首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamics of carbon monoxide binding with neuronal nitric oxide synthase.   总被引:1,自引:0,他引:1  
The dynamics of CO rebinding with neuronal NO synthase (nNOS) following laser flash photolysis have been investigated from 293 to 77 K in the absence and presence of its substrate L-arginine. The distribution functions of the rate parameters P(k) and of the activation enthalpy P(H) were determined using the maximum entropy method. In a fluid solvent near room temperature, bimolecular rebinding is biphasic, as previously reported by several groups. However, measurement of the rotational correlation time shows that the apparent biphasic rebinding is not relevant to the genuine dynamics of NOS. In addition to native dimeric nNOS, another species (possibly aggregated or partially unfolded conformation) with different hydrodynamic characteristics is responsible for the faster rebinding process. In a rigid environment at low temperature, the geminate internal rebinding is not affected by the presence of the nonnative species. nNOS exhibits a bimodal distribution of CO activation enthalpy with P(H) consisting of two distinct bands with temperature-dependent amplitudes down to 77 K. The similarity of these findings with those recently reported for cytochromes P-450 suggests a common hierarchical organization of conformational substates, with a splitting of each conformational substate into a doublet. Thus, thiolate-coordinated heme proteins are in clear contrast to histidine-coordinated oxygen-transport heme proteins. The present results with nNOS provide additional support to previous arguments incriminating the thiolate ligand as responsible for the splitting of conformational substates.  相似文献   

2.
In this work we show that ligand migration and active site conformational relaxation can occur independently of each other in hemoproteins. The complicated kinetics of carbon monoxide rebinding with cytochrome P450cam display up to five distinct processes between 77 K and 300 K. They were disentangled by using a combination of three approaches: 1), the competition of the ligand with xenon for the occupation of internal protein cavities; 2), the modulation of the amount of distal steric hindrance within the heme pocket by varying the nature of the substrate; and 3), molecular mechanics calculations to support the proposed heme-substrate relaxation mechanism and to seek internal cavities. In cytochrome P450cam, active site conformational relaxation results from the displacement of the substrate toward the heme center upon photodissociation of the ligand. It is responsible for the long, puzzling bimodal nature of the rebinding kinetics observed down to 77 K. The relaxation rate is strongly substrate-dependent. Ligand migration is slower and is observed only above 135 K. Migration and return rates are independent of the substrate.  相似文献   

3.
Substrate binding to cytochrome P450cam is generally considered to be a two-step process. The first step corresponds to the entrance of the substrate, camphor, into the heme pocket. The second step corresponds to a spin transition (low spin-->high spin) of the iron in the protein-substrate complex. This spin transition is related to the mobility of the substrate inside the active site [Biochim Biophys Acta 1338 (1997) 77]. Potassium cations (K(+)) have a specific effect on the spin equilibrium. This is generally attributed to the K(+) ion-induced conformational change of tyrosine 96, the hydroxyl group of which is hydrogen bonded to the keto group of camphor and results in optimum substrate orientation and reduced mobility of this substrate in the active site. In the present paper, we show that K(+) not only affects the substrate-Tyr 96 couple, but acts more globally since K(+) effects are also observed in the Tyr96Phe mutant as well as in complexes with camphor-analogues. Large compounds, that fit well in the heme pocket and bind with higher affinity than camphor, display high spin contents that are less dependent on the presence of K(+). In contrast, K(+) has a significant effect on the high spin content of substrate-cytochrome P450cam complexes with looser interactions. We conclude that large compounds with higher affinities than camphor have more van der Waals contacts with the active site residues. Their mobilities are then reduced and less dependent on the presence of K(+). In this study, we also explored, for comparison, the K(+) effect on the spin transition state of another member of the P450 superfamily, cytochrome P450lin. This effect is not as strong as those observed for cytochrome P450cam. Even though the spin equilibrium does not change dramatically in the presence of K(+) or Na(+), the value of the dissociation constant (K(d)) for linalool binding is significantly affected by ionic strength. Analysis of the thermodynamic parameters for the linalool binding strongly suggests that, similarly to our previous finding for cytochrome P450cam, electrostatic gates participate in the control of substrate access.  相似文献   

4.
The high-pressure stopped-flow technique is applied to study the CO binding in cytochrome P450cam (P450cam) bound with homologous substrates (1R-camphor, camphane, norcamphor and norbornane) and in the substrate-free protein. The activation volume DeltaV # of the CO on-rate is positive for P450cam bound with substrates that do not contain methyl groups. The kon rate constant for these substrate complexes is in the order of 3 x 10(6) M(-1) x s(-1). In contrast, P450cam complexed with substrates carrying methyl groups show a negative activation volume and a low kon rate constant of approximately 3 x 10(4) M(-1) x s(-1). By relating kon and DeltaV # with values for the compressibility and the influx rate of water for the heme pocket of the substrate complexes it is concluded that the positive activation volume is indicative for a loosely bound substrate that guarantees a high solvent accessibility for the heme pocket and a very compressible active site. In addition, subconformers have been found for the substrate-free and camphane-bound protein which show different CO binding kinetics.  相似文献   

5.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

6.
Prasad S  Mitra S 《Biochemistry》2002,41(49):14499-14508
The role of protein structural flexibility and substrate dynamics in catalysis by cytochrome P450 enzymes is an area of current interest. We have addressed these in cytochrome P450(cam) (P450(cam)) and its Y96A mutant with camphor and its related compounds using fluorescence spectroscopy. Previously [Prasad et al. (2000) FEBS Lett. 477, 157-160], we provided experimental support to dynamic fluctuations in P450(cam), and substrate access into the active site region via the channel next to the flexible F-G helix-loop-helix segment. In the investigation described here, we show that the dynamic fluctuations in the enzyme are substrate dependent as reflected by tryptophan fluorescence quenching experiments. The orientation of tryptophan relative to heme (kappa(2)) for W42 obtained from time-resolved tryptophan fluorescence measurements show variation with type of substrate bound to P450(cam) suggesting regions distant from heme-binding site are affected by physicochemical and steric characteristics/protein-substrate interactions of P450(cam) active site. We monitored substrate dynamics in the active site region of P450(cam) by time-resolved substrate anisotropy measurements. The anisotropy decay of substrates bound to P450(cam) indicate that mobility of substrates is modulated by physicochemical and steric characteristics/protein-substrate interactions of local active site structure, and provides an understanding of factors controlling observed hydroxylated products for substrate bound P450(cam) complexes. The present study shows that P450(cam) local and peripheral structural flexibility and heterogeneity along with substrate mobility play an important role in regulating substrate binding orientation during catalysis and accommodating diverse range of substrates within P450(cam) heme pocket.  相似文献   

7.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.  相似文献   

8.
High pressure Fourier transform infrared (FT-IR) spectroscopy is performed for the first time to analyse the active site of inducible nitric oxide synthase (iNOSox) using the carbon monoxide (CO) heme iron ligand stretch mode (nuCO) as spectroscopic probe. A membrane-driven sapphire anvil high-pressure cell is used. Three major conformational substates exist in substrate-free iNOSox which are characterized by nuCO at approximately 1936, 1945 and 1952 cm(-1). High pressure favors the 1936 cm(-1) substate with a volume difference to the 1945 substate of approximately -21 cm3/mol. The pressure induced cytochrome P420 formation with a reaction volume of approximately -80 cm3/mol is observed. Arginine binding produces a very low nuCO at approximately 1905 cm(-1) caused by the H-bond from the substrate to CO. nuCO for the substates in the substrate-free and arginine-bound proteins shift linearly with pressure which is qualitatively similar to the observation on cytochrome P450cam. The slightly smaller positive slope of the shift in substrate-free iNOSox compared to substrate-free P450cam is interpreted as a slightly lesser compressible heme pocket. In contrast, the significant slower negative slope for arginine-bound iNOSox compared to camphor-bound P450cam results from the different kind of interactions to the CO ligand (electrostatic interaction in P450cam, H-bond in iNOSox).  相似文献   

9.
Cytochrome P-450cam reacts with phenyldiazene (PhN = NH), or less efficiently with phenylhydrazine, to give a catalytically inactive complex with an absorption maximum at 474 nm. The prosthetic group extracted anaerobically from the inactivated protein has the spectroscopic properties of a sigma phenyl-iron complex and rearranges, on exposure to air and acid, to an approximately equal mixture of the four N-phenylprotoporphyrin IX regioisomers. The crystal structure of the intact protein complex, refined at 1.9-A resolution to an R factor of 20%, confirms that the phenyl group is directly bonded through one of its carbons to the iron atom. The phenyl ring is tilted from the heme normal by about 10 degrees in the opposite direction from that in which carbon monoxide tilts when bound to P-450cam. Camphor, the natural substrate for P-450cam, is larger than a phenyl group and hydrogen bonds to Tyr 96, the only hydrophilic residue near the active site. Electron density in the active site in addition to that contributed by the phenyl group suggests that two water molecules occupy part of the camphor binding site but are not within hydrogen-bonding distance of Tyr 96. As observed in a previous crystallographic study of inhibitor-P-450cam complexes [Poulos, T.L., & Howard, A.J. (1987) Biochemistry 26, 8165-8174], there are large changes in both the atomic positions and mobilities of the residues in the proposed substrate access channel region of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ferrous-carbon monoxide bound form of cytochrome P450cam (CO-P450cam) has two infrared (IR) CO stretching bands at 1940 and 1932 cm(-1). The former band is dominant (>95% in area) for CO-P450cam free of putidaredoxin (Pdx), while the latter band is dominant (>95% in area) in the complex of CO-P450cam with reduced Pdx. The binding of Pdx to CO-P450cam thus evokes a conformational change in the heme active site. To study the mechanism involved in the conformational change, surface amino acid residues Arg79, Arg109, and Arg112 in P450cam were replaced with Lys, Gln, and Met. IR spectroscopic and kinetic analyses of the mutants revealed that an enzyme that has a larger 1932 cm(-1) band area upon Pdx-binding has a larger catalytic activity. Examination of the crystal structures of R109K and R112K suggested that the interaction between the guanidium group of Arg112 and Pdx is important for the conformational change. The mutations did not change a coupling ratio between the hydroxylation product and oxygen consumed. We interpret these findings to mean that the interaction of P450cam with Pdx through Arg112 enhances electron donation from the proximal ligand (Cys357) to the O-O bond of iron-bound O(2) and, possibly, promotes electron transfer from reduced Pdx to oxyP450cam, thereby facilitating the O-O bond splitting.  相似文献   

11.
With pulsed nuclear magnetic resonance techniques, the effects of various complexes of ferric cytochrome P-450 on the relaxation rate of bulk solution water protons have been determined. For the camphor, metyrapone, and 4-phenylimidazole complexes, the experimental results are consistent with outer sphere relaxation effects. However, for the substrate-free enzyme, the magnitude and temperature dependence of the paramagnetic relaxation effects indicate the presence of exchangeable protons in the coordination sphere of the heme iron atom. The exchange rate (9.3 x 10(4) S-1 at 25 degrees) and the thermodynamic activation parameters for the exchange process are very similar to those of acid metmyoglobin and acid methemoglobin, suggesting that a water molecule, and not an amino acid residue of the protein, coordinates to the ferric cation of the enzyme in the absence of added substrate or ligands. From the equations appropriate for coordination sphere protons, the distance between these protons and the ferric heme cation was evaluated as 2.1 A, which further supports the interpretation. These experimental results demonstrate that the solvent accessibility of the ferric cation of substrate-free cytochrome P-450 is significantly reduced by the binding of substrate or nitrogenous ligands to the hemeprotein.  相似文献   

12.
Crystal structure of substrate-free Pseudomonas putida cytochrome P-450   总被引:6,自引:0,他引:6  
T L Poulos  B C Finzel  A J Howard 《Biochemistry》1986,25(18):5314-5322
The crystal structure of Pseudomonas putida cytochrome P-450cam in the substrate-free form has been refined at 2.20-A resolution and compared to the substrate-bound form of the enzyme. In the absence of the substrate camphor, the P-450cam heme iron atom is hexacoordinate with the sulfur atom of Cys-357 providing one axial heme ligand and a water molecule or hydroxide ion providing the other axial ligand. A network of hydrogen-bonded solvent molecules occupies the substrate pocket in addition to the iron-linked aqua ligand. When a camphor molecule binds, the active site waters including the aqua ligand are displaced, resulting in a pentacoordinate high-spin heme iron atom. Analysis of the Fno camphor - F camphor difference Fourier and a quantitative comparison of the two refined structures reveal that no detectable conformational change results from camphor binding other than a small repositioning of a phenylalanine side chain that contacts the camphor molecule. However, large decreases in the mean temperature factors of three separate segments of the protein centered on Tyr-96, Thr-185, and Asp-251 result from camphor binding. This indicates that camphor binding decreases the flexibility in these three regions of the P-450cam molecule without altering the mean position of the atoms involved.  相似文献   

13.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

14.
During the monooxygenase reaction catalyzed by cytochrome P450cam (P450cam), a ternary complex of P450cam, reduced putidaredoxin, and d-camphor is formed as an obligatory reaction intermediate. When ligands such as CO, NO, and O2 bind to the heme iron of P450cam in the intermediate complex, the EPR spectrum of reduced putidaredoxin with a characteristic signal at 346 millitesla at 77 K changed into a spectrum having a new signal at 348 millitesla. The experiment with O2 was carried out by employing a mutant P450cam with Asp251 --> Asn or Gly where the rate of electron transfer from putidaredoxin to oxyferrous P450cam is considerably reduced. Such a ligand-induced EPR spectral change of putidaredoxin was also shown in situ in Pseudomonas putida. Mutations introduced into the neighborhood of the iron-sulfur cluster of putidaredoxin revealed that a Ser44 --> Gly mutation mimicked the ligand-induced spectral change of putidaredoxin. Arg109 and Arg112, which are in the putative putidaredoxin binding site of P450cam, were essential for the spectral changes of putidaredoxin in the complex. These results indicate that a change in the P450cam active site that is the consequence of an altered spin state is transmitted to putidaredoxin within the ternary complex and produces a conformational change of the 2Fe-2S active center.  相似文献   

15.
P S Stayton  S G Sligar 《Biochemistry》1990,29(32):7381-7386
Cytochrome P-450cam cationic surface charges at Lys 344, Arg 72, and Lys 392 have been altered by site-directed mutagenesis techniques. The residues at Lys 344 and Arg 72 were previously suggested as salt bridge contacts in the cytochrome b5-cytochrome P-450cam association complex and implicated in the physiological putidaredoxin-cytochrome P-450cam complex [Stayton, P. S., Poulos, T. L., & Sligar, S. G. (1989) Biochemistry 28, 8201-8205]. Mutations to neutralize the basic charge at Arg 72 (R72Q) and to both neutralize and reverse the charge at Lys 344 (K344Q, K344E) resulted in alteration of NADH oxidation rates in the reconstituted physiological electron-transfer system, which is rate limited by putidaredoxin-cytochrome P-450cam electron transfer. The steady-state Vmax values were apparently unperturbed, suggesting that the observed rate differences were largely attributable to Km effects. The Km values observed for the K344Q (24 microM) and K344E (32 microM) mutants are in the direction expected for neutralization and reversal of a salt bridge charge interaction. A control mutation at a basic surface charge located away from the proposed site of interaction, Lys 392 (K392Q), resulted in overall activities quantitated by NADH oxidation rates that are similar to that of wild-type cytochrome P-450cam. Calculation of the cytochrome P-450cam electrostatic field revealed a patch of positive potential at the modeled cytochrome b5 interaction site lying directly above the nearest proximal approach to the buried heme prosthetic group. These results provide experimental and theoretical evidence for the modeled cytochrome P-450cam binding site implicated in both cytochrome b5 and putidaredoxin association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Electron paramagnetic resonance detectable states of cytochrome P-450cam   总被引:5,自引:0,他引:5  
J D Lipscomb 《Biochemistry》1980,19(15):3590-3599
Cytochrome P-450cam is a low-spin Fe3+hemoprotein (g = 2.45, 2.26, and 1.91) which is made 60% high spin (g = 7.85, 3.97, and 1.78) at 12 K by the addition of 1 mol of substrate per mol of enzyme. Low-temperature EPR spectra show that the low-spin fraction of substrate-bound P-450cam contains two magnetic species. The majority species has an unusual EPR spectrum (g = 2.42, 2.24, and 1.97) which connot be simulated by using the range of crystal field parameters known for other heme proteins. The minority species has the same g values as substrate-free enzyme. Both low-spin species show Curie law temperature dependence below 50 K and have similar saturation behavior. Above 50 K the g = 2.42, 2.24, and 1.97 species rapidly loses signal intensity. The distribution of low-spin species is pH dependent (apparent pKa = 6.2) with the g = 2.42, 2.24, and 1.97 magnetic species favored at high pH. The substrate binding stoichiometry and the equilibria observed in the low-spin fraction suggest that there are not multiple protein forms of cytochrome P-450cam. Putidaredoxin and other effector molecules which specifically catalyze hydroxylation convert either the high-spin or the g = 2.42, 2.24, and 1.97 low-spin species to another new magnetic species (g = 2.47, 2.26, and 1.91). This species is only seen in the presence of substrate, and its stability reflects the catalytic potency of the effector molecule. The EPR and UV-visible spectra of cytochrome P-420 depend upon the manner in which the P-420 is generated. Incubation with acetone or reaction with N-ethylmaleimide or diethyl pyrocarbonate generates P-420 with different spectral characteristics. Through identification of active-site amino acids by chemical modification and comparison with porphyrin model complexes, the range of ligands likely to participate in each of the EPR detectable species is assigned. Mechanisms of interconversion of these species and their bearing on catalysis are discussed.  相似文献   

17.
During investigations of the structural character of a mutant P-450cam where Glu-286 is replaced with lysine, we obtained evidence of a hydrogen bond network between helix K and the heme group via helix L of P-450cam. This mutant protein loses the ability to maintain the heme group in a proper position, possibly due to a break in the hydrogen bond network.  相似文献   

18.
19.
Lee DS  Park SY  Yamane K  Obayashi E  Hori H  Shiro Y 《Biochemistry》2001,40(9):2669-2677
Alkyl-isocyanides are able to bind to both ferric and ferrous iron of the heme in cytochrome P450, and the resulting complexes exhibit characteristic optical absorption spectra. While the ferric complex gives a single Soret band at 430 nm, the ferrous complex shows double Soret bands at 430 and 450 nm. The ratio of intensities of the double Soret bands in the ferrous isocyanide complex of P450 varies, as a function of pH, ionic strength, and the origin of the enzyme. To understand the structural origin of these characteristic spectral features, we examined the crystallographic and spectrophotometric properties of the isocyanide complexes of Pseudomonas putida cytochrome P450cam and Fusarium oxysporum cytochorme P450nor, since ferrous isocyanide complex of P450cam gives a single Soret band at 453 nm, while that of P450nor gives one at 427 nm. Corresponding to the optical spectra, we observed C-N stretching of a ferrous iron-bound isocyanide at 2145 and 2116 cm(-1) for P450nor and P450cam, respectively. The crystal structures of the ferric and ferrous n-butyl isocyanide complexes of P450cam and P450nor were determined. The coordination structure of the fifth Cys thiolate was indistinguishable for the two P450s, but the coordination geometry of the isocyanide was different for the case of P450cam [d(Fe-C) = 1.86 A, angleFe-C-N = 159 degrees ] versus P450nor [d(Fe-C) = 1.85 A, angleFe-C-N = 175 degrees ]. Another difference in the structures was the chemical environment of the heme pocket. In the case of P450cam, the iron-bound isocyanide is surrounded by some hydrophobic side chains, while, for P450nor, it is surrounded by polar groups including several water molecules. On the basis of these observations, we proposed that the steric factors and/or the polarity of the environment surrounding the iron-bound isocyanide significantly effect on the resonance structure of the heme(Fe)-isocyanide moiety and that differences in these two factors are responsible for the spectral characteristics for P450s.  相似文献   

20.
Nonequilibrium conformational states in cytochrome P-450 in the presence and absence of substrates formed by reduction at subzero temperatures with hydrates electrons were obtained and characterized by their absorption spectra. Different absorption spectra between the relaxed (298 K) and the non-relaxed enzyme forms (77 K) indicate conformational changes proceeding in the relaxed form after reduction of the heme iron which lead to altered interactions between the active centre and its environment in the protein. The two maxima of the nonequilibrium form of cytochrome P-450 without substrate in the visible absorption spectrum (alpha-band, beta-band) and the ratio of their intensities indicate the low-spin character of the heme iron. These spectral properties give evidence for a reduced cytochrome P-450 with two heme-linked axial ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号