首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sister chromatid cohesion provides the mechanistic basis, together with spindle microtubules, for generating tension between bioriented chromosomes in metaphase. Pericentric chromatin forms an intramolecular loop that protrudes bidirectionally from the sister chromatid axis. The centromere lies on the surface of the chromosome at the apex of each loop. The cohesin and condensin structural maintenance of chromosomes (SMC) protein complexes are concentrated within the pericentric chromatin, but whether they contribute to tension-generating mechanisms is not known. To understand how pericentric chromatin is packaged and resists tension, we map the position of cohesin (SMC3), condensin (SMC4), and pericentric LacO arrays within the spindle. Condensin lies proximal to the spindle axis and is responsible for axial compaction of pericentric chromatin. Cohesin is radially displaced from the spindle axis and confines pericentric chromatin. Pericentric cohesin and condensin contribute to spindle length regulation and dynamics in metaphase. Together with the intramolecular centromere loop, these SMC complexes constitute a molecular spring that balances spindle microtubule force in metaphase.  相似文献   

2.
In contrast to those of metaphase chromosomes, the shape, length, and architecture of human interphase chromosomes are not well understood. This is mainly due to technical problems in the visualization of interphase chromosomes in total and of their substructures. We analyzed the structure of chromosomes in interphase nuclei through use of high-resolution multicolor banding (MCB), which paints the total shape of chromosomes and creates a DNA-mediated, chromosome-region-specific, pseudocolored banding pattern at high resolution. A microdissection-derived human chromosome 5-specific MCB probe mixture was hybridized to human lymphocyte interphase nuclei harvested for routine chromosome analysis, as well as to interphase nuclei from HeLa cells arrested at different phases of the cell cycle. The length of the axis of interphase chromosome 5 was determined, and the shape and MCB pattern were compared with those of metaphase chromosomes. We show that, in lymphocytes, the length of the axis of interphase chromosome 5 is comparable to that of a metaphase chromosome at 600-band resolution. Consequently, the concept of chromosome condensation during mitosis has to be reassessed. In addition, chromosome 5 in interphase is not as straight as metaphase chromosomes, being bent and/or folded. The shape and banding pattern of interphase chromosome 5 of lymphocytes and HeLa cells are similar to those of the corresponding metaphase chromosomes at all stages of the cell cycle. The MCB pattern also allows the detection and characterization of chromosome aberrations. This may be of fundamental importance in establishing chromosome analyses in nondividing cells.  相似文献   

3.
Two different condensin complexes make distinct contributions to metaphase chromosome architecture in vertebrate cells. We show here that the spatial and temporal distributions of condensins I and II are differentially regulated during the cell cycle in HeLa cells. Condensin II is predominantly nuclear during interphase and contributes to early stages of chromosome assembly in prophase. In contrast, condensin I is sequestered in the cytoplasm from interphase through prophase and gains access to chromosomes only after the nuclear envelope breaks down in prometaphase. The two complexes alternate along the axis of metaphase chromatids, but they are arranged into a unique geometry at the centromere/kinetochore region, with condensin II enriched near the inner kinetochore plate. This region-specific distribution of condensins I and II is severely disrupted upon depletion of Aurora B, although their association with the chromosome arm is not. Depletion of condensin subunits causes defects in kinetochore structure and function, leading to aberrant chromosome alignment and segregation. Our results suggest that the two condensin complexes act sequentially to initiate the assembly of mitotic chromosomes and that their specialized distribution at the centromere/kinetochore region may play a crucial role in placing sister kinetochores into the back-to-back orientation.  相似文献   

4.
The applicability of Feulgen-based parameters to detect variant metaphase chromosomes involved in deletions or translocations, was investigated and algorithms developed to compute such parameters. This report is focused primarily on the magnitude of the errors involved during the prerequisite procedures of photography, measurement and computation. Measurements were performed by stage-scanning of photographic negatives of Feulgen-stained metaphases. In the scanned images the initial chromosome boundaries were obtained by thresholding, while definite chromosomal areas and local background values were obtained by expansion of the initial boundaries. The integrated density profiles and the relative DNA content were computed for the individual chromosomes (straight as well as bent). Total DNA content, DNA arm ratio, as well as length and centromere index can be obtained from the profile. It was shown that under such conditions the experimental errors associated with the measurements are small compared to biologic variations (e.g., differences between homologues) and that the procedures applied allow to detect polymorphisms. In addition to this, mean and standard deviations of both DNA and length parameters are given for metaphases of five subjects. Comparison of the applicability of DNA and length parameters is realized by a classification experiment.  相似文献   

5.
Summary A study is presented of the possibilities and limitations of semi-automated karyotype analysis on the basis of chromosome length and centromere index. A number of computer programs have been developed for 1) quick and precise measurements of chromosome arm length with the help of a graphics tablet, 2) computing (relative) length and centromere index and statistical analyses of the data, and 3) representation of these chromosomal parameters in two-dimensional scattergrams. An ellipse representing 95% of the probability mass is drawn around the bivariate mean of each chromosome. The size and orientation of the axes are calculated from repeated measurements of the chromosomes of one metaphase plate. If there is a correlation between length and centromere index, which is often the case, the axes of the ellipse are tilted. Incorporation of such a covariance analysis proved to be of great importance for an accurate karyotype analysis. The Computer Aided Karyotyping package does not contain routines for an automated classification of the chromosomes. The main reason is that the variation in length and centromere index of a given chromosome in different cells is often much larger than the variation between nonhomologous chromosomes. In addition, it was our aim to develop universal karyotyping aids which can be used regardless of the species studied.  相似文献   

6.
In the course of a chromosome fragility investigation on the cancer prone hereditary disorder xeroderma pigmentosum, a low proportion of cells with a 47,XY,+21 karyotype was found in lymphocyte cultures of a patient not showing any Down syndrome symptom. The presence of trisomy 21 mosaicism was demonstrated also in peripheral blood of the healthy father and confirmed by "chromosome painting" that allowed a rapid detection of chromosomes 21 on metaphase cells and interphase nuclei. The trisomic cell line was not detected in fibroblast cultures. The analysis of chromosome 21 heteromorphism indicated that in both subjects the mosaic could result from either a diploid or an aneuploid zygote. Since in the trisomic cell line of the father and the son the extra chromosome 21 seems to be the same, a predisposition toward mitotic errors (non-disjunction or anaphase lagging) may be postulated, leading to the recurrent gain or loss of a specific chromosome 21. In order to test the hypothesis of an abnormal mitotic behaviour of the chromosome 21, we investigated the centromere separation index and the DNA restriction pattern in Southern blots probed with satellite DNA sequences specific for chromosome 21 centromere. Both the approaches did not reveal any peculiar feature that may account for the genetically determined proneness to mitotic error observed in the family.  相似文献   

7.
Surface-spread pachytene chromosomes are several times the length of metaphase chromosomes and the decondensed chromatin loops are attached to a well-defined axis (Weith and Traut, 1980). This arrangement permits detailed DNA sequence localization by in situ hybridization. We show that two probes to low-frequency repeated sequences (20 to 50 copies) which locate the centromere proximal in the mouse X metaphase chromosome between bands A1 and A3 (Disteche et al., 1985) and which map 5.5 cM apart (Disteche et al., 1989), hybridize to two distinct chromatin regions 3 to 5 microns apart on a 25 microns long pachytene X chromosome core.  相似文献   

8.
The Athena semi-automated karyotyping system   总被引:1,自引:0,他引:1  
In this article we describe Athena, a system that provides for semi-automated karyotyping of metaphase spreads. The system is based upon the Macintosh II computer. It uses software that is written entirely in C and consists of approximately 200 Kbytes of executable code. Athena provides automated segmentation of metaphase images into individual chromosomes, automated measurements on each banded chromosome, and automated classification into the standard Paris-convention karyotype. Furthermore, the system provides the ability to construct one or more chromosome data bases to represent the types of metaphase spreads and staining techniques that may be used in a given laboratory. Because we believe that it is impossible to construct a system that can achieve perfect segmentation, perfect separation of touching and overlapping chromosomes, perfect localization of the centromeres, and perfect classification, the system offers the possibility for interaction at each of the above stages using the well-accepted Macintosh user interface.  相似文献   

9.
10.
11.
We have identified a novel human centromere-associated protein by preparing monoclonal antibodies against a fraction of HeLa chromosome scaffold proteins enriched for centromere/kinetochore components. One monoclonal antibody (mAb177) specifically stains the centromere region of mitotic human chromosomes and binds to a novel, approximately 250-300 kd chromosome scaffold associated protein named CENP-E. In cells progressing through different parts of the cell cycle, the localization of CENP-E differed markedly from that observed for the previously identified centromere proteins CENP-A, CENP-B, CENP-C and CENP-D. In contrast to these antigens, no mAb177 staining is detected during interphase, and staining first appears at the centromere region of chromosomes during prometaphase. This association with chromosomes remains throughout metaphase but is redistributed to the midplate at or just after the onset of anaphase. By telophase, the staining is localized exclusively to the midbody. Microinjection of the mAb177 into metaphase cells blocks or significantly delays progression into anaphase, although the morphology of the spindle and the configuration of the metaphase chromosomes appear normal in these metaphase arrested cells. This demonstrates that CENP-E function is required for the transition from metaphase to anaphase.  相似文献   

12.
Mitotic Centromere-Associated Kinesin (MCAK) is a member of the kinesin-13 subfamily of kinesin-related proteins. In mitosis, this microtubule-depolymerising kinesin seems to be implicated in chromosome segregation and in the correction of improper kinetochore-microtubule interactions, and its activity is regulated by the Aurora-B kinase. However, there are no published data on its behaviour and function during mammalian meiosis. We have analysed by immunofluorescence in squashed mouse spermatocytes, the distribution and possible function of MCAK, together with Aurora-B, during both meiotic divisions. Our results demonstrate that MCAK and Aurora-B colocalise at the inner domain of metaphase I centromeres. Thus, MCAK shows a “cone”-like three-dimensional distribution beneath and surrounding the closely associated sister kinetochores. During the second meiotic division, MCAK and Aurora-B also colocalise at the inner centromere domain as a band that joins sister kinetochores, but only during prometaphase II in unattached chromosomes. During chromosome congression to the metaphase II plate, MCAK relocalises and appears as a ring below each sister kinetochore. Aurora-B also relocalises to appear as a ring surrounding and beneath kinetochores but during late metaphase II. Our results demonstrate that the redistribution of MCAK at prometaphase II/metaphase II centromeres depends on tension across the centromere and/or on the interaction of microtubules with kinetochores. We propose that the perikinetochoric rings of MCAK and Aurora-B define a novel transient centromere domain at least in mouse chromosomes during meiosis. We discuss the possible functions of MCAK at the inner centromere domain and at the perikinetochoric ring during both meiotic divisions.  相似文献   

13.
T Fukagawa  C Pendon  J Morris    W Brown 《The EMBO journal》1999,18(15):4196-4209
CENP-C is an evolutionarily conserved centromeric protein. We have used the chicken DT40 cell line to test the idea that CENP-C is sufficient as well as necessary for the formation of a functional centromere. We have compared the effects of disrupting the localization of CENP-C with those of inducibly overexpressing the protein. Removing CENP-C from the centromere causes disassembly of the centromere protein complex and blocks cells at the metaphase-anaphase junction. Overexpressed CENP-C is associated with an increase in errors of chromosome segregation and inhibits the completion of mitosis. However, the excess CENP-C does not disrupt the native centromeres detectably and does not associate with another conserved centromere protein, ZW10. The distribution of the excess CENP-C changes during the cell cycle. In metaphase, the excess CENP-C coats the chromosome arms. At the metaphase-anaphase transition, the excess CENP-C clusters, and during interphase it is present in large bodies which form around pre-existing centromeres which are also clustered. These results indicate that CENP-C is necessary but not sufficient for the formation of a functional centromere and suggest that the structure of CENP-C may be regulated during the cell cycle.  相似文献   

14.
ChromoShake is a three-dimensional simulator designed to find the thermodynamically favored states for given chromosome geometries. The simulator has been applied to a geometric model based on experimentally determined positions and fluctuations of DNA and the distribution of cohesin and condensin in the budding yeast centromere. Simulations of chromatin in differing initial configurations reveal novel principles for understanding the structure and function of a eukaryotic centromere. The entropic position of DNA loops mirrors their experimental position, consistent with their radial displacement from the spindle axis. The barrel-like distribution of cohesin complexes surrounding the central spindle in metaphase is a consequence of the size of the DNA loops within the pericentromere to which cohesin is bound. Linkage between DNA loops of different centromeres is requisite to recapitulate experimentally determined correlations in DNA motion. The consequences of radial loops and cohesin and condensin binding are to stiffen the DNA along the spindle axis, imparting an active function to the centromere in mitosis.  相似文献   

15.
T Haaf  P E Warburton  H F Willard 《Cell》1992,70(4):681-696
Centromeres of mammalian and other complex eukaryotic chromosomes are dominated by one or more classes of satellite DNA. To test the hypothesis that alpha-satellite DNA, the major centromeric satellite of primate chromosomes, is involved in centromere structure and/or function, human alpha-satellite DNA was introduced into African green monkey (AGM) cells. Centromere protein binding was apparent at the sites of integrated human alpha-satellite DNA. In the presence of an AGM centromere on the same chromosome, human alpha-satellite was associated with bridges between the separating sets of chromatids at anaphase and an increased number of lagging chromosomes at metaphase, both features consistent with the integrated alpha-satellite disrupting normal chromosome segregation. These experiments suggest that alpha-satellite DNA provides the primary sequence information for centromere protein binding and for at least some functional aspect(s) of a mammalian centromere, playing a role either in kinetochore formation or in sister chromatid apposition.  相似文献   

16.
Combining diverse sets of data at global (size, shape) and local (residue) scales is an emerging trend for elucidating the organization and function of the cellular assemblies. We used such a strategy, combining data from X-ray and neutron scattering with H/D-contrast variation and X-ray footprinting with mass spectrometry, to elucidate the spatial organization of the ParB-parS assembly from Mycobacterium tuberculosis. The ParB-parS participates in plasmid and chromosome segregation and condensation in predivisional bacterial cells. ParB polymerizes around the parS centromere(s) to form a higher-order assembly that serves to recruit cyto-skeletal ParA ATPases and SMC proteins for chromosome segregation. A hybrid model of the ParB-parS was built by combining and correlating computational models with experiment-derived information about size, shape, position of the symmetry axis within the shape, internal topology, DNA-protein interface, exposed surface patches, and prior knowledge. This first view of the ParB-parS leads us to propose how ParB spread on the chromosome to form a larger assembly.  相似文献   

17.
Ageing severely affects the chromosome segregation process in human oocytes resulting in aneuploidy, infertility and developmental disorders. A considerable amount of segregation errors in humans are introduced at the second meiotic division. We have here compared the chromosome segregation process in young adult and aged female mice during the second meiotic division. More than half of the oocytes in aged mice displayed chromosome segregation irregularities at anaphase II, resulting in dramatically increased level of aneuploidy in haploid gametes, from 4% in young adult mice to 30% in aged mice. We find that the post‐metaphase II process that efficiently corrects aberrant kinetochore‐microtubule attachments in oocytes in young adult mice is approximately 10‐fold less efficient in aged mice, in particular affecting chromosomes that show small inter‐centromere distances at the metaphase II stage in aged mice. Our results reveal that post‐metaphase II processes have critical impact on age‐dependent aneuploidy in mammalian eggs.  相似文献   

18.
几种动物染色体超微结构的研究   总被引:1,自引:0,他引:1  
应用表面舒展技术、原位培养表面舒展技术和临界点干燥以及空气干燥等方法制备染色体标本,用FESEM和SEM观察了CHO、IB-RS-2哺乳动物细胞以及黄鳝肾细胞和鲫鱼血淋巴细胞的染色体。看到了染色体处于不同舒展状态的染色质纤维。在染色质纤维未完全展开排列紧密时,染色体臂的染色质纤维,缠绕排列有序,垂直于染色体纵轴,螺旋盘绕形成疏密程度不同的横纹。在纤维较为松散和完全松敌的状态下,可以看见直径约为300(?)的染色质纤维从有序到不完全有序到无序,弯扭、螺旋、缠绕,有些似“辐射环”状结构。在着丝点处可清楚地看到有二条纤维平行分别通连二染色单体臂,未见有染色体膜。初步比较了鱼类和哺乳类的染色质纤维,二者基本一致,但鱼类染色质纤维排列较哺乳动物的松散,类似“辐射环”状的结构较为明显。  相似文献   

19.
王妍  陈辉  陈世品  刘杏娥 《广西植物》2009,29(2):198-201
采用去壁低渗法处理根尖细胞,得到了壳斗科13种植物分散较好的细胞中期分裂相,并分析了其中9种植物的染色体数目、随体数目和位置、核型公式、核型类型、臂比、相对长度、着丝点指数、核型不对称系数等内容。结果表明:除东南石栎属1B型外,其他均属2B型,K(2n)=24,在植物界属小染色体类型。  相似文献   

20.
Mitotic kinases regulate cell division and its checkpoints, errors of which can lead to aneuploidy or genetic instability. One of these is Aurora-B, a key kinase that is required for chromosome alignment at the metaphase plate and for cytokinesis in mammalian cells. We report here that human Aurora-B is phosphorylated at Thr-232 through interaction with the inner centromere protein (INCENP) in vivo. The phosphorylation of Thr-232 occurs by means of an autophosphorylation mechanism, which is indispensable for the Aurora-B kinase activity. The activation of Aurora-B spatio-temporally correlated with the site-specific phosphorylation of its physiological substrates, histone H3 and vimentin. Overexpression of the TA mutant of Aurora-B, in which Thr-232 was changed into alanine, frequently induced multinuclearity in cells. These results indicate that the phosphorylation of Thr-232 is an essential regulatory mechanism for Aurora-B activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号