首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The posttraumatic response to burn injury leads to marked and prolonged skeletal muscle catabolism and weakness, which persist despite standard rehabilitation programs of occupational and physical therapy. We investigated whether a resistance exercise program would attenuate muscle loss and weakness that is typically found in children with thermal injury. We assessed the changes in leg muscle strength and lean body mass in severely burned children with >40% total body surface area burned. Patients were randomized to a 12-wk standard hospital rehabilitation program supplemented with an exercise training program (n = 19) or to a home-based rehabilitation program without exercise (n = 16). Leg muscle strength was assessed before and after the 12-wk rehabilitation or training program at an isokinetic speed of 150 degrees /s. Lean body mass was assessed using dual-energy X-ray absorptiometry. We found that the participation in a resistance exercise program results in a significant improvement in muscle strength, power, and lean body mass relative to a standard rehabilitation program without exercise.  相似文献   

2.
We investigated the effects of the anabolic androgen, oxandrolone, on lean body mass (LBM), muscle size, fat, and maximum voluntary muscle strength, and we determined the durability of effects after treatment was stopped. Thirty-two healthy 60- to 87-yr-old men were randomized to receive 20 mg oxandrolone/day (n = 20) or placebo (n = 12) for 12 wk. Body composition [dual-energy X-ray absorptiometry (DEXA), magnetic resonance imaging, and (2)H(2)O dilution] and muscle strength [1 repetition maximum (1 RM)] were evaluated at baseline and after 12 wk of treatment; body composition (DEXA) and 1-RM strength were then assessed 12 wk after treatment was discontinued (week 24). At week 12, oxandrolone increased LBM by 3.0 +/- 1.5 kg (P < 0.001), total body water by 2.9 +/- 3.7 kg (P = 0.002), and proximal thigh muscle area by 12.4 +/- 8.4 cm(2) (P < 0.001); these increases were greater (P < 0.003) than in the placebo group. Oxandrolone increased 1-RM strength for leg press by 6.7 +/- 6.4% (P < 0.001), leg flexion by 7.0 +/- 7.8% (P < 0.001), chest press by 9.3 +/- 6.7% (P < 0.001), and latissimus pull-down exercises by 5.1 +/- 9.1% (P = 0.02); these increases were greater than placebo. Oxandrolone reduced total (-1.9 +/- 1.0 kg) and trunk fat (-1.3 +/- 0.6 kg; P < 0.001), and these decreases were greater (P < 0.001) than placebo. Twelve weeks after oxandrolone was discontinued (week 24), the increments in LBM and muscle strength were no longer different from baseline (P > 0.15). However, the decreases in total and trunk fat were sustained (-1.5 +/- 1.8, P = 0.001 and -1.0 +/- 1.1 kg, P < 0.001, respectively). Thus oxandrolone induced short-term improvements in LBM, muscle area, and strength, while reducing whole body and trunk adiposity. Anabolic improvements were lost 12 wk after discontinuing oxandrolone, whereas improvements in fat mass were largely sustained.  相似文献   

3.
4.
Growth hormone (GH) treatment reverses the muscle loss allegedly responsible for diminished aerobic capacity and increased fatigue in patients with HIV-associated wasting. This study examined whether submaximal measures of physical performance can be used as objective measures of the functional impact of GH treatment-induced anabolism. We randomized 27 HIV-positive men [mean (SD) age, 43.9 (7.2) yr; body mass, 71.9 (10.4) kg; BMI, 23.1 (2.8) kg/m2] with unintentional weight loss despite antiretroviral therapy to receive GH (6 mg) or placebo in a double-blinded, placebo-controlled, cross-over trial with a 3-mo washout. Lean body mass (LBM), maximum oxygen uptake (Vo2 peak), ventilatory threshold (VeT), 6-min walk test (6MWT) distance and work, profile of mood states (POMS) fatigue and vigor scores, and Nottingham health profile (NHP) energy and physical mobility scores were measured. LBM significantly increased after 3 mo of GH treatment vs. placebo (means +/- SE, 3.7 +/- 0.6 vs. 0.3 +/- 0.4 kg; P < 0.001). VeT significantly improved (17.6 +/- 3.7 vs. -5.9 +/- 2.5%; P < 0.001), but Vo2 peak did not change significantly. 6MWT distance improved (24.9 +/- 9.7 vs. 19.9 +/- 11.6 m; P > 0.05) and 6MWT work increased significantly more after 3 mo of GH treatment (33.3 +/- 8.8 vs. 16.5 +/- 7.5 kJ; P < 0.05). POMS scores of fatigue and vigor and the NHP score of energy improved, yet the changes were not statistically significant. GH treatment improved VeT linearly to the increase in LBM (r =0.43, P = 0.037) and 6MWT work (r = 0.51, P = 0.008), and the increase in 6MWT work correlated with increase in LBM (r = 0.45, P = 0.024). Improvement in 6MWT work above the median (27.3 kJ) showed a decrease in fatigue (r = -0.62, P = 0.024). We concluded that GH treatment-induced LBM gains in HIV-associated wasting were functionally relevant, as determined by effort-independent submaximal measures of cardiopulmonary exercise testing.  相似文献   

5.
Muscle hypertrophy response to resistance training in older women.   总被引:7,自引:0,他引:7  
We conducted a 12-wk resistance training program in elderly women [mean age 69 +/- 1.0 (SE) yr] to determine whether increases in muscle strength are associated with changes in cross-sectional fiber area of the vastus lateralis muscle. Twenty-seven healthy women were randomly assigned to either a control or exercise group. The program was satisfactorily completed and adequate biopsy material obtained from 6 controls and 13 exercisers. After initial testing of baseline maximal strength, exercisers began a training regimen consisting of seven exercises that stressed primary muscle groups of the lower extremities. No active intervention was prescribed for the controls. Increases in muscle strength of the exercising subjects were significant compared with baseline values (28-115%) in all muscle groups. No significant strength changes were observed in the controls. Cross-sectional area of type II muscle fibers significantly increased in the exercisers (20.1 +/- 6.8%, P = 0.02) compared with baseline. In contrast, no significant change in type II fiber area was observed in the controls. No significant changes in type I fiber area were found in either group. We conclude that a program of resistance exercise can be safely carried out by elderly women, such a program significantly increases muscle strength, and such gains are due, at least in part, to muscle hypertrophy.  相似文献   

6.
The present study investigated potential sex-related differences in the metabolic response to carbohydrate (CHO) ingestion during exercise. Moderately endurance-trained men and women (n = 8 for each sex) performed 2 h of cycling at approximately 67% Vo(2 max) with water (WAT) or CHO ingestion (1.5 g of glucose/min). Substrate oxidation and kinetics were quantified during exercise using indirect calorimetry and stable isotope techniques ([(13)C]glucose ingestion, [6,6-(2)H(2)]glucose, and [(2)H(5)]glycerol infusion). In both sexes, CHO ingestion significantly increased the rates of appearance (R(a)) and disappearance (R(d)) of glucose during exercise compared with WAT ingestion [males: WAT, approximately 28-29 micromol x kg lean body mass (LBM)(-1) x min(-1); CHO, approximately 53 micromol x kg LBM(-1) x min(-1); females: WAT, approximately 28-29 micromol x kg LBM(-1) x min(-1); CHO, approximately 61 micromol x kg LBM(-1) x min(-1); main effect of trial, P < 0.05]. The contribution of plasma glucose oxidation to the energy yield was significantly increased with CHO ingestion in both sexes (from approximately 10% to approximately 20% of energy expenditure; main effect of trial, P < 0.05). Liver-derived glucose oxidation was reduced, although the rate of muscle glycogen oxidation was unaffected with CHO ingestion (males: WAT, 108 +/- 12 micromol x kg LBM(-1) x min(-1); CHO, 108 +/- 11 micromol x kg LBM(-1) x min(-1); females: WAT, 89 +/- 10 micromol x kg LBM(-1) x min(-1); CHO, 93 +/- 11 micromol x kg LBM(-1) x min(-1)). CHO ingestion reduced fat oxidation and lipolytic rate (R(a) glycerol) to a similar extent in both sexes. Finally, ingested CHO was oxidized at similar rates in men and women during exercise (peak rates of 0.70 +/- 0.08 and 0.65 +/- 0.06 g/min, respectively). The present investigation suggests that the metabolic response to CHO ingestion during exercise is largely similar in men and women.  相似文献   

7.
To determine whether oxymetholone increases lean body mass (LBM) and skeletal muscle strength in older persons, 31 men 65-80 yr of age were randomized to placebo (group 1) or 50 mg (group 2) or 100 mg (group 3) daily for 12 wk. For the three groups, total LBM increased by 0.0 +/- 0.6, 3.3 +/- 1.2 (P < 0.001), and 4.2 +/- 2.4 kg (P < 0.001), respectively. Trunk fat decreased by 0.2 +/- 0.4, 1.7 +/- 1.0 (P = 0.018), and 2.2 +/- 0.9 kg (P = 0.005) in groups 1, 2, and 3, respectively. Relative increases in 1-repetition maximum (1-RM) strength for biaxial chest press of 8.2 +/- 9.2 and 13.9 +/- 8.1% in the two active treatment groups were significantly different from the change (-0.8 +/- 4.3%) for the placebo group (P < 0.03). For lat pull-down, 1-RM changed by -0.6 +/- 8.3, 8.8 +/- 15.1, and 18.4 +/- 21.0% for the groups, respectively (1-way ANOVA, P = 0.019). The pattern of changes among the groups for LBM and upper-body strength suggested that changes might be related to dose. Alanine aminotransferase increased by 72 +/- 67 U/l in group 3 (P < 0.001), and HDL-cholesterol decreased by -19 +/- 9 and -23 +/- 18 mg/dl in groups 2 and 3, respectively (P = 0.04 and P = 0.008). Thus oxymetholone improved LBM and maximal voluntary muscle strength and decreased fat mass in older men.  相似文献   

8.
Low heart rate variability (HRV) is associated with an increased susceptibility to ventricular fibrillation (VF). Exercise training can increase HRV (an index of cardiac vagal regulation) and could, thereby, decrease the risk for VF. To test this hypothesis, a 2-min coronary occlusion was made during the last min of a 18-min submaximal exercise test in dogs with healed myocardial infarctions; 20 had VF (susceptible), and 13 did not (resistant). The dogs then received either a 10-wk exercise program (susceptible, n=9; resistant, n=8) or an equivalent sedentary period (susceptible, n=11; resistant, n=5). HRV was evaluated at rest, during exercise, and during a 2-min occlusion at rest and before and after the 10-wk period. Pretraining, the occlusion provoked significantly (P<0.01) greater increases in HR (susceptible, 54.9+/-8.3 vs. resistant, 25.0+/-6.1 beats/min) and greater reductions in HRV (susceptible, -6.3+/-0.3 vs. resistant, -2.8+/-0.8 ln ms2) in the susceptible dogs compared with the resistant animals. Similar response differences between susceptible and resistant dogs were noted during submaximal exercise. Training significantly reduced the HR and HRV responses to the occlusion (HR, 17.9+/-11.5 beats/min; HRV, -1.2+/-0.8, ln ms2) in the susceptible dogs; similar response reductions were noted during exercise. In contrast, these variables were not altered in the sedentary susceptible dogs. Posttraining, VF could no longer be induced in the susceptible dogs, whereas four sedentary susceptible dogs died during the 10-wk control period, and the remaining seven animals still had VF when tested. Atropine decreased HRV but only induced VF in one of eight trained susceptible dogs. Thus exercise training increased cardiac vagal activity, which was not solely responsible for the training-induced VF protection.  相似文献   

9.
We determined whether short-term weight-lifting exercise increases the synthesis rate of the major contractile proteins, myosin heavy chain (MHC), actin, and mixed muscle proteins in nonfrail elders and younger women and men. Fractional synthesis rates of mixed, MHC, and actin proteins were determined in seven healthy sedentary 23- to 32-yr-old and seven healthy 78- to 84-yr-old participants in paired studies done before and at the end of a 2-wk weight-lifting program. The in vivo rate of incorporation of 1-[(13)C]leucine into vastus lateralis MHC, actin, and mixed proteins was determined using a 14-h constant intravenous infusion of 1-[(13)C]leucine. Before exercise, the mixed and MHC fractional synthetic rates were lower in the older than in the younger participants (P < or = 0.04). Baseline actin protein synthesis rates were similar in the two groups (P = not significant). Over a 2-wk period, participants completed ten 1- to 1. 5-h weight-lifting exercise sessions: 2-3 sets per day of 9 exercises, 8-12 repetitions per set, at 60-90% of maximum voluntary muscle strength. At the end of exercise, MHC and mixed protein synthetic rates increased in the younger (88 and 121%) and older participants (105 and 182%; P < 0.001 vs. baseline). These findings indicate that MHC and mixed protein synthesis rates are reduced more than actin in advanced age. Similar to that of 23-32 yr olds, the vastus lateralis muscle in 78-84 yr olds retains the capacity to increase MHC and mixed protein synthesis rates in response to short-term resistance exercise.  相似文献   

10.
The ability to develop muscle force rapidly may be a very important factor to prevent a fall and to perform other tasks of daily life. However, information is still lacking on the range of training-induced neuromuscular adaptations in elderly humans recovering from a period of disuse. Therefore, the present study examined the effect of three types of training regimes after unilateral prolonged disuse and subsequent hip-replacement surgery on maximal muscle strength, rapid muscle force [rate of force development (RFD)], muscle activation, and muscle size. Thirty-six subjects (60-86 yr) were randomized to a 12-wk rehabilitation program consisting of either 1) strength training (3 times/wk for 12 wk), 2) electrical muscle stimulation (1 h/day for 12 wk), or 3) standard rehabilitation (1 h/day for 12 wk). The nonoperated side did not receive any intervention and thereby served as a within-subject control. Thirty subjects completed the trial. In the strength-training group, significant increases were observed in maximal isometric muscle strength (24%, P < 0.01), contractile RFD (26-45%, P < 0.05), and contractile impulse (27-32%, P < 0.05). No significant changes were seen in the two other training groups or in the nontrained legs of all three groups. Mean electromyogram signal amplitude of vastus lateralis was larger in the strength-training than in the standard-rehabilitation group at 5 and 12 wk (P < 0.05). In contrast to traditional physiotherapy and electrical stimulation, strength training increased muscle mass, maximal isometric strength, RFD, and muscle activation in elderly men and women recovering from long-term muscle disuse and subsequent hip surgery. The improvement in both muscle mass and neural function is likely to have important functional implications for elderly individuals.  相似文献   

11.
We previously reported an "athlete's paradox" in which endurance-trained athletes, who possess a high oxidative capacity and enhanced insulin sensitivity, also have higher intramyocellular lipid (IMCL) content. The purpose of this study was to determine whether moderate exercise training would increase IMCL, oxidative capacity of muscle, and insulin sensitivity in previously sedentary overweight to obese, insulin-resistant, older subjects. Twenty-five older (66.4 +/- 0.8 yr) obese (BMI = 30.3 +/- 0.7 kg/m2) men (n = 9) and women (n = 16) completed a 16-wk moderate but progressive exercise training program. Body weight and fat mass modestly but significantly (P < 0.01) decreased. Insulin sensitivity, measured using the euglycemic hyperinsulinemic clamp, was increased (21%, P = 0.02), with modest improvements (7%, P = 0.04) in aerobic fitness (Vo2peak). Histochemical analyses of IMCL (Oil Red O staining), oxidative capacity [succinate dehydrogenase activity (SDH)], glycogen content, capillary density, and fiber type were performed on skeletal muscle biopsies. Exercise training increased IMCL by 21%. In contrast, diacylglycerol and ceramide, measured by mass spectroscopy, were decreased (n = 13; -29% and -24%, respectively, P < 0.05) with exercise training. SDH (19%), glycogen content (15%), capillary density (7%), and the percentage of type I slow oxidative fibers (from 50.8 to 55.7%), all P < or = 0.05, were increased after exercise. In summary, these results extend the athlete's paradox by demonstrating that chronic exercise in overweight to obese older adults improves insulin sensitivity in conjunction with favorable alterations in lipid partitioning and an enhanced oxidative capacity within muscle. Therefore, several key deleterious effects of aging and/or obesity on the metabolic profile of skeletal muscle can be reversed with only moderate increases in physical activity.  相似文献   

12.
Muscle triglyceride utilization during exercise: effect of training   总被引:10,自引:0,他引:10  
The respiratory exchange ratio (RER) is lower during exercise of the same intensity in the trained compared with the untrained state, even though plasma free fatty acids (FFA) and glycerol levels are lower, suggesting reduced availability of plasma FFA. In this context, we evaluated the possibility that lipolysis of muscle triglycerides might be higher in the trained state. Nine adult male subjects performed a prolonged bout of exercise of the same absolute intensity before and after adapting to a strenuous 12-wk program of endurance exercise. The exercise test required 64% of maximum O2 uptake before training. Plasma FFA and glycerol concentrations and RER during the exercise test were lower in the trained than in the untrained state. The proportion of the caloric expenditure derived from fat, calculated from the RER, during the exercise test increased from 35% before training to 57% after training. Muscle glycogen utilization was 41% lower, whereas the decrease in quadriceps muscle triglyceride concentration was roughly twice as great (12.7 +/- 5.5 vs. 26.1 +/- 9.3 mmol/kg dry wt, P less than 0.001) in the trained state. These results suggest that the greater utilization of FFA in the trained state is fueled by increased lipolysis of muscle triglyceride.  相似文献   

13.
Overweight and obesity result in musculoskeletal impairments that limit exercise capacity. We examined if the muscle strength and size response to resistance training (RT) differed among 687 young (mean +/- SEM, 24.2 +/- 0.2 years) overweight and obese (OW) compared to normal weight (NW) adults as denoted by the body mass index (BMI). Subjects were 449 NW (22.0 +/- 0.1 kg.m(-2), 23.4 +/- 0.3 years) and 238 OW (29.2 +/- 0.2 kg.m(-2), 25.6 +/- 0.4 years) men (n = 285) and women (n = 402) who underwent 12 weeks (2 d.wk(-1)) of RT of the nondominant arm. Maximum voluntary contraction (MVC) and 1 repetition maximum (1RM) assessed peak elbow flexor strength. Magnetic resonance imaging measured the biceps muscle cross sectional area (CSA). Multiple dependent variable analysis of covariance tested if muscle strength and size differed among BMI groups pre-, post-, and pre-to-post-RT. Overweight and obese had greater MVC, 1RM, and CSA than NW pre- and post-RT (p < 0.001). Maximum voluntary contraction and 1RM gains were not different between BMI groups pre- to post-RT (p >or= 0.05). When adjusted for baseline values, NW had greater relative MVC (21.2 +/- 1.0 vs. 17.4 +/- 1.4%) and 1RM (54.3 +/- 1.5 vs. 49.0 +/- 2.0%) increases than OW (p < 0.05). Normal weight also had greater allometric MVC (0.48 +/- 0.02 kg.kg(-0.67) vs. 0.40 +/- 0.03 kg.kg(-0.67)) and 1RM (0.25 +/- 0.00 vs. 0.22 +/- 0.01 kg.kg(-0.67)) gains than OW (p < 0.05). CSA gains were greater among OW than NW (3.6 +/- 0.2 vs. 3.2 +/- 0.1 cm(2)) (p < 0.001); however, relative CSA increases were not different between BMI groups (19.4 +/- 0.5 vs. 18.4 +/- 0.7%) (p >or= 0.05). Despite similar relative muscle size increases, relative and allometic strength gains were less among OW than NW. These findings indicate the short-term relative and allometric muscle strength response to RT may be attenuated among adults who are overweight and obese.  相似文献   

14.
The purpose of this study was to evaluate and compare the effects of arginine/lysine supplementation (AL) and resistance training (RT) on changes in glucose tolerance and to determine whether alterations were associated with changes in selected hormonal parameters. The study involved 30 physically active college males, ages 20-30 yr, randomly assigned to one of four groups: placebo/control (P/C, n = 7), P/RT (n = 8), AL/C (n = 7), or AL/RT (n = 8). An AL supplement at a daily morning dose of 132 mg/kg fat-free body mass or placebo was administered orally to controls and training groups. During the 10-wk program, exercise subjects participated in a progressive resistance training program stressing all major muscle groups. Three-hour oral glucose tolerance (OGT) tests were performed on each subject before and after the 10-wk intervention to evaluate resting levels and responses of glucose, insulin, and glucagon. OGT parameters did not significantly change after intervention. It was concluded that neither AL supplementation nor RT had a significant effect on OGT.  相似文献   

15.
First-degree relatives of type 2 diabetic patients (offspring) are often characterized by insulin resistance and reduced physical fitness (VO2 max). We determined the response of healthy first-degree relatives to a standardized 10-wk exercise program compared with an age-, sex-, and body mass index-matched control group. Improvements in VO2 max (14.1 +/- 11.3 and 16.1 +/- 14.2%; both P < 0.001) and insulin sensitivity (0.6 +/- 1.4 and 1.0 +/- 2.1 mg x kg(-1) x min(-1); both P < 0.05) were comparable in offspring and control subjects. However, VO2 max and insulin sensitivity in offspring were not related at baseline as in the controls (r = 0.009, P = 0.96 vs. r = 0.67, P = 0.002). Likewise, in offspring, exercise-induced changes in VO2 max did not correlate with changes in insulin sensitivity as opposed to controls (r = 0.06, P = 0.76 vs. r = 0.57, P = 0.01). Skeletal muscle oxidative capacity tended to be lower in offspring at baseline but improved equally in both offspring and controls in response to exercise training (delta citrate synthase enzyme activity 26 vs. 20%, and delta cyclooxygenase enzyme activity 25 vs. 23%. Skeletal muscle fiber morphology and capillary density were comparable between groups at baseline and did not change significantly with exercise training. In conclusion, this study shows that first-degree relatives of type 2 diabetic patients respond normally to endurance exercise in terms of changes in VO2 max and insulin sensitivity. However, the lack of a correlation between the VO2 max and insulin sensitivity in the first-degree relatives of type 2 diabetic patients indicates that skeletal muscle adaptations are dissociated from the improvement in VO2 max. This could indicate that, in first-degree relatives, improvement of insulin sensitivity is dissociated from muscle mitochondrial functions.  相似文献   

16.
This study sought to determine whether a 12-week intermittent (INT; 2 x 15 min.d(-1)) exercise program yielded similar improvements in cardiovascular health and fitness, compared with a traditional 12-week, 30-minute continuous (CON; 1 x 30 min.d(-1)) exercise program. A second purpose was to determine the effects of switching exercise programs and continuing training for an additional 12 weeks. Twenty women and 17 men, (age 48.8 +/- 9.0 years) were divided randomly into 2 groups: INT (n = 20) and CON (n = 17). Aerobic exercise was performed 4 d.wk(-1) for 12 weeks. Subjects then crossed over to the opposite training program for an additional 12 weeks of training. Subjects exercised incrementally for weeks 1-4 and training was conducted at 70-80% heart rate reserve for weeks 5-24. Both groups showed comparable exercise adherence, completing 96.6 +/- 12.2% (CON) and 96.3% +/- 17.7% (INT) of the prescribed exercise time. The INT walked at a lower percentage of Vo(2)max, maximum heart rate, systolic blood pressure, and diastolic blood pressure (p < 0.05). Maximal oxygen consumption increased by 4.5% in CON and by 8.7% in INT. Following the second 12 weeks, Vo(2)max increased by 3.6 and 7.7% in CON and INT, respectively. Treadmill test time increased by 41 seconds in CON (p < 0.05) and 71 seconds in INT (p < 0.05) after 12 weeks of training. High-density lipoproteins significantly increased in the INT group following the first 12 weeks of training. This study suggests that an INT exercise program, which is incremental in nature, provides comparable, and in some cases greater, health and fitness benefits than those expected following traditional CON exercise training.  相似文献   

17.
Enhanced cardiac beta(2)-adrenoceptor (beta(2)-AR) responsiveness can increase susceptibility to ventricular fibrillation (VF). Exercise training can decrease cardiac sympathetic activity and could, thereby, reduce beta(2)-AR responsiveness and decrease the risk for VF. Therefore, dogs with healed myocardial infarctions were subjected to 2 min of coronary occlusion during the last minute of a submaximal exercise test; VF was observed in 20 susceptible, but not in 13 resistant, dogs. The dogs were then subjected to a 10-wk exercise-training program (n = 9 susceptible and 8 resistant) or an equivalent sedentary period (n = 11 susceptible and 5 resistant). Before training, the beta(2)-AR antagonist ICI-118551 (0.2 mg/kg) significantly reduced the peak contractile (by echocardiography) response to isoproterenol more in the susceptible than in the resistant dogs: -45.5 +/- 6.5 vs. -19.2 +/- 6.3%. After training, the susceptible and resistant dogs exhibited similar responses to the beta(2)-AR antagonist: -12.1 +/- 5.7 and -16.2 +/- 6.4%, respectively. In contrast, ICI-118551 provoked even greater reductions in the isoproterenol response in the sedentary susceptible dogs: -62.3 +/- 4.6%. The beta(2)-AR agonist zinterol (1 microM) elicited significantly smaller increases in isotonic shortening in ventricular myocytes from susceptible dogs after training (n = 8, +7.2 +/- 4.8%) than in those from sedentary dogs (n = 7, +42.8 +/- 5.8%), a response similar to that of the resistant dogs: +3.0 +/- 1.4% (n = 6) and +3.2 +/- 1.8% (n = 5) for trained and sedentary, respectively. After training, VF could no longer be induced in the susceptible dogs, whereas four sedentary susceptible dogs died during the 10-wk control period and VF could still be induced in the remaining seven animals. Thus exercise training can restore cardiac beta-AR balance (by reducing beta(2)-AR responsiveness) and could, thereby, prevent VF.  相似文献   

18.
Growth hormone deficiency (GHD) is defined biochemically as a response to hypoglycaemia with a peak GH concentration of less than 5 microg/l. The 'GHD syndrome' is a range of psychological and physical symptoms that are associated with GHD, which include increased central adiposity, decreased bone mineral density, abnormal lipid profiles, decreased cardiovascular performance, reduced lean body mass (LBM), social isolation, depressed mood and increased anxiety. Importantly, the combination of physical and psychological problems can often result in a reduced quality of life. A number of trials have shown that GH replacement therapy can lead to a substantial improvement in GHD associated symptoms. Following up to 12 months of treatment with GH, LBM increased, left ventricular systolic function improved and the mean volume of adipose tissue fell. After only 4 months of treatment, a rise in exercise capacity was recorded, and after 2 years' treatment, isokinetic and isometric muscle strength had normalized in proximal muscle groups. Feelings of well-being and vitality also improved significantly. However, studies on the effects of treatment on insulin sensitivity in GH-deficient patients have had conflicting results. In this paper, we will discuss the long-term consequences of GHD and the effects of GH replacement therapy.  相似文献   

19.
The purpose of this study was to examine the effects of a 5-wk unilateral, isometric strength-training program on plasticity in the spinal Hoffmann (H-) reflex in both the trained and untrained legs. Sixteen participants, 22-42 yr old, were assigned to either a control (n = 6) or an exercise group (n = 10). Both groups were tested for plantar flexion maximal voluntary isometric contractions (MVIC) and soleus H-reflex amplitude in both limbs, at the beginning and at the end of a 5-wk interval. Participants in the exercise group showed significantly increased MVIC in both legs after training (P < 0.05), whereas strength was unchanged in the control group for either leg. Subjects in the exercise group displayed increased (P < 0.05) H-reflex amplitudes on the ascending limb of the recruitment curve (at an equivalent M wave of 5% of the maximal M wave, H(A)) only in the trained leg. Maximal H-reflex and M-wave remained unchanged with training. Increased amplitude of H(A) in the trained limb concurrent with increased strength suggests that spinal mechanisms may underlie the changes in strength, possibly because of increased alpha-motoneuronal excitability or reduced presynaptic inhibition. Despite a similar increase in strength in the contralateral limb of the exercise group, H(A) amplitude was unchanged. We conclude that the cross-education effect of strength training may be due to supraspinal to a greater extent than spinal mechanisms.  相似文献   

20.
Evidence suggests that consumption of over-the-counter cyclooxygenase (COX) inhibitors may interfere with the positive effects that resistance exercise training has on reversing sarcopenia in older adults. This study examined the influence of acetaminophen or ibuprofen consumption on muscle mass and strength during 12 wk of knee extensor progressive resistance exercise training in older adults. Thirty-six individuals were randomly assigned to one of three groups and consumed the COX-inhibiting drugs in double-blind placebo-controlled fashion: placebo (67 ± 2 yr; n = 12), acetaminophen (64 ± 1 yr; n = 11; 4 g/day), and ibuprofen (64 ± 1 yr; n = 13; 1.2 g/day). Compliance with the resistance training program (100%) and drug consumption (via digital video observation, 94%), and resistance training intensity were similar (P > 0.05) for all three groups. Drug consumption unexpectedly increased muscle volume (acetaminophen: 109 ± 14 cm(3), 12.5%; ibuprofen: 84 ± 10 cm(3), 10.9%) and muscle strength (acetaminophen: 19 ± 2 kg; ibuprofen: 19 ± 2 kg) to a greater extent (P < 0.05) than placebo (muscle volume: 69 ± 12 cm(3), 8.6%; muscle strength: 15 ± 2 kg), when controlling for initial muscle size and strength. Follow-up analysis of muscle biopsies taken from the vastus lateralis before and after training showed muscle protein content, muscle water content, and myosin heavy chain distribution were not influenced (P > 0.05) by drug consumption. Similarly, muscle content of the two known enzymes potentially targeted by the drugs, COX-1 and -2, was not influenced (P > 0.05) by drug consumption, although resistance training did result in a drug-independent increase in COX-1 (32 ± 8%; P < 0.05). Drug consumption did not influence the size of the nonresistance-trained hamstring muscles (P > 0.05). Over-the-counter doses of acetaminophen or ibuprofen, when consumed in combination with resistance training, do not inhibit and appear to enhance muscle hypertrophy and strength gains in older adults. The present findings coupled with previous short-term exercise studies provide convincing evidence that the COX pathway(s) are involved in the regulation of muscle protein turnover and muscle mass in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号