首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preference of female Sprague-Dawley rats for sucralose, a non-nutritive sweetener derived from sucrose, was evaluated in 23 h two-bottle tests with water or saccharin. Overall, the rats displayed weak or no preferences for sucralose (0.25-4 g/l) over water but strong preferences for saccharin (0.5-8 g/l) over water and saccharin (1 g/l) over sucralose (0.5 g/l). The rats also preferred a saccharin + sucrose mixture to sucrose, but sucrose to a sucralose + sucrose mixture. There were marked individual differences in sucralose preferences: about half the rats preferred sucralose to water at some concentrations while most remaining rats avoided sucralose. Both subgroups preferred saccharin to sucralose. Sucralose appears to have an aversive off-taste that reduces its palatability to rats.  相似文献   

2.
Cold hardiness of Helicoverpa zea (Lepidoptera: Noctuidae) pupae   总被引:1,自引:0,他引:1  
An insect's cold hardiness affects its potential to overwinter and outbreak in different geographic regions. In this study, we characterized the response of Helicoverpa zea (Boddie) pupae to low temperatures by using controlled laboratory measurements of supercooling point (SCP), lower lethal temperature (LT(50)), and lower lethal time (LLTime). The impact of diapause, acclimation, and sex on the cold hardiness of the pupae also were evaluated. Sex did not significantly affect the SCP, LT(50), or LLTime. However, the mean SCP of diapausing pupae (-19.3°C) was significantly lower than nondiapausing pupae (-16.4°C). Acclimation of nondiapausing pupae to constant temperatures from 10 to 20°C before supercooling also produced a significantly lower SCP than nondiapausing pupae held at 25°C. The LT(50)s of nondiapausing and diapausing were not significantly different, but confirmed that H. zea pupae are chill-intolerant because these lethal temperatures are warmer than the corresponding mean SCPs. Diapausing pupae survived longer than nondiapausing pupae at the same, constant, cold temperatures, a finding consistent with the SCP results. Both of these results suggest enhanced cold hardiness in diapausing pupae. When laboratory results were compared with field temperatures and observed distributions of H. zea in the contiguous United States, the laboratory results corroborated what is currently perceived to be the northern overwintering limit of H. zea; approximately the 40(th) parallel. Moreover, our research showed that areas north of this limit are lethal to overwintering pupae not because of low temperature extremes, but rather the length of time spent at near-zero temperatures.  相似文献   

3.
This paper describes the rapid cold hardening processes of the sweetpotato whitefly, Bemisia tabaci (Gennadius). It was found that all developmental stages of B. tabaci have the capacity of rapid cold hardening and the length of time required to induce maximal cold hardiness at 0 °C varies with stage. There was only 18.3% survival when adult whiteflies were transferred directly from 26 °C to -8.5 °C for 2 h. However, exposure to 0 °C for 1 h before transfer to -8.5 °C increased the survival to 81.2%. The whiteflies show "prefreeze" mortality when they were exposed to temperatures above the supercooling point (SCP), although the range of SCP of whiteflies is -26 °C to -29 °C. The rapid cold hardening had no effect on SCP and reduced the lower lethal temperature of adults from -9 °C to -11 °C. Rapid cold-hardened adults had a similar lifespan as the control group but deposited fewer eggs than nonhardened individuals. The expression profiles during cold hardening and recovery from this process revealed that HSP90 did not respond to cold stress. However, HSP70 and HSP20 were significantly induced by cold with different temporal expression patterns. These results suggest that the rapid cold hardening response is possibly advantageous to whiteflies that are often exposed to drastic temperature fluctuations in spring or autumn in northern China, and the expression of HSP70 and HSP20 may be associated with the cold tolerance of B. tabaci.  相似文献   

4.
During their upstream migration European glass-eels, Anguilla anguilla (L.), encounter a series of varying environmental situations. The migration requires a sequence of physiological adaptations determined by the different chemico-physical conditions they meet. Temperature and salinity are two of the most important factors. It is reasonable that glass-eels may utilize them as cues to orientation. Laboratory experiments were designed to elucidate the thermal and salinity preferences of glass-eels. These were assessed by examining the choices of specimens caught either at sea and then kept in salt water (33%), or in the Arno river and then reared in fresh water. Water flows, triggering the rheotactic reaction, prompted glass-eels to choose between two different salinities and/or temperatures. The results confirm the preference of glass-eels for flows whose temperature does not differ from that of acclimation. Specimens tested towards two water flows, both at different temperatures from that of acclimation, preferred the colder. Fresh water was usually preferred to salt water, this preference being not so marked in the case of the glass-eels caught at sea and thus not yet adapted to fresh water. Clear-cut choices were recorded when one of the tested flows presented both the preferred temperature and preferred salinity. When only one of the two parameters reproduced the preferred situation, the choices were differently affected by temperature and salinity at different values of temperature. When the temperature of both flows was below 11–12°C, glass-eels preferred fresh water; at higher temperatures the colder of the two flows was preferred, even if salty.  相似文献   

5.
CCK-A receptor-deficient Otsuka Long-Evans Tokushima fatty (OLETF) rats are hyperphagic and develop obesity and Type 2 diabetes. In this strain, taste preference functions have not been investigated. Therefore, a series of short-access, two-bottle tests were performed in age-matched prediabetic OLETF and nonmutant Long-Evans Tokushima Otsuka (LETO) rats to investigate preference for sucrose (0.03, 0.1, 0.3, or 1.0 M) presented with a choice of water. To discern orosensory from postgastric factors that may contribute to this preference, in a separate experiment, rats were allowed to sham feed sucrose in the absence or presence of duodenal sucrose infusion (0.3, 0.6, or 1.0 M). In the two-bottle real-feeding tests, OLETF rats exhibited a greater preference for 0.3 M sucrose (91.2 +/- 1.7 and 78.5 +/- 3.4% for OLETF and LETO, respectively; P < 0.01) and 1.0 M sucrose (65.3 +/- 1.2 and 57.5 +/- 2.7% for OLETF and LETO, respectively; P < 0.05) than LETO rats. OLETF rats also sham fed less of the lowest (0.03 M; 33.8 +/- 4.8 and 58.3 +/- 7.3 ml for OLETF and LETO, respectively; P < 0.05) and more of the highest (1.0 M; 109.9 +/- 6.5 and 81.0 +/- 3.9 ml for OLETF and LETO, respectively; P < 0.01) concentration of sucrose relative to LETO rats. Finally, intraduodenal sucrose infusions (0.6 and 1.0 M) produced a smaller reduction of 0.3 M sham sucrose intake [14.1 +/- 8.1 vs. 52.5 +/- 3.3 ml and 49.4 +/- 8.0 vs. 82.4 +/- 3.2 ml for 0.6 M (P < 0.01) and 1.0 M (P < 0.05) infusions in OLETF and LETO, respectively]. These findings demonstrate that OLETF rats display an increased preference for sucrose, an effect that is at least partially influenced by the orosensory stimulating effect of sucrose. This enhanced responsiveness to oral stimulation, coupled with the deficit in responding to the postingestive feedback of intestinal sucrose, may contribute additively to the development of hyperphagia and weight gain in OLETF rats.  相似文献   

6.
The present work reports behavioural responses by young-of-the-year (21-30 cm) Atlantic sturgeon Acipenser oxyrinchus oxyrinchus and shortnose sturgeon Acipenser brevirostrum to nine binary combinations of dissolved oxygen saturation (40, 70 and 100%), temperature (12, 20 and 28°C) and salinity (1, 8 and 15). Both species showed no acclimation effects and similar discrimination and avoidance reactions to hypoxia (40% oxygen saturation), selecting higher dissolved oxygen choices in 71% of the tests. Acipenser oxyrinchus oxyrinchus and A. brevirostrum showed a similar preference for 20°C (>64% incidence), but differed in their responses to extreme temperature choices. Acipenser brevirostrum showed a significant avoidance behaviour to the 12°C but not to the 28°C choice. In contrast, A. o. oxyrinchus showed similar preference for 12 and 20°C, but avoided the 28°C choice in 71% of the tests where this temperature was included (P < 0·01). No significant preferences were observed among salinity choices, except between salinities 1 and 8, where A. o. oxyrinchus showed a significant preference for salinity 8. Behavioural responses matched expectations from bioenergetics in both species and were also consistent with the distribution of juvenile A. o. oxyrinchus capture locations in the Chesapeake Bay.  相似文献   

7.
Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0-93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.  相似文献   

8.
The growth of all microorganisms is limited to a specific temperature range. However, it has not previously been determined to what extent global protein profiles change in response to temperatures that incrementally span the complete growth temperature range of a microorganism. As a result it has remained unclear to what extent cellular processes (inferred from protein abundance profiles) are affected by growth temperature and which, in particular, constrain growth at upper and lower temperature limits. To evaluate this, 8-plex iTRAQ proteomics was performed on the Antarctic microorganism, Methanococcoides burtonii. Methanococcoides burtonii was chosen due to its importance as a model psychrophilic (cold-adapted) member of the Archaea, and the fact that proteomic methods, including subcellular fractionation procedures, have been well developed. Differential abundance patterns were obtained for cells grown at seven different growth temperatures (-2°C, 1°C, 4°C, 10°C, 16°C, 23°C, 28°C) and a principal component analysis (PCA) was performed to identify trends in protein abundances. The multiplex analysis enabled three largely distinct physiological states to be described: cold stress (-2°C), cold adaptation (1°C, 4°C, 10°C and 16°C), and heat stress (23°C and 28°C). A particular feature of the thermal extremes was the synthesis of heat- and cold-specific stress proteins, reflecting the important, yet distinct ways in which temperature-induced stress manifests in the cell. This is the first quantitative proteomic investigation to simultaneously assess the response of a microorganism to numerous growth temperatures, including the upper and lower growth temperatures limits, and has revealed a new level of understanding about cellular adaptive responses.  相似文献   

9.
Wang G  Luo H  Wang Y  Huang H  Shi P  Yang P  Meng K  Bai Y  Yao B 《Bioresource technology》2011,102(3):3330-3336
A xylanase-coding gene, xynGR40, was cloned directly from the environmental DNA of goat rumen contents and expressed in Escherichia coli BL21 (DE3). The 1446-bp full-length gene encodes a 481-residue polypeptide (XynGR40) containing a catalytic domain belonging to glycosyl hydrolase (GH) family 10. Phylogenetic analysis indicated that XynGR40 was closely related with microbial xylanases of gastrointestinal source. Purified recombinant XynGR40 exhibited high activity at low temperatures, and remained active (~10% of the activity) even at 0°C. The optimal temperature of XynGR40 was 30°C, much lower than other xylanases from rumen. Compared with mesophilic and thermophilic counterparts, XynGR40 had fewer hydrogen bonds and salt bridges, and lengthened loops in the catalytic domain. The enzyme also had relatively better stability at mesophilic temperatures and a higher catalytic efficiency than other known GH 10 cold active xylanases. These properties suggest that XynGR40 is a novel cold active xylanase and has great potential for basic research and industrial applications.  相似文献   

10.
The thermoregulatory behavior of Hemigrapsus nudus, the amphibious purple shore crab, was examined in both aquatic and aerial environments. Crabs warmed and cooled more rapidly in water than in air. Acclimation in water of 16 degrees C (summer temperatures) raised the critical thermal maximum temperature (CTMax); acclimation in water of 10 degrees C (winter temperatures) lowered the critical thermal minimum temperature (CTMin). The changes occurred in both water and air. However, these survival regimes did not reflect the thermal preferences of the animals. In water, the thermal preference of crabs acclimated to 16 degrees C was 14.6 degrees C, and they avoided water warmer than 25.5 degrees C. These values were significantly lower than those of the crabs acclimated to 10 degrees C; these animals demonstrated temperature preferences for water that was 17 degrees C, and they avoided water that was warmer than 26.9 degrees C. This temperature preference was also exhibited in air, where 10 degrees C acclimated crabs exited from under rocks at a temperature that was 3.2 degrees C higher than that at which the 16 degrees C acclimated animals responded. This behavioral pattern was possibly due to a decreased thermal tolerance of 16 degrees C acclimated crabs, related with the molting process. H. nudus was better able to survive prolonged exposure to cold temperatures than to warm temperatures, and there was a trend towards lower exit temperatures with the lower acclimation (10 degrees C) temperature. Using a complex series of behaviors, the crabs were able to precisely control body temperature independent of the medium, by shuttling between air and water. The time spent in either air or water was influenced more strongly by the temperature than by the medium. In the field, this species may experience ranges in temperatures of up to 20 degrees C; however, it is able to utilize thermal microhabitats underneath rocks to maintain its body temperature within fairly narrow limits.  相似文献   

11.
Foraging groups of Formosan subterranean termites, Coptotermes formosanus Shiraki were tested for their relative humidity (RH) preference in a humidity gradient arena in the laboratory at a constant temperature of 26°C. Five RH levels (9%, 33%, 53%, 75%, and 98%) were maintained in the test arena comprising of a series of closed containers by using dry silica gel, saturated salt solutions, or distilled water alone. Termites gradually aggregated to the highest RH chamber in the arena. After 1 h, a significantly greater percentage of termites (≈46%) aggregated to the highest RH chamber (98%) than to the lower RH chambers (≤75%). After 12 h, > 97% of the termites aggregated to the 98% RH chamber. In survival tests, where termites were exposed to 15 combinatorial treatments of five RH levels (9%, 33%, 53%, 75%, and 98%) and three temperatures (20°C, 28°C, and 36°C) for a week, the survival was significantly influenced by RH, temperature, and their interaction. A significantly higher mortality was observed on termites exposed to ≤75% RH chambers than to 98% RH chamber at the three temperatures and significantly lower survival was found at 36°C than at 28°C or 20°C. The combination of temperature and RH plays an important role in the survival of C. formosanus.  相似文献   

12.
Nostoc commune is a widespread colonial cyanobacterium living on bare soils that alternate between frost and thaw, drought and inundation and very low and high temperatures. We collected N. commune from alternating wet and dry limestone pavements in Sweden and tested its photosynthesis and respiration at 20°C after exposure to variations in temperature (-269 to 105°C), pH (2-10) and NaCl (0.02-50 g NaCl kg(-1)). We found that dry field samples and rewetted specimens tolerated exposure beyond that experienced in natural environmental conditions: -269 to 70°C, pH 3-10 and 0-20 g NaCl kg(-1), with only a modest reduction of respiration, photosynthesis and active carbon uptake at 20°C. (14)CO(2) uptake from air declined markedly below zero and above 55°C, but remained positive. Specimens maintained a high metabolism with daily exposure to 6 h of rehydration and 18 h of desiccation at -18 and 20°C, but died at 40°C. The field temperature never exceeded the critical 40°C threshold during the wet periods, but it frequently exceeded this temperature during dry periods when N. commune is already dry and unaffected. We conclude that N. commune has an excellent tolerance to low temperatures, long-term desiccation and recurring cycles of desiccation and rewetting. These traits explain why it is the pioneer species in extremely harsh, nutrient-poor and alternating wet and dry environments.  相似文献   

13.
Hybrid vigour may help overcome the negative effects of climate change in rice. A popular rice hybrid (IR75217H), a heat-tolerant check (N22), and a mega-variety (IR64) were tested for tolerance of seed-set and grain quality to high-temperature stress at anthesis at ambient and elevated [CO(2)]. Under an ambient air temperature of 29 °C (tissue temperature 28.3 °C), elevated [CO(2)] increased vegetative and reproductive growth, including seed yield in all three genotypes. Seed-set was reduced by high temperature in all three genotypes, with the hybrid and IR64 equally affected and twice as sensitive as the tolerant cultivar N22. No interaction occurred between temperature and [CO(2)] for seed-set. The hybrid had significantly more anthesed spikelets at all temperatures than IR64 and at 29 °C this resulted in a large yield advantage. At 35 °C (tissue temperature 32.9 °C) the hybrid had a higher seed yield than IR64 due to the higher spikelet number, but at 38 °C (tissue temperature 34-35 °C) there was no yield advantage. Grain gel consistency in the hybrid and IR64 was reduced by high temperatures only at elevated [CO(2)], while the percentage of broken grains increased from 10% at 29 °C to 35% at 38 °C in the hybrid. It is concluded that seed-set of hybrids is susceptible to short episodes of high temperature during anthesis, but that at intermediate tissue temperatures of 32.9 °C higher spikelet number (yield potential) of the hybrid can compensate to some extent. If the heat tolerance from N22 or other tolerant donors could be transferred into hybrids, yield could be maintained under the higher temperatures predicted with climate change.  相似文献   

14.
The cold tolerance of overwintering adult Spur-throated locusts, Austracris guttulosa, was examined using measures of supercooling point relative to gender, environmental acclimation and feeding state as well as mortality for a range of sub-zero temperature exposure treatments. Freezing was lethal and supercooling points ranged from -6 to -12.8°C, but were statistically independent of fresh mass, body water content, acclimation, and/or gut content in fed and starved individuals. A significant interaction effect of gender and feeding status showed that the larger bodied females had decreased supercooling capacity with increased food material in the digestive tract. Post-freezing dissections revealed differences in the amount of freshly consumed and retained food material in the digestive tract between fed and starved individuals of each gender, which could explain this effect based on inoculation of ice crystallisation by food particles. Above supercooling temperatures, neither gender nor the rate of cooling had a significant effect on mortality. When cooled from 25°C at 0.1 or 0.5°Cmin(-1) to a range of experimental minimum temperatures held for 3h, survival was ~74% to -7°C, but declined sharply to ~37% when cooled to -8°C or lower. Although the laboratory experiments reported here suggest that A. guttulosa is not freeze tolerant and unable to rapidly cold harden, exposure to typical cold and frosty nights that very rarely reach below -8°C as a night minimum in the field would be unlikely to cause mortality in the vast majority of overwintering aggregations.  相似文献   

15.
Regardless of the circumstantial evidences on the involvement of fluoride on the etiology and pathogenesis of fluorosis, several lines of evidences strongly indicate the influence of modulator factors such as duration of fluoride exposure, age, temperature, and physical activity. This study has been designed to investigate the combined influence of intermittent exercise and temperature stress on the modulation of fluoride toxicity. Three-month-old Wistar male rats were exposed to high sodium fluoride (600 ppm) through drinking water for 1 month and the rats were then subjected to swimming exercise at different temperatures (20°C, 25°C, 30°C, and 35°C). Oxidative stress indices analyzed showed fluoride-induced oxidative stress in biological tissues studied like brain, heart, liver, and kidney. Exercise regimen coupled with different temperatures were found to be effective in bringing the oxidative stress indices to near normal level indicating decreased free radical production which may be a compensatory mechanism to counteract against the detrimental effects of fluoride. Further, the deleterious effects of fluoride significantly reduced at 25°C and 30°C demonstrating that the thermoneutral temperatures were effective in reducing the toxicity level.  相似文献   

16.
Walking speeds were calculated for nine clones of the peach potato aphid Myzus persicae collected from three countries along a latitudinal cline of its European distribution from Sweden to Spain (Sweden, UK and Spain), and the effects of collection origin and intra and intergenerational acclimation were investigated. Walking speeds declined with decreasing temperature, with maximum performance at temperatures closest to acclimation temperature (fastest median walking speed of 5.8 cm min(-1) was recorded for clone UK 3, collected from the UK, at 25°C after acclimating to 25°C for one generation). Following acclimation at both 20°C and 25°C, walking ceased (as indicated by median walking speeds of 0.0 cm min(-1)) at temperatures as high as 7.5°C and 12.5°C. However, acclimation at 10°C enabled mobility to occur to temperatures as low as 0°C. There was no relationship between mobility and latitude of collection, suggesting that large scale mixing of aphids may occur across Europe. However, clonal variation was suggested, with clone UK 3 outperforming the majority of other clones across all temperatures at which mobility was maintained following acclimation at 10°C for one and three generations and at 25°C for one generation. The Scandinavian clones consistently outperformed their temperate and Mediterranean counterparts at the majority of temperatures following acclimation for three generations at 25°C.  相似文献   

17.
Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1), the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.  相似文献   

18.
During the 1960s, the midge, Eretmoptera murphyi, was transferred from sub-Antarctic South Georgia (55°S 37°W) where it is endemic to a single location on maritime Antarctic Signy Island (60°S 45°W). Its distribution has since expanded considerably, suggesting that it is pre-adapted to the more severe conditions further south. To test one aspect of the level of its pre-adaptation, the rapid cold hardening (RCH) response in this species was investigated. When juvenile (L1-L2) and mature (L3-L4) larvae of E. murphyi were directly exposed to progressively lower temperatures for 8h, they exhibited Discriminating Temperatures (DTemp, temperature at which there is 10-20% survival of exposed individuals) of -11.5 and -12.5°C, respectively. The mean SCP was above -7.5°C in both larval groups, confirming the finding of previous studies that this species is freeze-tolerant. Following gradual cooling (0.2°Cmin(-1)), survival was significantly greater at the DTemp in both larval groups. The response was strong, lowering the lower lethal temperature (LLT) by up to 6.5°C and maintaining survival above 80% for at least 22h at the DTemp. RCH was also exhibited during the cooling phase of an ecologically relevant thermoperiodic cycle (+4°C to -3°C). Mechanistically, the response did not affect freezing, with no alteration in the supercooling point (SCP) found following gradual cooling, and was not induced while the organism was in a frozen state. These results are discussed in light of E. murphyi's pre-adaptation to conditions on Signy Island and its potential to colonize regions further south in the maritime Antarctic.  相似文献   

19.
Temperature probably had no direct effect on the evolution of sea kraits within their center of origin, a geologically stable thermal zone straddling the equator, but may have indirectly affected expansions and contractions in distributions beyond that zone through global fluctuations that caused alternation of higher and lower sea levels. The northern limit of the Laticauda colubrina complex seems to be the 20°C isotherm; in the south, the range does not reach that isotherm because there is no land (also a habitat requirement of sea kraits) within the zone of suitable temperature. The relationship of temperature to the pattern of geographic variation in morphology supports either the hypothesis of peripheral convergence or the developmental hypothesis but does not distinguish between them. Quadratic surfaces relating cumulative scores for coloration and morphological characters to global position showed a strong latitudinal component and an even stronger longitudinal one in which the direction of the latitudinal effect was reversed between east and west. A multivariate analysis revealed that while morphological characters vary significantly by location and climate when tested separately, when the influence of location on morphology is taken into account, no residual relationship between climate and morphology remains. Most marine snakes have mean upper temperature tolerances between 39°C and 40°C and operate at temperatures much nearer their upper thermal limits than their lower limits but still avoid deleterious extremes by diving from excessively hot water to deeper, cooler strata, and by surfacing when water is cold. At the surface in still water in sunlight, Pelamis can maintain its body temperature slightly above that of the water, but whether this is significant in nature is questionable. As temperature falls below 18-20°C, survival time is progressively reduced, accompanied by the successive occurrence of cessation of feeding, cessation of swimming, and failure to orient. Acclimation does not seem to be in this species' repertoire. In the water column, marine snakes track water temperature; on land, sea kraits can thermoregulate by basking, selecting favorable locations, and by kleptothermy. Laticauda colubrina adjusts its reproductive cycle geographically in ways that avoid breeding in the coldest months. Mean voluntary diving time is not temperature-dependent within the normal range of temperatures experienced by marine snakes in the field, but is reduced in water colder than 20°C. On land, much as while diving in the sea, sea kraits maintain long periods of apnea; intervals between breaths are inversely related to temperature.  相似文献   

20.
The imperial bromeliad Alcantarea imperialis grows naturally on rocky outcrops (‘inselbergs’) in regions where daily temperatures vary from 5 to 40°C. As carbohydrate metabolism is altered in response to cold, it could lead to reprogramming of the metabolic machinery including the increase in levels of metabolites that function as osmolytes, compatible solutes, or energy sources in order to maintain plant homeostasis. The aim of this study was to evaluate the effects of different temperatures on plant growth and non-structural carbohydrates in plants of A. imperialis adapted to low temperature. Seedlings of A. imperialis were grown in vitro under a 12-h photoperiod with four different day/night temperature cycles: 5/5°C, 15/15°C, 15/30°C (dark/light) and 30/30°C. Plants were also cultivated at 26°C in ex vitro conditions for comparison. The results showed an inverse relationship between temperature and germination time and no differences in the percentage of germination. Plants maintained for 9 months at 15°C presented a reduced number of leaves and roots, and a dry mass four times lower than plants grown at 30°C. Sugar content was higher in plants grown at 15°C than at 30°C. However, the highest amount of total sugar was found in plants growing under warm day/cold night conditions. Myo-inositol, glucose, fructose and sucrose were found predominantly under high temperatures, while under low temperatures, sucrose was apparently replaced by trehalose, raffinose and stachyose. Starch content was highest in plants grown under high temperatures. The lowest starch content was detected under low temperatures, suggesting its conversion into soluble carbohydrates to protect the plants against cold. These results indicated that low temperature retarded growth of A. imperialis and increased sugar levels, mainly trehalose, thus suggesting that these sugar compounds could be involved in cold tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号