首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Non-alcoholic fatty liver disease (NAFLD), which includes the subtype non-alcoholic steatohepatitis (NASH), is a major complication of type 2 diabetic mellitus (T2DM), even among non-obese patients. However, the exact cause of NAFLD/NASH in non-obese patients with T2DM is unclear. We studied a non-obese mouse model of T2DM created through the malnourishment of embryos by culture in vitro for 48 h in α-minimum essential medium (MEM) at the two-cell stage. We compared the development of steatohepatitis in these MEM mice with control mice that were similarly cultured in standard potassium simplex-optimized medium (KSOM). We also studied the effects of 10 weeks of consumption of barley, which contains large amounts of the soluble fiber β-glucan, on the steatohepatitis of the adult MEM mice. The size of lipid droplets, the area of fibrosis, and the mRNA expression of the transforming growth factor beta (Tgfb) gene in the liver were higher in adult MEM mice fed a rice-based diet than in KSOM mice fed the same diet. However, barley consumption reduced the area of fibrosis and TGFB expression in MEM mice. In conclusion, adult mice that are cultured in MEM at the two-cell embryo stage develop steatohepatitis and T2DM, accompanied by higher hepatic TGFB expression, than KSOM controls. Furthermore, the consumption of barley during adulthood ameliorates the steatohepatitis and reduces the TGFB expression.  相似文献   

2.
AimsEicosapentaenoic acid (EPA) can ameliorate certain liver lesions involved in non-alcoholic steatohepatitis (NASH). A previous study has found that stroke-prone spontaneously hypertensive 5/Dmcr (SHRSP5/Dmcr) rats fed a high fat-cholesterol (HFC) diet developed fibrotic steatohepatitis with histological similarities to NASH. This study evaluated the potential effects and mechanisms of action of EPA supplementation using this rodent model.Main methodsMale rats were randomly assigned to groups that were fed with either the stroke-prone (SP) diet or HFC diet with or without EPA for 2, 8 and 14 weeks, respectively. The liver histopathology, biochemical features, mRNA and protein levels, and nuclear factor-κB (NF-κB) DNA binding activity were determined.Key findingsThe SP diet-fed rats presented normal livers. Conversely, the HFC diet-fed rats developed microvesicular/macrovesicular steatosis, inflammation, ballooning degeneration and severe fibrosis. At 2 weeks, the administration of EPA inhibited hepatic inflammatory recruitment by blocking the phosphorylation of inhibitor of κB-α (IκBα), which antagonizes the NF-κB activation pathway. The dietary supplementation of EPA for 8 weeks ameliorated hepatic triglyceride accumulation and macrovesicular steatosis by inhibiting the HFC diet-induced decrease in the protein levels of enzymes involved in fatty acid β-oxidation including carnitine palmitoyltransferase 1, very long chain acyl-CoA dehydrogenase and peroxisomal bifunctional protein. Although the administration of EPA elicited no histologically detectable effects on severe fibrosis at 14 weeks, it restored an HFC diet-induced decline in hepatic adenosine triphosphate (ATP) levels and suppressed ballooning degeneration, suggesting that EPA may inhibit HFC diet-induced ATP loss and cell death.SignificanceInitial amelioration of the inflammation and steatosis in the rats after EPA supplementation indicates a possibility to treat steatohepatitis. Additionally, this study provides new insights into the roles of EPA in hepatic ATP depletion and subsequent hepatocellular injury during severe fibrosis.  相似文献   

3.
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing globally. NAFLD includes non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). NASH is the pathological form of the disease characterized by liver steatosis, inflammation, cell injury, and fibrosis. A fundamental contributor to NASH is the imbalance between lipid accretion and disposal. The accumulation of liver lipids precipitates lipotoxicity and the inflammatory contributions to disease progression. This review defines the role of dysregulated of lipid disposal in NAFLD pathophysiology. The characteristic changes in mitochondrial oxidative metabolism pathways and the factors promoting these changes across the spectrum of NAFLD severity are detailed. This includes pathway-specific and integrative perturbations in mitochondrial β-oxidation, citric acid cycle flux, oxidative phosphorylation, and ketogenesis. Moreover, well-recognized and emerging mechanisms through which dysregulated mitochondrial oxidative metabolism mediates inflammation, fibrosis, and disease progression are highlighted.  相似文献   

4.
α1 Nicotinic acetylcholine receptor (α1nAChR) is an important nicotine receptor that is widely distributed in vascular smooth muscle cells, macrophages, and endothelial cells. However, the role of α1nAChR in nicotine-mediated atherosclerosis remains unclear. The administration of nicotine for 12 weeks increased the area of the atherosclerotic lesion, the number of macrophages infiltrating the plaques, and the circulating levels of inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α, in apolipoprotein E-deficient (ApoE−/−) mice fed a high-fat diet. Nicotine also increased α1nAChR, calpain-1, matrix metalloproteinase-2 (MMP-2), and MMP-9 expression in the aortic tissue. Silencing of α1nAChR with an adenoassociated virus decreased the atherosclerotic size, lesion macrophage content, and circulating levels of inflammatory cytokines and suppressed α1nAChR, calpain-1, MMP-2, and MMP-9 expression in the nicotine group. In vitro, nicotine-induced α1nAChR, calpain-1, MMP-2, and MMP-9 expression in mouse vascular smooth muscle cells (MOVAS) and macrophages (RAW264.7), and enhanced the migration and proliferation of these cells. The silencing of α1nAChR inhibited these effects of nicotine MOVAS and RAW264.7 cells. Thus, we concluded that nicotine promoted the development of atherosclerosis partially by inducing the migration and proliferation of vascular smooth muscle cells and macrophages and inducing an inflammatory reaction. The effect of nicotine on atherogenesis may be mediated by α1nAChR-induced activation of the calpain-1/MMP-2/MMP-9 signaling pathway.  相似文献   

5.
Genome-wide studies have strongly associated a non-synonymous polymorphism (rs16969968) that changes the 398th amino acid in the nAChR α5 subunit from aspartic acid to asparagine (D398N), with greater risk for increased nicotine consumption. We have used a pentameric concatemer approach to express defined and consistent populations of α3β4α5 nAChR in Xenopus oocytes. α5(Asn-398; risk) variant incorporation reduces ACh-evoked function compared with inclusion of the common α5(Asp-398) variant without altering agonist or antagonist potencies. Unlinked α3, β4, and α5 subunits assemble to form a uniform nAChR population with pharmacological properties matching those of concatemeric α3β4* nAChRs. α5 subunit incorporation reduces α3β4* nAChR function after coinjection with unlinked α3 and β4 subunits but increases that of α3β4α5 versus α3β4-only concatemers. α5 subunit incorporation into α3β4* nAChR also alters the relative efficacies of competitive agonists and changes the potency of the non-competitive antagonist mecamylamine. Additional observations indicated that in the absence of α5 subunits, free α3 and β4 subunits form at least two further subtypes. The pharmacological profiles of these free subunit α3β4-only subtypes are dissimilar both to each other and to those of α3β4α5 nAChR. The α5 variant-induced change in α3β4α5 nAChR function may underlie some of the phenotypic changes associated with this polymorphism.  相似文献   

6.
7.

Background

Non-alcoholic steatohepatitis (NASH) is a subset of non-alcoholic fatty liver disease, the most common chronic liver disease in the U.S. Fibrosis, a common feature of NASH, results from the dysregulation of fibrogenesis in hepatic stellate cells (HSCs). In this study, we investigated whether astaxanthin (ASTX), a xanthophyll carotenoid, can inhibit fibrogenic effects of transforming growth factor β1 (TGFβ1), a key fibrogenic cytokine, in HSCs.

Methods

Reactive oxygen species (ROS) accumulation was measured in LX-2, an immortalized human HSC cell line. Quantitative realtime PCR, Western blot, immunocytochemical analysis, and in-cell Western blot were performed to determine mRNA and protein of fibrogenic genes, and the activation of Smad3 in TGFβ1-activated LX-2 cells and primary mouse HSCs.

Results

In LX-2 cells, ROS accumulation induced by tert-butyl hydrogen peroxide and TGFβ1 was abolished by ASTX. ASTX significantly decreased TGFβ1-induced α-smooth muscle actin (α-SMA) and procollagen type 1, alpha 1 (Col1A1) mRNA as well as α-SMA protein levels. Knockdown of Smad3 showed the significant role of Smad3 in the expression of α-SMA and Col1A1, but not TGFβ1, in LX-2 cells. ASTX attenuated TGFβ1-induced Smad3 phosphorylation and nuclear translocation with a concomitant inhibition of Smad3, Smad7, TGFβ receptor I (TβRI), and TβRII expression. The inhibitory effect of ASTX on HSC activation was confirmed in primary mouse HSCs as evidenced by decreased mRNA and protein levels of α-SMA during activation.

Conclusion

Taken together, ASTX exerted anti-fibrogenic effects by blocking TGFβ1-signaling, consequently inhibiting the activation of Smad3 pathway in HSCs.

General significance

This study suggests that ASTX may be used as a preventive/therapeutic agent to prevent hepatic fibrosis.  相似文献   

8.
We have earlier reported that Aβ were significantly reduced in brains of smoking Alzheimer patients and control subjects compared with non-smokers, as well as in nicotine treated APPsw transgenic mice. To examine the mechanisms by which nicotine modulates APP processing we here measured levels of secreted amyloid precursor protein (sAPPα), total sAPP, Aβ40 and Aβ42 in different cell lines expressing different nicotinic receptor (nAChR) subtypes or no nAChRs. Treatment with nicotine increased release of sAPPα and at the same time lowered Aβ levels in both SH-SY5Y and SH-SY5Y/APPsw cells expressing α3 and α7 nAChR subtypes. These effects could also be evoked by co-treatment with the competitive α7 nAChR antagonists α-bungarotoxin and methyllycaconitine (MLA), and by these antagonists alone, suggesting that binding to the agonist binding site, rather than activation of the receptor, may be sufficient to trigger changes in APP processing. The nicotine-induced increase in sAPPα could only be blocked by co-treatment with the open channel blocker mecamylamine. In addition to nicotine, the agonists epibatidine and cytisine both significantly increased the release of sAPP in M10 cells expressing the α4/β2 nAChR subtype, and this effect was blocked by co-treatment with mecamylamine but not by the α4/β2 competitive antagonist dihydro-β-erythroidine. The lack of effect of nicotine on sAPPα and Aβ levels in HEK 293/APPsw cells, which do not express any nAChRs, demonstrates that the nicotine-induced attenuation of β-amyloidosis is mediated by nAChRs and not by a direct effect of nicotine. Our data show that nicotinic compounds stimulate the non-amyloidogenic pathway and that α4 and α7 nAChRs play a major role in modulating this process. Nicotinic drugs directed towards specific nAChR subtypes might therefore be beneficial for the treatment of AD not only by lowering Aβ production but also by enhance release of neuroprotective sAPPα.  相似文献   

9.
BackgroundThe transition from steatosis to non-alcoholic steatohepatitis (NASH) is a key issue in non-alcoholic fatty liver disease (NAFLD). Observations in patients with obstructive sleep apnea syndrome (OSAS) suggest that hypoxia contributes to progression to NASH and liver fibrosis, and the release of extracellular vesicles (EVs) by injured hepatocytes has been implicated in NAFLD progression.AimTo evaluate the effects of hypoxia on hepatic pro-fibrotic response and EV release in experimental NAFLD and to assess cellular crosstalk between hepatocytes and human hepatic stellate cells (LX-2).MethodsHepG2 cells were treated with fatty acids and subjected to chemically induced hypoxia using the hypoxia-inducible factor 1 alpha (HIF-1α) stabilizer cobalt chloride (CoCl2). Lipid droplets, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic-associated genes were assessed. EVs were isolated by ultracentrifugation. LX-2 cells were treated with EVs from hepatocytes. The CDAA-fed mouse model was used to assess the effects of intermittent hypoxia (IH) in experimental NASH.ResultsChemical hypoxia increased steatosis, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic gene expressions in fat-laden HepG2 cells. Chemical hypoxia also increased the release of EVs from HepG2 cells. Treatment of LX2 cells with EVs from fat-laden HepG2 cells undergoing chemical hypoxia increased expression pro-fibrotic markers. CDAA-fed animals exposed to IH exhibited increased portal inflammation and fibrosis that correlated with an increase in circulating EVs.ConclusionChemical hypoxia promotes hepatocellular damage and pro-inflammatory and pro-fibrotic signaling in steatotic hepatocytes both in vitro and in vivo. EVs from fat-laden hepatocytes undergoing chemical hypoxia evoke pro-fibrotic responses in LX-2 cells.  相似文献   

10.
Min AK  Kim MK  Kim HS  Seo HY  Lee KU  Kim JG  Park KG  Lee IK 《Life sciences》2012,90(5-6):200-205
AimsNon-alcoholic steatohepatitis (NASH) is a liver disease that causes fat accumulation, inflammation and fibrosis. Increased oxidative stress contributes to hepatic inflammation and fibrosis by upregulation of Cytochrome P450 2E1 (CYP2E1), endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) activity. This study examined whether alpha-lipoic acid (ALA), a naturally occurring thiol antioxidant, prevents steatohepatitis through the inhibition of several pathways involved in hepatic inflammation and fibrosis.Main MethodsC57BL/6 mice were fed an MCD diet with or without ALA for 4 weeks. Liver sections from mice on control or MCD diets with or without ALA were stained with hematoxylin-eosin, oil red O, and anti-4-HNE antibody. The effects of ALA on methionine-choline deficient MCD-diet induced plasma AST and ALT as well as tissue TBARS were measured. The effects of ALA on CYP2E1 expression, ER stress, MAPK levels, and NF-κB activity in MCD diet-fed mice liver were measured by northern and western blot analysis.Key findingsDietary supplementation with ALA reduced MCD diet-induced hepatic lipid accumulation, hepatic inflammation, TBARS, 4-HNE, and plasma ALT and AST levels. These effects were associated with a reduced expression of CYP2E1 and reduced ER stress and MAPK and NF-κB activity.SignificanceTaken together, the results of the present study indicate that ALA attenuates steatohepatitis through inhibition of several pathways, and provide the possibility that ALA can be used to prevent the development and progression of non-alcoholic fatty liver disease in patients who have strong risk factors for NASH.  相似文献   

11.
Age‐related changes in the mammalian dorsal hippocampus are associated with diminished expression of neuronal nicotinic acetylcholine receptors (nAChR), which is particularly severe in pathologies such as those associated with dementias, including Alzheimer's disease. Because the mouse is a useful model for age‐related decline in nAChR expression in the basal forebrain and limbic system, we used immunohistochemistry to examine the influence of long‐term (12‐month) oral administration of nicotine and/or the cyclooxygenase‐2 (COX‐2) preferring non‐steroidal anti‐inflammatory drug (NSAID) NS398 on nAChRα4, α5, α7, and β4 expression in the C57BL/6 mouse. Inhibitory neurons of the dorsal hippocampus that express nAChRs also constitutively express COX‐2 and the peroxisome proliferator‐antagonist receptor subtype gamma‐2 (PPARγ2) which is also a target of NS398. Administration of NS398 correlated with retention of nAChRα4 and to a lesser extent nAChRβ4, but not nAChRα5 or α7, but nicotine exhibited no similar effect. Nicotine and NS398 co‐administration abolished the NS398‐related effect on nAChRα4 retention. These results provide evidence that the interaction during aging between oral administration of nicotine and NSAIDs are not straightforward and could even be antagonistic when combined. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

12.
13.
Nicotine dependence is linked to single nucleotide polymorphisms in the CHRNB4-CHRNA3-CHRNA5 gene cluster encoding the α3β4α5 nicotinic acetylcholine receptor (nAChR). Here we show that the β4 subunit is rate limiting for receptor activity, and that current increase by β4 is maximally competed by one of the most frequent variants associated with tobacco usage (D398N in α5). We identify a β4-specific residue (S435), mapping to the intracellular vestibule of the α3β4α5 receptor in close proximity to α5 D398N, that is essential for its ability to increase currents. Transgenic mice with targeted overexpression of Chrnb4 to endogenous sites display a strong aversion to nicotine that can be reversed by viral-mediated expression of the α5 D398N variant in the?medial habenula (MHb). Thus, this study both provides insights into α3β4α5 receptor-mediated mechanisms contributing to nicotine consumption, and identifies the MHb as a critical element in the circuitry controlling nicotine-dependent phenotypes.  相似文献   

14.
Prazosin an α1-adrenoceptor (AR) antagonist has been shown to reduce liver injury in a mouse model of non-alcoholic steatohepatitis (NASH) and is suggested as a potential treatment of NASH especially given its concomitant anti-fibrotic properties. The effect however, of β-AR blockade in non-cirrhotic NASH is unknown and is as such investigated here. In the presence of the β-blocker propranolol (PRL), mice fed normal chow or a half methionine and choline deficient diet, supplemented with ethionine (HMCDE), to induce NASH, showed significantly enhanced liver injury, as evidenced by higher hepatic necrosis scores and elevated serum aminotransferases (ALT). Mechanistically, we showed that murine hepatocytes express α and β adrenoceptors; that PRL directly induces hepatocyte injury and death as evidenced by increased release of lactate dehydrogenase, FASL and TNF-α from hepatocytes in the presence of PRL; and that PRL activated the apoptotic pathway in primary hepatocyte cultures, as indicated by upregulation of Fas receptor and caspase-8 proteins. The β-AR antagonist PRL therefore appears to enhance liver injury through induction of hepatocyte death via the death pathway. Further studies are now required to extrapolate these findings to humans but meanwhile, β-AR antagonists should be avoided or used with caution in patients with non-cirrhotic NASH as they may worsen liver injury.  相似文献   

15.
BackgroundThe mechanisms underlying the progression of liver disease from simple hepatic steatosis to advanced nonalcoholic steatohepatitis (NASH) and liver fibrosis warrant further investigation. Increased mRNA levels of Annexin A2 protein (Anxa2) have been observed in patients with NASH. However, the role of Anxa2 in NASH remains unclear.MethodsThe protein levels of Anxa2 were analyzed in the livers of mice and patients with NASH. Anxa2-knockout and -knockdown mice were generated, and NASH was induced through a high fructose, palmitate, and cholesterol (FPC) diet or methionine- and choline-deficient (MCD) diet.FindingsWe found elevated expression of Anxa2 in the livers of patients and mice with NASH. Anxa2 knockdown but not knockout ameliorated liver fibrosis in both FPC and MCD diet–fed mice. Liver-specific Anxa2 overexpression increased collagen deposition in mice fed a normal diet. Mechanistically, Anxa2 overexpression in hepatocytes promoted hepatic stellate cell activation in a paracrine manner by increasing osteopontin expression. Notch inhibition suppressed the exogenous overexpression of Anxa2-induced osteopontin and endogenous Anxa2 expression. Additionally, Anxa2 overexpression accelerated the progression of nonalcoholic fatty liver disease (NAFLD) in mice fed a high-fat diet. Moreover, Anxa2 levels were higher in NAFLD patients with advanced liver fibrosis than in those with mild liver fibrosis, as determined using the Gene Expression Omnibus database.InterpretationIn conclusion, we found increased Anxa2 expression in hepatocytes promoted liver fibrosis in NASH mice by increasing osteopontin expression. The Anxa2-Notch positive regulatory loop contributes to this process and represents a novel target for the treatment of NASH-related liver fibrosis.  相似文献   

16.
Background & aimsNon-alcoholic fatty liver disease (NAFLD) has emerged as a major liver disease increasingly in association with non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma (HCC). However, there are currently no approved therapies for treating NAFLD and NASH. Fibroblast growth factor 4 (FGF4) has recently been shown as a promising drug candidate for several metabolic diseases.MethodsMice fed a high-fat diet with high fructose/glucose drinking water (HF/HFG, Western-like diet) for 21 weeks were intraperitoneally injected with non-mitogenic recombinant FGF4△NT (rFGF4△NT, 1.0 mg/kg body weight) every other day for 8 weeks. Primary mouse hepatocytes cultured in medium containing high glucose/palmitic acid (HG/PA) or TNFα/cyclohexane (TNFα/CHX) were treated with 1.0 μg/ml rFGF4△NT. Changes in parameters for histopathology, lipid metabolism, inflammation, hepatocellular apoptosis and fibrosis were determined. The Caspase6 activity and AMPK pathway were assessed.ResultsAdministration of rFGF4△NT significantly attenuated the Western-like diet-induced hepatic steatosis, inflammation, liver injury and fibrosis in mice. rFGF4△NT treatment reduced fatty acid-induced lipid accumulation and lipotoxicity-induced hepatocyte apoptosis, which were associated with inhibition of Caspase6 cleavage and activation. Inhibition of AMP-activated protein kinase (AMPK) by Compound C or deficiency of Ampk abrogated rFGF4△NT–induced hepatoprotection in primary hepatocytes and in mice with NASH.ConclusionrFGF4△NT exerts significant protective effects on NASH via an AMPK-dependent signaling pathway. Our study indicates that FGF4 analogs may have therapeutic potential for the Western-like diet induced NASH.  相似文献   

17.
ABSTRACT

Bilberry has been reported to have anti-oxidant and anti-inflammatory properties. We studied the effect of bilberry (Vaccinium myrtillus L.) fruits extracts (BEs) on the pathogenesis caused by lipid accumulation in fatty liver and non-alcoholic steatohepatitis (NASH). 5 μg/ml of BEs was enough to suppress lipid accumulation in the fatty liver model of the mouse hepatic AML12 cells. BEs increased cell viability and anti-oxidant capacity, presumably by activating (phosphorylating) Akt/STAT3 and inducing MnSOD/catalase. BEs also significantly reduced Rubicon and induced p62/SQSTM1, possibly contributing to reduce cellular lipids (lipophagy). When the mice were fed supplemented with BEs (5% or 10%, w/w), hepatic steatosis, injury, and hypercholesterolemia/hyperglycemia were significantly improved. Furthermore, histological and cytokine studies indicated that BEs possibly suppress hepatic inflammation (hepatitis) and fibrosis. Therefore, BEs improved liver steatosis and injury, and potentially suppress fibrosis by suppressing inflammatory response, which therefore may prevent the progression of fatty liver to NASH.  相似文献   

18.
Purpose: To establish a new scoring system as a noninvasive tool for predicting steatohepatitis and liver fibrosis in patients with nonalcoholic fatty liver disease (NAFLD).

Methods: A total of 170 patients histologically diagnosed with nonalcoholic steatohepatitis (NASH) (n?=?130) or nonalcoholic fatty liver (NAFL) (n?=?40) were enrolled. We analyzed receiver operating characteristic (ROC) curves and performed multivariate analysis to predict steatohepatitis and liver fibrosis.

Results: Multivariate analysis showed that cytokeratin-18 fragment (CK18-F) levels (≥278?U/L) (odds ratio [OR], 4.46; 95% confidence interval [CI], 1.42–14.00; p?=?0.010) and the FIB-4 index (≥1.46) (OR, 4.54; 95% CI, 1.93–29.50; p?=?0.004) were independently associated with prediction of NASH. We then established a new scoring system (named the FIC-22 score) for predicting NASH using CK18-F levels and FIB-4 index. The areas under the ROC curve (AUROCs) of the FIC-22 score and NAFIC score were 0.82 (95% CI, 0.75–0.89) and 0.71 (95% CI, 0.62–0.78) (p?=?0.044). Additionally, the AUROC of the FIC-22 score for predicting the presence of fibrosis (F?≥?1) was 0.78 (95% CI, 0.70–0.85).

Conclusions: In patients with NAFLD, the FIC-22 score had high predictive accuracy not only for steatohepatitis but also for the presence of liver fibrosis.  相似文献   

19.
20.
Antibodies against peripheral nicotinic acetylcholine receptors (nAChR) were used to determine the proportion of brain α-bungarotoxin binding sites that are immunologically related to the peripheral nAChR. The α-bungarotoxin binding component partially purified from rat brain was labelled with [125I]α-bungarotoxin and reacted with increasing concentrations of rabbit anti(nAChR) antisera. At least 75% of the brain protein could be immunoprecipitated by rabbit anti(rat muscle junctional nAChR) antiserum (M) whereas an antiserum against Torpedo nAChR (J) was without effect and clearly failed to cross-react with the brain component. Both antisera precipitated 100% of [125I]α-bungarotoxin-labelled nAChR from Torpedo marmorata. The lower precipitation of the brain protein was not a consequence of [125I]α-bungarotoxin dissociating during the precipitation. We conclude that the majority of α-bungarotoxin binding sites in brain are clearly recognised by the crossreacting antiserum.Release of [3H]dopamine from striatal synaptosomes could be elicited by nicotine in a dose-dependent manner and the response was prevented by the ganglionic blocker mecamylamine, although antagonism by α-bungarotoxin was less clearcut. Preincubation of the synaptosomes with antiserum M resulted in a statistically significant decrease in the [3H]dopamine response to nicotine at all agonist concentrations tested. Antiserum J, however, had no consistent effect on the response. Thus the actions of the antisera parallel their ability to recognise the brain α-bungarotoxin binding component. We conclude that the cholinergic regulation of dopamine release is in part mediated through a nAChR that is immunologically related to the nAChR of the neuromuscular junction and to the α-bungarotoxin binding component that can be isolated from rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号