首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of root-knot nematode (Meloidogyne incognita) on external wilt symptoms and on the cotton plant's vascular response to stem-inoculation with Fusarium oxysporum f. sp. vasinfectum was investigated. Wilt symptoms were more severe in all plants inoculated with both organisms than with the fungus alone but relative wilt resistance of the cultivars was maintained. Greater symptom severity was associated with greater fungal proliferation in the stele and this was related to the ability of the nematode to reduce the efficiency of vascular occlusion. The nematode had no effect on the accumulation of infection-induced terpenoid aldehyde compounds.  相似文献   

2.
3.
In glasshouse experiments at Auchincruive, drench applications of benomyl (100 or 142 mg per plant) to the soil surface around the stem bases of pot-grown tomato plants before inoculation with Fusarium oxysporum f.sp. lycopersici reduced the penetration of the fungus up the stems and/or decreased the development of vascular discoloration and associated severity of wilting. Similar drenches applied after establishment of the fungus in the stems either halted or considerably retarded the growth of the pathogen up the vessels. This again was reflected in reduced vascular discoloration and wilt symptoms. In experiments with benomyl over 2 years at a commercial holding in Argyll, the application of soil drenches (at the rates above) shortly after planting out and again 5 weeks later, coupled with a programme of stem and foliar sprays (at 0–05 % a.i.) during the summer, reduced the development of stem lesions caused chiefly by Botrytis cinerea and increased the general survival of plants more than did drench or spray treatments alone. There were indications that ‘ghost spotting’ of the fruit, particularly where spray applications were made, was also slightly reduced, but the magnitude of the effect was not consistent.  相似文献   

4.
The expression of plant genes during symbiosis of Sesbania rostrata with Rhizobium sp. and Azorhizobium caulinodans was studied by comparing two-dimensional PAGE patterns of in vitro translation products of poly(A)+ RNA from uninfected roots and stems with that of root and stem nodules. Both types of nodules are essentially similar, particularly when stem nodules are formed in the dark. We detected the specific expression of at least 16 genes in stem and root nodules and observed the stimulated expression of about 10 other genes in both nodules. Six of the nodule-specific translation products (apparent molecular masses around 16 kDa) cross-react with an antiserum raised against leghemoglobin purified from Sesbania rostrata stem nodules. During stem nodule development, most of the nodule-stimulated genes are expressed concomitantly with leghemoglobin at day 12 after inoculation. However, some genes are already stimulated at days 6–7, some others later in development (day 18), and some are transiently activated. Patterns of root nodules induced by either Azorhizobium caulinodans strain ORS571, capable of effective root and stem nodulation, or Rhizobium sp. strain ORS51, capable of effective root nodulation only, are very similar except for a specific 37.5 kDa polypeptide. Several types of ineffective stem and root nodules were studied; in every case the amount of leghemoglobin components appeared reduced together with most of the nodule-stimulated polypeptides.  相似文献   

5.
Prior inoculation of wounded tomato petioles with a minimum concentration of 5 × 104 cells per wound of various Pseudomonas syringae pathovars completely protected plants against subsequent infection with Corynebacterium michiganense pv. michiganense inoculated on the same site. Only living cells induced effective protection. In protected tissue, cells of Corynebacterium michiganense pv. michiganense remained localized at the inoculation site and their multiplication was restricted. Irrespective of the cell number introduced, initial population decreased slowly and then levelled off below the initial inoculum level. This level remained constant throughout the experimental period (15 days). Similarly, the, cell number of the inducer Pseudomonas syringae pv. phaseolicola levelled off at ca. 106 cells per plant. The protection was not systemic and could be eliminated by removing the upper 5 mm of the inoculated wound tissues containing, the inducer.  相似文献   

6.
We tested the hypotheses that responses to the mountain pine beetle fungal associate Grosmannia clavigera will differ between the evolutionarily co‐evolved host lodgepole pine (Pinus contorta var. latifolia) and the naïve host jack pine (Pinus banksiana) and that these responses will be influenced by water availability. G. clavigera inoculation resulted in more rapid stem lesion development in lodgepole than in jack pine; water deficit delayed lesion development in both species. Decreased hydraulic conductivity was observed in inoculated lodgepole pine seedlings, likely because of tracheid occlusion by fungal hyphae and/or metabolite accumulation. Drought but not inoculation significantly impacted bark abscisic acid levels. Jasmonic and salicylic acid were implicated in local and systemic responses of both species to G. clavigera, with salicylic acid appearing to play a greater role in jack pine response to G. clavigera than lodgepole pine. Water deficit increased constitutive levels and/or attenuated induced responses to G. clavigera for several monoterpenes in lodgepole but not jack pine. Instead, inoculation of well‐watered but not water deficit jack pine resulted in a greater number of xylem resin ducts. These findings reveal mechanisms underlying differences in G. clavigera‐induced responses between lodgepole and jack pine hosts, and how water availability modulates these responses.  相似文献   

7.
8.
马尾松(Pinus massoniana)是我国南方生态建设与造林用材的主要树种,为了揭示马尾松抗虫机理尤其是诱导抗虫性的分子机制,该研究以马尾松幼苗为材料,通过外源喷施茉利酸甲酯(Me JA),分析了处理与对照间植株针叶显微结构、萜类合成酶活性及其细胞化学定位的变化。结果表明:在0.2 mmol·L~(-1)Me JA处理下马尾松植株松针中萜类物质,尤其是单萜、二萜的相对含量增加,马尾松毛虫拒食性明显,诱导抗性增强。显微观测中,针叶叶肉细胞内树脂道分泌物增加,叶绿体数目减少,但叶绿体体积增大,叶绿体片层结构增加。Me JA处理4周后,针叶中萜类合成酶活性增加,通过电镜酶细胞化学观察,膜系统尤其是叶绿体膜上萜类合成酶活性定位明显增强。这说明Me JA诱导的马尾松诱导抗性可能与改变的叶绿体结构及绿色质体萜类合成酶活性密切相关。  相似文献   

9.
Root inoculation of tomato (Solanum lycopersicum) plants with a Bacillus subtilis strain BEB-DN (BsDN) isolated from the rhizosphere of cultivated potato plants was able to promote growth and to generate an induced systemic resistance (ISR) response against virus-free Bemisia tabaci. Growth promotion was evident 3 weeks after inoculation. No changes in oviposition density, preference and nymphal number in the early stages of B. tabaci development were observed between BsDN-treated plants and control plants inoculated with a non-growth promoting Bs strain (PY-79), growth medium or water. However, a long-term ISR response was manifested by a significantly reduced number of B. tabaci  pupae developing into adults in BsDN-treated plants. The observed resistance response appeared to be a combination of jasmonic acid (JA) dependent and JA-independent responses, since the BsDN-related retardation effect on B. tabaci development was still effective in the highly susceptible spr2 tomato mutants with an impaired capacity for JA biosynthesis. A screening of 244 genes, 169 of which were previously obtained from subtractive-suppressive-hybridization libraries generated from B. tabaci-infested plants suggested that the BsDN JA-dependent ISR depended on an anti-nutritive effect produced by the simultaneous expression of genes coding principally for proteases and proteinase inhibitors, whereas the JA-independent ISR observed in the spr2 background curiously involved the up-regulation of several photosynthetic genes, key components of the phenyl-propanoid and terpenoid biosynthetic pathways and of the Hsp90 chaperonin, which probably mediated pest resistance response(s), in addition to the down-regulation of pathogenesis and hypersensitive response genes.  相似文献   

10.
Bacillus subtilis (BSCBE4), Pseudomonas chlororaphis (PA23), endophytic P. fluorescens (ENPF1) inhibited the mycelial growth of stem blight pathogen Corynespora casiicola (Berk and Curt)Wei under in vitro. All these bacterial isolates produced both hydroxamate and carboxylate type of siderophores. But the siderophore production was maximum with the isolate ENPF1. Delivering of talc based formulation of BSCBE4 through seedling dip and foliar application effectively reduced stem blight disease incidence and increased the dry matter production under pot culture and field conditions. Application of BSCBE4, PA23 and ENPF1 increased the defense related enzymes such as peroxidase, polyphenol oxidase, chitinase and β-1,3 glucanase in P. amarus up to ten days after challenge inoculation with C. cassicola. Native gel electrophoretic analysis revealed that challenge inoculation of pathogen with BSCBE4 and PA23 induced both peroxidase and polyphnol oxidase isoforms.  相似文献   

11.
Quantification of resistance induced by avirulent cultures of Erysiphe graminis f. sp. hordei against virulent cultures in barley was attempted. Four mildew cultures and 4 barley varieties with known genes of virulence and resistance respectively were used. Pre, post and simultaneous inoculation of leaves was done with avirulent and virulent cultures. Pre-inoculation with avirulent cultures induced resistance in the host such that the pustule number and spore production by later inoculation of virulent cultures was reduced significantly. Once induced, such resistance was active up to 8 days. There was some indication of induced susceptibility if the inducing culture was characterized by medium virulence. Increase of inceulum density of the avirulent (inducer) culture increased the amount of induced resistance Further studies of the phenomenon of induced resistance are needed in relation to possible applications for disease control through inoculations. varietal mixtures and multilines.  相似文献   

12.
李珂  马良  杜鹏飞  王强 《西北植物学报》2015,35(9):1776-1780
该研究选用小斑病差异抗性的玉米自交系Mo17(较抗)、‘郑58’(中抗)和‘吉419’(感),分别于接种小斑病病原菌玉蜀黍平脐孺胞(Cochliobolus heterostrophus)0、6、12、24、36和48 h时采集接种叶片为材料,采用半定量和实时荧光定量PCR技术,检测倍半萜植保素Zealexin生物合成关键基因(TPS6、TPS11)、二萜植保素Kauralexin代谢关键基因An2以及茉莉酸合成关键基因AOC的表达模式,为阐明不同抗性品种对玉米小斑病的差异防御机制提供理论依据。结果显示:接种小斑病病原菌后,抗病自交系Mo17中TPS6、TPS11基因表达诱导不显著,An2基因表达迅速增加,AOC基因于接种12 h后表达明显上调。‘郑58’中TPS6、TPS11基因被快速诱导,在接种24 h时表达量达到最大,An2基因表达逐渐增加但差异不显著,AOC基因表达量于接种6 h后显著增加;感病自交系‘吉419’中TPS6、TPS11、An2基因在接种24 h后才显著上调,明显比抗性自交系缓慢,AOC基因表达先呈现递减的趋势然后上升,在24 h表达量最高并持续到48 h。研究表明,两类植保素代谢在玉米小斑病防御中具有不同的时间应答模式,但都受到茉莉酸介导。感病自交系中植保素代谢防御响应较慢,而抗病自交系中响应较快,符合其抗性差异。  相似文献   

13.
Mandeel QA 《Mycopathologia》2006,161(3):173-182
In earlier studies, biological control of Fusarium wilt of cucumber induced by Fusarium oxysporum f. sp. cucumerinum was demonstrated using nonpathogenic strains C5 and C14 of Fusarium oxysporum. Strain C14 induced resistance and competed for infection sites whether roots were wounded or intact, whereas strain C5 required wounds to achieve biocontrol. In the current work, additional attributes involved in enhanced resistance by nonpathogenic biocontrol agents strains to Fusarium wilt of cucumber and pea were further investigated. In pre-penetration assays, pathogenic formae specials exhibited a significantly higher percentage of spore germination in 4-day-old root exudates of cucumber and pea than nonpathogens. Also, strain C5 exhibited the lowest significant reduction in spore germination in contrast to strain C14 or control. One-day-old cucumber roots injected with strain C14 resulted in significant reduction in germ tube orientation towards the root surface, 48–96 h after inoculation with F. o. cucumerinum spores, whereas strain C5 induced significantly lower spore orientation of the pathogen and only at 72 and 96 h after inoculation. In post-penetration tests, passive transport of microconidia of pathogenic and nonpathogens in stems from base to apex were examined when severed plant roots were immersed in spore suspension. In repeated trials, strain C5, F. o. cucumerinum and F. o. pisi were consistently isolated from stem tissues of both cucumber and pea at increasing heights over a 17 days incubation period. Strain C14 however, was recovered at a maximum translocation distance of 4.6 cm at day 6 and later height of isolation significantly declined thereafter to 1.2 cm at day 17. In pea stem, the decline was even less. Significant induction of resistance to challenge inoculation by the pathogen in cucumber occurred 72 and 96 h after pre-inoculation with biocontrol agents. Nonetheless, strain C14 induced protection as early as 48 h and the maximum resistance was reached at 96 h. The presented data confirm the previous findings that attributes important for nonpathogenic fusaria to induce resistant are: rapid spore germination and orientation in response to root exudate; active root penetration and passive conidia transport in stem to initiate defence reaction without pathogenicity and enough lag period between induction and challenge inoculation. Strain C14 possesses all these qualifications and hence its ability to enhance host resistance is superior than strain C5.  相似文献   

14.
Cucumber plants were treated with plant growth promoting fungi (PGPF), Phoma sp. (isolates GS8-2 and GS8-3) and Penicillium simplicissimum (isolate GP17-2) with or without the arbuscular mycorrhizal fungus (AMF) Glomus mosseae. Induction of systemic resistance in cucumber against the anthracnose disease caused by Colletotrichum orbiculare was tested to evaluate the nature of the interaction between the PGPF and AMF. Root colonizing ability of each fungal species as influenced by their interaction was also evaluated. Plant roots were pre-inoculated with each PGPF isolate and/or G. mosseae for four weeks and leaves were then challenge inoculated with the pathogen C. orbiculare. Plants treated with each PGPF isolate showed considerable protection against the disease, but the treatment of G. mosseae had no significant effect on disease development. However, combined inoculation of Phoma GS8-2 or GS8-3 with G. mosseae reduced the level of disease protection induced by single inoculation of each Phoma isolate. In contrast, the high levels of protection induced by the P. simplicissimum GP17-2 were not altered by combining it with G. mosseae. Root colonization of both Phoma sp. isolates was also suppressed by the presence of the G. mosseae, but such an effect was not found on the population development of P. simplicissimum. The percent cucumber root length colonized by G. mosseae was not affected by any of the PGPF isolates tested.  相似文献   

15.
The lipo-chitin (LCO) nodulation signal (nod signal) purified from Bradyrhizobium japonicum induced nodule primordia on soybean (i.e. Glycine soja) roots. These primordia were characterized by a bifurcated vascular connection, cortical cell division, and the accumulation of mRNA of the early nodulin gene, ENOD40. A chemically synthesized LCO identical in structure to the Nod signal purified from B. japonicum cultures showed the same activity when inoculated on to soybean roots. Surprisingly, synthetic LCO or chitin pentamer, inactive in inducing root hair curling (HAD) or cortical cell division (NOI) in G. soja, induced the transient accumulation of ENOD40 mRNA. In roots inoculated with such LCO, ENOD40 mRNA was abundant at 40 h after inoculation but decreased to the background levels 6 days after inoculation. In contrast, nod signals active in inducing HAD and NOI induced high levels of ENOD40 accumulation at 40 h and 6 days after inoculation. In situ hybridization analysis showed that ENOD40 mRNA accumulated in the pericycle of the vascular bundle at 24 h after root inoculation with nod signal. At 6 days post-inoculation with nod signal, ENOD40 expression was seen in dividing subepidermal cortical cells. These results provide morphological and molecular evidence that nodule induction in soybean in response to purified or synthetic nod signal is similar, if not identical, to nodule formation induced by bacterial inoculation. Surprisingly, ENOD40 mRNA accumulation occurs in response to non-specific chitin signals. This suggests that, in the case of ENOD40, nodulation specificity is not determined at the level of initial gene expression.  相似文献   

16.
To investigate the effects of brown stem rot, a vascular disease of soybean (Glycine max) induced by Phialophora gregata, on the water relations of diseased plants, stems of greenhouse-grown plants of susceptible (Pride B216) and resistant (BSR 201) cultivars were injected with the pathogen at vegetative growth stage VI. Plants of both cultivars developed internal stem browning, but those of Pride B216 developed more severe symptoms of water stress (reduced leaf water potential and stem conductance). Inoculated plants of both cultivars also had reduced stem conductance and increased stomatal conductance and transpiration. Disease-related water stress can be attributed to the combined effects of reduced stem conductance and increased water loss resulting from increased stomatal conductance.  相似文献   

17.
Sporulation of Septoria nodorum was assessed on inoculated spring wheat cvs Kolibri and Maris Butler. The time from inoculation to first production of spores (latent period) was similar over a range of constant temperatures (12–18°C) but was shorter for Kolibri at 6°C and at 24°C. Spore production was greatest during the period of stem extension and, for equal amounts of disease, was twice as great on Kolibri as on Maris Butler. Spore production on leaves was much more intense with Septoria tritici than S. nodorum for equal amounts of disease, and was less intense on heads than on leaves for both pathogens. Inoculation of plants resulted in significant losses in yield. Mans Butler consistently out-performed Kolibri on each component of yield. Kolibri was particular affected: 1000-grain weights were reduced at each growth stage tested especially by S. nodorum, grain numbers and yield/head were reduced particularly following inoculation at heading. Spore production of S. nodorum during the period of stem extension increased to a peak in early July and then declined but no reliable relationship with monitored weather accounted for this seasonal trend.  相似文献   

18.
Summary In situ hybridization and immunogold labeling were performed to examine the temporal and spatial expression pattern of pathogenesis-related protein 1 (CABPR1) mRNA and PR-1 protein in pepper (Capsicum annuum L.) stem tissues infected by virulent and avirulent isolates ofPhytophthora capsici. CABPR1 mRNA accumulation was confirmed in the infected pepper stem tissue by Northern blot analysis and in situ hybridization. Northern blot analysis showed that the temporal expression ofCABPR1 mRNA varied greatly between compatible and incompatible interactions. An earlier expression of theCABPR1 gene, 6 h after inoculation, was observed in the incompatible interaction. In situ hybridization results revealed thatCABPR1 mRNA was expressed in the phloem areas of vascular bundles in infected pepper stem tissues, but especially strongly in the incompatible interaction. PR-1 protein was predominantly found in the intercellular spaces of pepper stem cells in the compatible and incompatible interactions 24 h after inoculation. Strikingly, the immunogold labeling was associated with fibrillar and electron-dense material localized in the intercellular space. Dense labeling of PR-1 protein was also seen at the interface of the pathogen and the host cell wall, whereas few gold particles were detected over the host cytoplasm. However, PR-1 protein was not detected over the fungal cell wall in either interaction.  相似文献   

19.
Drench inoculation of the undisturbed roots of barley seedlings with Fusarium oxysporum f. sp. radicis‐lycopersici (FORL) significantly reduced the primary infection frequency of Blumeria graminis f. sp. hordei (BGH) on the first leaves. The length of secondary hyphae and subsequent conidial production of BGH were also found to be significantly reduced by preinoculation with FORL. The reduction in infection frequency was observed as early as 48 h after inducer treatment, namely when plants were challenge‐inoculated immediately following inoculation with FORL. The induced resistance continued up to 16 days after treatment as indicated by the reduction in infection frequency, up to 22 days after treatment when evaluated as a reduction in the length of secondary hyphae, and up to 35 days after treatment when evaluated as a reduction in conidial production. Characteristics of FORL that may explain its success as an inducer of resistance against barley powdery mildew are discussed.  相似文献   

20.
The anatomy and organization of the stem vascular system was analyzed in representative taxa of Nymphaea (subgenera Anecphya, Lotos, and Brachyceras). The stem vascular system consists of a series of concentric axial stem bundles from which traces to lateral organs depart. At the node each leaf is supplied with a median and two lateral leaf traces. At the same level a root trace supplies vascular tissue to adventitious roots borne on the leaf base. Flowers and vegetative buds occupy leaf sites in the genetic spiral and in the parastichies seen on the stem exterior. Certain leaves have flowers related to them spatially and by vascular association. Flowers (and similarly vegetative buds) are vascularized by a peduncle trace that arises from a peduncle fusion bundle located in the pith. The peduncle fusion bundle is formed by the fusion of vascular tissue derived from axial stem bundles that supply traces to certain leaves. The organization of the vascular system in the investigated taxa of Nymphaea is unique to angiosperms but similar to other subgenera of Nymphaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号