首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A halotolerant bacterium, strain SMB34T, was isolated from a naphthalene-utilizing bacterial consortium obtained from primitive technogeneous soil (Vrkhnekamsk salt deposit, Perm region, Russia) by enrichment procedure. The strain itself was unable to degrade naphthalene and grew at NaCl concentrations up to 11% (w/v). The 16S rRNA-based phylogenetic analysis showed that the strain belongs to the genus Thalassospira. The DNA-DNA hybridization values between SMB34T and the type strains of phylogenetically closest species (T. xiamenensis, T. profundimaris and T. tepidiphila) did not exceed 50%. The novel strain could be distinguished from the above species by the cell motility, MALDI/TOF mass spectra of whole cells and a range of physiological and biochemical characteristics. SMB34T also considerably differs from the recently described species T. xianhensis, with the most striking differences in the DNA G + C content (53.7 +/- 1.0 vs. 61.2 +/- 1.0 mol.%) and predominant ubiquinones (Q-10 vs. Q-9). The data obtained suggest strain SMB34T (=VKM B-2527T = NBRC 106175T), designated as the type strain, represents a novel species, named Thalassospira permensis sp. nov.  相似文献   

2.
The study isolated a Gram-negative, rod-shaped, non-motile bacterium from the soil of a ginseng field in Daejeon, South Korea and characterized it to determine its taxonomic position. Phylogenetic analysis, based on the 16S rRNA gene sequence, revealed that strain MK06T belongs to the family Xanthomonadacea, and showed the highest degree of sequence similarity to Stenotrophomonas rhizophila e-p10T (98.6%), Xanthomonas campestris LMG 568T (98.0%), Stenotrophomonas maltophilia ATCC 1d3637T (97.3%), and Stenotrophomonas humi R-32729T (96.9%). Chemotaxonomic data revealed that strain MK06T possesses ubiquinone Q-8 as the predominant respiratory lipoquinone, which is common in the genus Stenotrophomonas, and that the predominant fatty acids were 15:0 iso (41.1%), 15:0 anteiso (12.6%), and 17:1 iso ω9c (8.6%). The results of physiological and biochemical tests clearly demonstrated that strain MK06T represents a distinct species and supported its affiliation with the genus Stenotrophomonas. Based on these data, MK06T (KCTC, 22893T; JCM, 16536T; KEMB, 9004-002T) should be classified as the type strain for a novel species, for which we propose the name Stenotrophomonas panacihumi sp. nov.  相似文献   

3.
A Gram-stain-negative, non-motile, rod-shaped bacterial strain, JW-64-1T, capable of degrading methamidophos was isolated from a methamidophos-manufacturing factory in China, and was subjected to a polyphasic taxonomic investigation. Strain JW-64-1T produced circular, smooth, transparent, yellow-colored colonies (1.0–2.0 mm) on LB agar after 2 days incubation. It grew optimally at 25–30°C and pH 7.0 without the presence of NaCl. The G+C content of the total DNA was 63.6 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain JW-64-1T fell within the cluster comprising Luteibacter species. The 16S rRNA gene sequence of strain JW-64-1T was most closely related to Luteibacter rhizovicinus DSM 16549T (98.6%), followed by Luteibacter yeojuensis DSM 17673T (98.4%) and L. anthropi CCUG 25036T (98.2%). The major cellular fatty acids of strain JW-64-1T were iso-C15:0 (24.1%), iso-C17:0 (20.2%) and summed feature 9 comprising iso-C17:1 ω9c and/or C16:0 10-methyl (20.3%). The major isoprenoid quinine was Q-8 (98%), and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphoaminolipid, aminolipids-1, aminolipids-2, and phospholipids. The values for DNA–DNA relatedness between strain JW-64-1T and the closest phylogenetic relatives of L. rhizovicinus and Luteibacter yeojuensis were 34.8 ± 2.6 and 25.6 ± 3.1%, respectively. On the basis of the phenotypic, chemotaxonomic, DNA–DNA relatedness and phylogenetic analysis based on the 16S rRNA gene sequences, strain JW-64-1T represents a novel species of the genus Luteibacter, for which the name Luteibacter jiangsuensis sp. nov. is proposed. The type strain is JW-64-1T (=CGMCC 1.10133T = DSM 22396T).  相似文献   

4.
A Gram-staining-negative, motile, non-spore-forming and rod-shaped bacterial strain, 20-23RT, was isolated from intestine of bensasi goatfish, Upeneus bensasi, and its taxonomic position was investigated by using a polyphasic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 20-23RT belonged to the genus Shewanella. Strain 20-23RT exhibited 16S rRNA gene sequence similarity values of 99.5, 99.2, and 97.5% to Shewanella algae ATCC 51192T, Shewanella haliotis DW01T, and Shewanella chilikensis JC5T, respectively. Strain 20-23RT exhibited 93.1–96.0% 16S rRNA gene sequence similarity to the other Shewanella species. It also exhibited 98.3–98.4% gyrB sequence similarity to the type strains of S. algae and S. haliotis. Strain 20-23RT contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-8 and Q-7. The fatty acid profiles of strain 20–23RT, S. algae KCTC 22552T and S. haliotis KCTC 12896T were similar; major components were iso-C15:0, C16:0, C16:1 ω7c and/or iso-C15:0 2-OH and C17:1 ω8c. The DNA G+C content of strain 20-23RT was 53.9 mol%. Differential phenotypic properties and genetic distinctiveness of strain 20–23RT, together with the phylogenetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain 20-23RT represents a novel species of the genus Shewanella, for which the name Shewanella upenei sp. nov. is proposed. The type strain is 20–23RT (=KCTC 22806T =CCUG 58400T).  相似文献   

5.
A bacterial strain, designated M26T, was isolated from a fish gastrointestinal tract, collected from Zhanjiang Port, South China. 16S rRNA gene sequence analysis indicated that strain M26T belongs to the subclass α-Proteobacteria, being related to the genus Paracoccus, and sharing highest sequence similarity with Paracoccus alcaliphilus JCM 7364T (98.1 %), Paracoccus huijuniae FLN-7T (97.3 %), Paracoccus stylophorae KTW-16T (97.1 %) and Paracoccus seriniphilus DSM 14827T (96.9 %). The major quinone was determined to be ubiquinone Q-10, with Q-9 and Q-8 as minor components. The major fatty acid was identified as C18:1ω7c, with smaller amounts of C18:0 and C16:0. The G+C content of the genomic DNA was determined to be 64.3 mol%. The DNA hybridization value between strain M26T and the most closely related type strain, P. alcaliphilus, was 29.0 ± 1.0 %. The results of physiological and biochemical tests and low DNA–DNA relatedness showed that the strain could be readily distinguished from closely related species. On the basis of these phenotypic and genotypic data, strain M26T is concluded to represent a novel species of the genus Paracoccus, for which the name Paracoccus siganidrum sp. nov. is proposed. The type strain is M26T (=CCTCC AB 2012865T = DSM 26381T).  相似文献   

6.
A diesel-oil and n-hexadecane-degrading novel bacterial strain, designated DR1T, was isolated from a rice paddy in Deok-So, South Korea. The strain DR1T cells were Gram-negative, aerobic coccobacilli, and grew at 20–37°C with the optimal temperature of 30°C, and an optimal pH of 6–8. Interestingly, strain DR1T was highly motile (swimming and swarming motility) using its fimbriae, and generated N-acyl homoserine lactones as quorum-sensing signals. The predominant respiratory quinone as identified as ubiquinone-9 (Q-9) and DNA G+C content was 41.4 mol%. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species A. calcoaceticus, A. haemolyticus, A. baumannii, A. baylyi, and A. beijerinckii, with which it evidenced sequence similarities of 98.2%, 97.4%, 97.2%, 97.1%, and 97.0%, respectively. DNA-DNA hybridization values between strain DR1T and other Acinetobacter spp. were all less than 20%. The physiological and taxonomic characteristics with the DNA-DNA hybridization data supported the identification of strain DR1T in the genus Acinetobacter as a novel species, for which the name Acinetobacter oleivorans sp. nov. is proposed. The type strain is DR1T (=KCTC 23045T =JCM 16667T).  相似文献   

7.
A pink-pigmented bacterium, designated SW08-7T was isolated from the drinking water of a water purifier. Cells were Gram-negative, rod-shaped, strictly aerobic, and non-spore-forming. It grew optimally at 25°C, pH 6∼7. Phylogenese analysis based on 16S rRNA gene sequence showed that strain SW08-7T belongs to the genus Methylobacterium. The highest 16S rRNA gene sequence similarities were found to Methylobacterium mesophilicum JCM 2829T (96.9%), Methylobacterium brachiatum B0021T (96.9%), Methylobacterium phyllosphaerae CBMB27T (96.6%), Methylobacterium radiotolerans JCM 2831T (96.6%), and Methylobacterium hispanicum GP34T (96.5%). DNA-DNA hybridization experiment revealed low-level (28.5%) of DNA-DNA relatedness between strain SW08-7T and Methylobacterium hispanicum. The genomic DNA G+C content was 68.9 mol% and the major isoprenoid quinone was Q-10. The major cellular fatty acid of strain SW08-7T was C18:1 ω7c (79.8±2.1%). Results of phylogenetic, phenotypic, and biochemical analyses revealed that strain SW08-7T could be classified as representing a novel species of genus Methylobacterium, for which the name Methylobacterium dankookense sp. nov. is proposed. The type strain is SW08-7T (=KCTC 22512T =DSM 224151).  相似文献   

8.
A single strain, designated BF49T, was isolated from a biofilm of a tufa deposit from the Westerhöfer rivulet, Lower Saxony, Germany. The G+C content of the genomic DNA of strain BF49T was 69 mol% and the predominant ubiquinone was Q-8. Major fatty acids were C16:1ω7c/15 iso 2OH and C16:0. Comparative 16S rRNA gene sequence analysis indicated that the isolate was placed within the genus Methylibium, class Betaproteobacteria, distantly related to the type strain Methylibium petroleiphilum LMG 22953T (97.4% similarity), Methylibium fulvum Gsoil 322T (96%), and Methylibium aquaticum IMCC1728T (95.7%). On the basis of phylogenetic and phenotypic distinctness we propose a novel species, Methylibium subsaxonicum sp. nov., with strain BF49T (DSM 19570T, CIP 109700T) as the type strain.  相似文献   

9.
A Gram-negative, yellow-pigmented bacterial strain, designated IPC6T, was isolated from soil in an arid region of Goyang-si (Gyeonggi-do, South Korea). Cells were strictly aerobic, non-spore-forming, rod-shaped. The strain grew within a temperature range of 10–42°C (optimum, 30°C) and pH of 5.0–11.0 (optimum, pH 8.0) in the presence of 0–2% (w/v) NaCl. Phylogenetically, the novel strain was closely related to members of the Lysobacter genus based on 16S rRNA sequence similarity, and showed the highest sequence similarity to Lysobacter niastensis KACC 11588T (98.5%). The predominant fatty acids were iso-C15:0, iso-C16:0, and summed feature 9 (iso-C17:1ω9c), with Q-8 identified as the major ubiquinone. The polar lipid content included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown aminophospholipid, and an unidentified phospholipid. DNA-DNA hybridization results indicated that the strain IPC6T was distinct from Lysobacter niastensis KACC 11588T (37.9 ± 0.14%), Lysobacter panacisoli KACC 17502T (56.4 ± 0.13%), Lysobacter soli KCTC 22011T (8.1 ± 0.04%), Lysobacter gummosus KCTC 12132T (9.6 ± 0.03%), and Lysobacter cavernae KCTC 42875T (37.5 ± 0.14%), respectively. The DNA G + C content of the novel strain was 71.1 mol%. Based on the collective phenotypic, genotypic and chemotaxonomic data, the IPC6T strain is considered to represent a novel species in the genus Lysobacter, for which the name Lysobacter pedocola sp. nov. (= KCTC 42811T = JCM 31020T) is proposed.  相似文献   

10.
A novel pink-coloured, non-spore-forming, non-motile, Gram-negative bacterium, designated YIM 48858T, is described by using a polyphasic approach. The strain can grow at pH 6.5–9 (optimum at pH 7) and 25–30°C (optimum at 28°C). NaCl is not required for its growth. Positive for oxidase and catalase. Urease activity, nitrate reduction, starch and Tween 80 tests are negative reaction. 16S rRNA gene sequence similarity studies showed that strain YIM 48858T is a member of the genus Rubellimicrobium, with similarities of 96.3, 95.7 and 95.5% to Rubellimicrobium mesophilum MSL-20T, Rubellimicrobium aerolatum 5715S-9T and Rubellimicrobium thermophilum DSM 16684T, respectively. Q-10 was the predominant respiratory ubiquinone as in the other members of the genus Rubellimicrobium. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphoglycolipid, glycolipid and the major fatty acids were C18:1 ω7c, C16:0 and C10:0 3-OH, which are very different from the valid published species. The DNA G + C content was 67.7 mol%. Both phylogenetic and chemotaxonomic evidence supports that YIM 48858T is a novel species of the genus Rubellimicrobium, for which the name Rubellimicrobium roseum sp. nov. is proposed. The type strain is YIM 48858T (=CCTCC AA 208029T =KCTC 23202T).  相似文献   

11.
Peng  Li-Yang  Yin  Rui  Gao  Shu-Kun  Jiang  Hui-Ning  Liu  Xiao-Xiao  Ma  Yu  Zhou  Yan-Xia 《Antonie van Leeuwenhoek》2022,115(1):33-40

A Gram-stain-negative, wheat, rod-shaped, non-motile, non-spore forming, and facultatively anaerobic bacterium strain, designated as PIT, was isolated from saline silt samples collected in saltern in Yantai, Shandong, China. Growth was observed within the ranges 4–45 °C (optimally at 33 °C), pH 6.0–9.0 (optimally at pH 7.0) and 1.0–11.0% NaCl (optimally at 3.0%, w/v). Strain PIT showed highest 16S rRNA gene sequence similarity to Kangiella sediminilitoris BB-Mw22T (98.3%) and Kangiella taiwanensis KT1T (98.3%). The major cellular fatty acids (>?10% of the total fatty acids) were iso-C15:0 (52.7%) and summed featured 9 (iso-C17:1ω9c/C16:0 10-methyl, 11.8%). The major polar lipids identified were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and phosphatidylglycerol. The major respiratory isoprenoid quinone was Q-8. The G?+?C content of the genomic DNA was 45.8%. Average Nucleotide Identity values between whole genome sequences of strain PIT and next related type strains supported the novel species status. Based on physiological, biochemical, chemotaxonomic characteristics and genomic analysis, strain PIT is considered to represent a novel species within the genus Kangiella, for which the name Kangiella shandongensis sp. nov. is proposed. The type strain is PIT (=?KCTC 82509 T?=?MCCC 1K04352T).

  相似文献   

12.
A Gram-negative, aerobic, rod shaped, non-spore-forming bacterial strain, designated Dae08T, was isolated from sediment of the stream near Daechung dam in South Korea, and was characterized in order to determine its taxonomic position, using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain Dae08T belongs to the family Xanthomonadaceae of the Gammaproteobacteria, and is related to Lysobacter brunescens ATCC 29482T (97.3%). The phylogenetic distances from any other species with validly published names within the genus Lysobacter were greater than 3.7%. The G+C contents of the genomic DNA of strain Dae08T was 69.3 mol%. The detection of a quinone system with Q-8 as the predominant compound and a fatty acid profile with iso-C15:0, iso-C17:1, ω9c, iso-C17:0, iso-C16:0, and iso-C11:0 3-OH as the major acids supported the affiliation of strain Dae08T to the genus Lysobacter. DNA-DNA relatedness between strain Dae08T and its phylogenetically closest neighbour was 28%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Dae08T (= KCTC 12600T) should be classified in the genus Lysobacter as the novel species, for which the name Lysobacter daecheongensis sp. nov. is proposed.  相似文献   

13.
A novel Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, aerobic bacterium, designated strain JSM 078120T, was isolated from sea water collected from a tidal flat of Naozhou Island, South China Sea. Growth occurred with 1–15% (w/v) total salts (optimum, 2–4%), at pH 6.0–10.0 (optimum, pH 7.5) and at 4–35°C (optimum, 25–30°C). The major cellular fatty acids were C18:1 ω9c, C16:0, C12:0 3-OH and C16:1 ω7c. The predominant respiratory quinone was ubiquinone Q-9, and the genomic DNA G + C content was 60.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 078120T should be assigned to the genus Marinobacter, being related most closely to the type strains of Marinobacter segnicrescens (sequence similarity 98.2%), Marinobacter bryozoorum (97.9%) and Marinobacter gudaonensis (97.6%). The sequence similarities between the novel isolate and the type strains of other recognized Marinobacter species ranged from 96.7 (with Marinobacter salsuginis) to 93.3% (with Marinobacter litoralis). The levels of DNA–DNA relatedness between strain JSM 078120T and the type strains of M. segnicrescens, M. bryozoorum and M. gudaonensis were 25.3, 20.6 and 18.8%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078120T represents a novel species of the genus Marinobacter, for which the name Marinobacter zhanjiangensis sp. nov. is proposed. The type strain is JSM 078120T (= CCTCC AB 208029T = DSM 21077T = KCTC 22280T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 078120T is FJ425903.  相似文献   

14.
A taxonomic study was carried out on Gsoil 142T, a bacterial strain isolated from the soil collected in a ginseng field in Pocheon province, South Korea. Comparative 16S rRNA gene sequence studies showed a clear affiliation of this bacterium to the Gammaproteobacteria, and it was most closely related to Hydrocarboniphaga effusa ATCC BAA 332T (94.4%, 16S rRNA gene sequence similarity), Nevskia ramosa DSM 11499T (94.1%) and Alkanibacter difficilis MN154.3T (92.0%). Strain Gsoil 142T was a Gram-negative, strictly aerobic, motile, and rod-shaped bacterium. The G+C content of the genomic DNA was 69.9% and predominant ubiquinone was Q-8. Major fatty acids were summed feature 8 (C18:1 ω7c and/or ω6c, 36.3%), summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c, 20.6%) and C16:0 (17.4%). The major polar lipids detected in strain Gsoil 142T were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unknown glycolipid. On the basis of polyphasic evidence, it is proposed that strain Gsoil 142T should be placed in a novel genus and species, for which the name Panacagrimonas perspica gen. nov., sp. nov. is proposed. The type strain is Gsoil 142T (= KCTC 12982T = LMG 23239T).  相似文献   

15.
A pale yellow-colored, moderately halophilic, Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, motile, aerobic bacterium, designated strain JSM 073008T, was isolated from a sea anemone (Anthopleura xanthogrammica) collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 1–20% (w/v) total salts (optimum, 5–10%), at pH 6.0–10.0 (optimum, pH 7.5) and 10–40°C (optimum, 25–30°C). The major cellular fatty acids were C16:0, C16:1 ω7c/iso-C15:0 2-OH and C18:1 ω7c. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid. The predominant respiratory quinone was Q-8 and the genomic DNA G + C content was 47.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 073008T should be assigned to the genus Alteromonas, being most closely related to Alteromonas hispanica F-32T (sequence similarity 96.9%), followed by Alteromonas genovensis LMG 24078T (96.6%) and Alteromonas litorea TF-22T (96.4%). The sequence similarities between the novel isolate and the type strains of other recognized Alteromonas species ranged from 95.9% (with Alteromonas stellipolaris ANT 69aT) to 94.5% (with Alteromonas simiduii BCRC 17572T). The combination of phylogenetic analysis, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 073008T represents a new species of the genus Alteromonas, for which the name Alteromonas halophila sp. nov. is proposed. The type strain is JSM 073008T (=CCTCC AA 207035T = KCTC 22164T). The authors Yi-Guang Chen and Huai-Dong Xiao have contributed equally to this work.  相似文献   

16.
A novel haloalkaliphilic, facultative anaerobic and Gram-negative Salinivibrio-like microorganism (designated strain BAGT) was recovered from a saline lake in Ras Mohammed Park (Egypt). Cells were motile, curved rods, not spore-forming and occurred singly. Strain BAGT grew optimally at 35°C (temperature growth range 25–40°C) with 10.0% (w/v) NaCl [NaCl growth range 6.0–16.0% (w/v)] and at pH 9.0 (pH growth range 6.0–10.0). Strain BAGT had phosphatidylethanolamine (PEA) and phosphatidylglycerol (PG) as the main polar lipids, C16:0 (54.0%) and C16:1 (26.0%) as the predominant cellular fatty acids and Q-8 as the major respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BAGT was a member of Salinivibrio genus, with the highest sequence similarities of 99.1, 98.4 and 98.1% to Salinivibrio siamensis JCM 14472T, Salinivibrio proteolyticus DSM 19052T and Salinivibrio costicola subsp. alcaliphilus DSM 16359T, respectively. DNA–DNA hybridization values of strain BAGT with members of Salinivibrio genus were lower than 55.0%. DNA G + C content was 51.0 mol%. On the basis of the polyphasic taxonomic results revealed in this study, strain BAGT should be classified as a novel species of Salinivibrio genus, for which the name Salinivibrio sharmensis sp. nov. is proposed, with the type strain BAGT (=ATCC BAA-1319T = DSM 18182T).  相似文献   

17.
A gram-negative, motile, straight to curved rod shaped, pink pigmented bacterium was isolated from a soil sample collected from the rhizosphere of an Indian medicinal plant, Nerium indicum (Chuvanna arali) and subjected to a detailed polyphasic taxonomic study. The strain, designated as IMTB-1969T, matched with most of the phenotypic and chemotaxonomic properties of the genus Pontibacter and represents a novel species. The major fatty acids of the strain were monounsaturated iso/anteiso branched C17 fatty acids (45.1%) and iso-C15:0 (16.5%). MK-7 was the predominant isoprenoid quinone. According to 16S rRNA gene sequence analysis, strain IMTB-1969T was indicated to belonged to the phylum Bacteroidetes and further phylogenetic analysis revealed that the strain IMTB-1969T belongs to the family Cytophagaceae and genus Pontibacter. The highest 16S rRNA gene sequence similarity was with Pontibacter korlensis CCTCC AB 206081T (97.2%) and lower sequence similarity was observed with other species in the genus Pontibacter (95.9–94.0%). DNA–DNA relatedness study of the strain IMTB-1969T confirmed that it represents a novel species. The G+C content of the genomic DNA was 52.2 (±0.5) mol%. The results of physiological and biochemical tests allowed the genotypic and phenotypic distinction of strain IMTB-1969T from its closest phylogenetic relatives. The strain IMTB-1969T should be classified as novel species of the genus Pontibacter, for which the name Pontibacter rhizosphera sp. nov. is proposed. The type strain is IMTB-1969T (=MTCC 10673T = DSM 24399T).  相似文献   

18.
A gram-negative, motile, coccoid- and amorphous-shaped, non-pigmented chemoheterotrophic bacterium, designated strain PZ-5T, was isolated from sea water of Sagami Bay in Japan and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel isolate could be affiliated with the class Gammaproteobacteria. Strain PZ-5T showed below 93.9% similarity with validly published bacteria and demonstrated the highest sequence similarity to Dasania marina KOPRI 20902T (93.9%). Strain PZ-5T formed a monophyletic group with D. marina KOPRI 20902T. The DNA G+C content of strain PZ-5T was 49.8 mol%. The major isoprenoid quinone was Q-8 and predominant cellular fatty acids were C15:0 ISO 20H (19%), C16:1 ω7c (17.4%), C17;1 ω8c (16.2%), C11:0 3OH (7.5%), and C15:1 ω8c (6.5%). Based on evidence from a polyphasic taxonomical study, it was concluded that the strain should be classified as representing a new genus and species of the class Gammaproteobacteria, for which the name Oceanicoccus sagamiensis gen. nov., sp. nov., (type strain PZ-5T =NBRC 107125T =KCTC 23278T) is proposed.  相似文献   

19.
A Gram-negative, motile and rod-shaped bacterial strain, designated S7-3T, was isolated from a tidal flat sediment at Saemankum on the western coast of Korea. Phylogenetic analyses based on 16S rRNA gene and gyrB sequences showed that strain S7-3T belonged to the genus Shewanella, clustering with Shewanella decolorationis S12T. Strain S7-3T exhibited 98.8 % 16S rRNA gene sequence similarity and 96.8 % gyrB sequence similarity to S. decolorationis S12T, respectively. The 16S rRNA gene sequence similarity values between strain S7-3T and other members of the genus Shewanella were in the range of 93.0–98.0 %. Strain S7-3T contained simultaneously both menaquinones (MK) and ubiquinones (Q); the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-7 and Q-8. The fatty acid profiles of strain S7-3T and S. decolorationis JCM 21555T were similar; major components were C17:1 ω8c, iso-C15:0 and iso-C15:0 2-OH and/or C16:1 ω7c. The DNA G+C content of strain S7-3T was 51.8 mol% and its mean DNA–DNA relatedness value with S. decolorationis JCM 21555T was 43 %. Differential phenotypic properties of strain S7-3T, together with the phylogenetic and genetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain S7-3T is considered to represent a novel Shewanella species, for which the name Shewanella seohaensis sp. nov. is proposed. The type strain is S7-3T (=KCTC 23556T = CCUG 60900T).  相似文献   

20.
A rod-shaped, round and white colony-forming strain AD18T was isolated from the soil on Halla mountain in Jeju Island, Republic of Korea. Comparative analysis of 16S rRNA gene sequence revealed that this strain was closely related to Burkholderia oklahomensis C6786T (98.8%), Burkholderia thailandensis KCTC 23190T (98.5%). DNA-DNA relatedness (14.6%) indicated that the strain AD18T represents a distinct species that is separate from B. oklahomensis C6786T. The isolate grew at pH 5.0–9.0 (optimum, pH 7.0), 0–3% (w/v) NaCl (optimum, 0%), and temperature 10–40°C (optimum 35°C). The sole quinone of the strain was Q-8, and the predominant fatty acids were C16:0, C17:0 cyclo, and C19:0 cyclo ω8c. The genomic DNA G + C content of AD18T was 65.6 mol%. Based on these findings, strain AD18T is proposed to be a novel species in the genus Burkholderia, for which the name Burkholderia alba sp. nov. is proposed (= KCCM 43268T = JCM 32403T). The type strain is AD18T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号