysis. The terminal β-galactose of disaccharides (LacNAc, lacto-N-biose and lactose) and the internal β-galactose moiety of blood group antigens A and B (BGA, BGB) as well as of longer linear oligosaccharide chains (di-LacNAc and lacto-N-neotetraose) are interacting favorably with conserved amino acids (H53, R57, N66, W73, E76). Lacto-N-neotetraose and di-LacNAc as well as BGA and BGB are well accommodated. BGA and BGB showed higher affinity than LacNAc and lactose due to generally stronger hydrogen bond interactions and water mediated hydrogen bonds with α1-2 fucose respectively. Our results derived from molecular dynamics simulations are able to explain the glycan binding specificities of the Gal-8C-CRD in comparison to those of the Gal-8N -CRD.  相似文献   

14.
MUC1 is a membrane glycoprotein, which in adenocarninomas is overexpressed and exhibits truncated O‐glycosylation. Overexpression and altered glycosylation make MUC1 into a candidate for immunotherapy. Monoclonal antibodies directed against MUC1 frequently bind an immunodominant epitope that contains a single site for O‐glycosylation. Glycosylation with tumor carbohydrate antigens such as the Tn‐antigen (GalNAc‐O‐Ser/Thr) results in antibodies binding with higher affinity. One proposed model to explain the enhanced affinity of antibodies for the glycosylated antigen is that the addition of a carbohydrate alters the conformational properties, favoring a binding‐competent state. The conformational effects associated with Tn glycosylation of the MUC1 antigen was investigated using solution‐state NMR and molecular dynamics. NMR experiments revealed distinct substructures of the glycosylated MUC1 peptides compared with the unglycosylated peptide. Molecular dynamics simulations of the MUC1 glycopeptide and peptide revealed distinguishing differences in their conformational preferences. Furthermore, the glycopeptide displayed a smaller conformational sampling compared with the peptide, suggesting that the glycopeptide sampled a narrower conformational space and is less dynamic. A comparison of the computed ensemble of conformations assuming random distribution, NMR models, and molecular dynamics simulations indicated that the MUC1 glycopeptide and aglycosylated peptide sampled structurally distinctly ensembles and that these ensembles were different from that of the random coil. Together, these data support the hypothesis that that conformational pre‐selection could be an essential feature of these peptides that dictates the binding affinities to MUC1 specific antibodies.  相似文献   

15.
Protein conformational dynamics can be critical for ligand binding in two ways that relate to kinetics and thermodynamics respectively. First, conformational transitions between different substates can control access to the binding site (kinetics). Secondly, differences between free and ligand-bound states in their conformational fluctuations contribute to the entropy of ligand binding (thermodynamics). In the present paper, I focus on the second topic, summarizing our recent results on the role of conformational entropy in ligand binding to Gal3C (the carbohydrate-recognition domain of galectin-3). NMR relaxation experiments provide a unique probe of conformational entropy by characterizing bond-vector fluctuations at atomic resolution. By monitoring differences between the free and ligand-bound states in their backbone and side chain order parameters, we have estimated the contributions from conformational entropy to the free energy of binding. Overall, the conformational entropy of Gal3C increases upon ligand binding, thereby contributing favourably to the binding affinity. Comparisons with the results from isothermal titration calorimetry indicate that the conformational entropy is comparable in magnitude to the enthalpy of binding. Furthermore, there are significant differences in the dynamic response to binding of different ligands, despite the fact that the protein structure is virtually identical in the different protein-ligand complexes. Thus both affinity and specificity of ligand binding to Gal3C appear to depend in part on subtle differences in the conformational fluctuations that reflect the complex interplay between structure, dynamics and ligand interactions.  相似文献   

16.
Ideo H  Seko A  Ishizuka I  Yamashita K 《Glycobiology》2003,13(10):713-723
Galectin-8 is a member of the galectin family and has two tandem repeated carbohydrate recognition domains (CRDs). We determined the binding specificities of galectin-8 and its two CRDs for oligosaccharides and glycosphingolipids using ELISA and surface plasmon resonance assays. Galectin-8 had much higher affinity for 3'-O-sulfated or 3'-O-sialylated lactose and a Lewis x-containing glycan than for oligosaccharides terminating in Galbeta1-->3/4GlcNAc. This specificity was mainly attributed to the N-terminal CRD (N-domain), whereas the C-terminal CRD (C-domain) had only weak affinity for a blood group A glycan. The N-domain bound not only to oligosaccharides but also to glycosphingolipids including sulfatide (SM4 s), SM3, sialyl Lc4Cer, SB1a, GD1a, GM3, and sialyl nLc4Cer, suggesting that the N-domain recognizes a 3-O-sulfated or 3-O-sialylated Gal residue. The substitution of the C-3 of the Gal residue in lactose or N-acetyllactosamine with sulfate increased the degree of recognition by galectin-8 more potently than substitution with sialic acid. This is the first demonstration that galectin-8 binds to specific sulfated or sialylated glycosphingolipids with high affinity (KD approximately 10-8-10-9 M). When the Gln47 residue of the N-domain was converted to Ala47, the specific affinity for sulfated or sialylated glycans was selectively lost, indicating that this Gln47 plays important roles for binding to Neu5Acalpha2-->3Gal or SO3--->3Gal residues. The binding ability of galectin-8 to membrane-associated GM3 was confirmed using CHO cells, which predominantly express GM3. Binding of CHO cells to the mutein was significantly lower than to the N-domain.  相似文献   

17.
By definition, adhesion/growth-regulatory galectins are known for their ability to bind β-galactosides such as Galβ(1 → 4)Glc (lactose). Indications for affinity of human galectin-1 to α-linked digalactosides pose questions on the interaction profile with such bound ligands and selection of the galactose moiety for CH-π stacking. These issues are resolved by a combination of (15)N-(1)H heteronuclear single quantum coherence (HSQC) chemical shift and saturation transfer difference nuclear magnetic resonance (STD NMR) epitope mappings with docking analysis, using the α(1 → 3/4)-linked digalactosides and also Galα(1 → 6)Glc (melibiose) as test compounds. The experimental part revealed interaction with the canonical lectin site, and this preferentially via the non-reducing-end galactose moiety. Low-energy conformers appear to be selected without notable distortion, as shown by molecular dynamics simulations. With the α(1 → 4) disaccharide, however, the typical CH-π interaction is significantly diminished, yet binding appears to be partially compensated for by hydrogen bonding. Overall, these findings reveal that the type of α-linkage in digalactosides has an impact on maintaining CH-π interactions and the pattern of hydrogen bonding, explaining preference for the α(1 → 3) linkage. Thus, this lectin is able to accommodate both α- and β-linked galactosides at the same site, with major contacts to the non-reducing-end sugar unit.  相似文献   

18.
A structural comparison between the synthetic, tumor-associated 19-9 tetrasaccharide, NeuAc alpha 2----3Gal beta 1----3GlcNAc(4----1 alpha Fuc)-O(CH2)8CO2CH3 and its Lea blood group antigen component, Gal beta 1----3GlcNAc(4----1 alpha Fuc)-O(CH2)8CO2CH3 was carried out by two-dimensional 1H NMR spectroscopy and hard-sphere energy calculations. Significant chemical shift differences between the two molecules were detected only for protons at or near the linkage site of NeuAc to the Lea trisaccharide core. Coupling constants for the ring protons of both molecules did not suggest major deviation from the 4C1 chair conformation for Gal and GlcNAc, the 1C4 conformation for Fuc, or the 2C5 conformation for NeuAc. Two-dimensional nuclear Overhauser enhancement experiments revealed through-space, inter-proton interactions that corresponded to some extent with those predicted by diffraction data and hard-sphere energy minimization programs for both saccharides. However, a significant number of interactions did not obey the distance dependence predicted from a rigid structure model. These data suggest that, while the average conformation of the 19-9 antigen's Lea core may be invariant to NeuAc alpha 2----3Gal linkage, the dynamics of the Lea trisaccharide are altered upon sialylation. Data also indicate that the terminal NeuAc linkage is more flexible than the inter-residue bonds of the core trisacharide. This analysis, in combination with the fact that the monoclonal anti-19-9 antibody CO 19-9 does not cross-react with the Lea antigen, provides evidence in favor of NeuAc as an epitope-creating unit involved directly at the antibody binding site. However, given the possible role of variable dynamics in epitope formation, these results do not preclude crucial roles in antibody recognition for regions on the 19-9 antigen that are distanced from NeuAc.  相似文献   

19.
The opportunistic pathogen Pseudomonas aeruginosa contains several carbohydrate-binding proteins, among which is the P. aeruginosa lectin I (PA-IL), which displays affinity for alpha-galactosylated glycans. Glycan arrays were screened and demonstrated stronger binding of PA-IL toward alphaGal1-4betaGal-terminating structures and weaker binding to alphaGal1-3betaGal ones in order to determine which human glycoconjugates could play a role in the carbohydrate-mediated adhesion of the bacteria. This was confirmed in vivo by testing the binding of the lectin to Burkitt lymphoma cells that present large amounts of globotriaosylceramide antigen Gb3/CD77/P(k). Trisaccharide moieties of Gb3 (alphaGal1-4betaGal1-4Glc) and isoglobotriaosylceramide (alphaGal1-3betaGal1-4Glc) were tested by titration microcalorimetry, and both displayed similar affinity to PA-IL in solution. The crystal structure of PA-IL complexed to alphaGal1-3betaGal1-4Glc trisaccharide has been solved at 1.9-A resolution and revealed how the second galactose residue makes specific contacts with the protein surface. Molecular modeling studies were performed in order to compare the binding mode of PA-IL toward alphaGal1-3Gal with that toward alphaGal1-4Gal. Docking studies demonstrated that alphaGal1-4Gal creates another network of contacts for achieving a very similar affinity, and 10-ns molecular dynamics in explicit water allowed for analyzing the flexibility of each disaccharide ligand in the protein binding site. The higher affinity observed for binding to Gb3 epitope, both in vivo and on glycan array, is likely related to the presentation effect of the oligosaccharide on a surface, since only the Gb3 glycosphingolipid geometry is fully compatible with parallel insertion of neighboring trisaccharide heads in two binding sites of the same tetramer of PA-IL.  相似文献   

20.
The molecular packing of amorphous maltodextrin-glycerol matrices is systematically explored by combining positron annihilation lifetime spectroscopy (PALS) with thermodynamic measurements and dilatometry. Maltodextrin-glycerol matrices are equilibrated at a range of water activities between 0 and 0.54 at T = 25 °C to analyze the effect of both water and glycerol on the average molecular hole size and the specific volume of the matrices. In the glassy state, glycerol results in a systematic reduction of the average molecular hole size. In contrast, water interacts with the carbohydrate matrix in a complex way. Thermodynamic clustering theory shows that, at very low water contents the water molecules are well dispersed and are closely associated with the carbohydrate chains. In this regime water acts as an antiplasticizer, whereby it reduces the size of the molecular holes. Conversely, at higher water contents, while still in the glassy state, water acts as a plasticizer by increasing the average hole volume of the carbohydrate matrices. This plasticization-dominated mechanism is likely to be due to the interplay between the ability of water to form hydrogen bonds with the hydroxyl residues on the carbohydrate chains and its mobility, which is significantly decoupled from the bulk mobility of the matrix. Our findings are of key importance for the understanding of the effect of glycerol on the biostabilization performance of these carbohydrate matrices, as it provides a first insight on how molecular packing can relate to the dynamics in such matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号