首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To investigate the influence of flanking amino acid sequence on the O-glycosylation of a single threonine residue in vitro, we have examined a series of 52 related peptides. The substrates were based upon a sequence from human von Willebrand factor which is known to be glycosylated in vivo (-6PHMAQVTVGPGL+5). Each residue of the parent peptide was substituted, in turn, with isoleucine, alanine, proline, glutamic acid, or arginine. Peptides were glycosylated using a UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase purified 15,000-fold from bovine colostrum by chromatography on DEAE-Sephacel, SP-Sephadex, Sephacryl S-300, Affi-Gel Blue, and 5-mercuri-UDP-GalNAc thiopropyl-Sepharose. Single amino acid changes in the sequences flanking the threonine could profoundly alter the glycosylation of the substrate peptides. Substitution of any amino acid tested at positions +3, -3, and -2 markedly decreased O-glycosylation, as did the presence of a charged residue at position -1. The substitution of amino acids at the other positions of the peptide substrate had little effect on the incorporation of GalNAc. Statistical analysis of sequences flanking known glycosylated threonine and serine residues suggests that they should be glycosylated with equal efficiency in the same sequence context (O'Connell et al., 1991). However, the bovine colostrum transferase failed to glycosylate a peptide derived from human erythropoietin which contains a serine that is glycosylated in vivo (-5PPDAASAAPLR+5). When a threonine was substituted for the serine in this peptide (-5PPDAATAAPLR+5), the substrate proved to be an excellent acceptor of GalNAc. These observations indicate that although flanking amino acid sequence is important for the O-glycosylation of specific hydroxyamino acids, discrete threonine- and serine-specific transferases may exist.  相似文献   

2.
Database analysis of O-glycosylation sites in proteins   总被引:3,自引:0,他引:3       下载免费PDF全文
Statistical analysis was carried out to study the sequential aspects of amino acids around the O-glycosylated Ser/Thr. 992 sequences containing O-glycosylated Ser/Thr were selected from the O-GLYCBASE database of O-glycosylated proteins. The frequency of occurrence of amino acid residues around the glycosylated Ser/Thr revealed that there is an increased number of proline residues around the O-glycosylation sites in comparison with the nonglycosylated serine and threonine residues. The deviation parameter calculated as a measure of preferential and nonpreferential occurrence of amino acid residues around the glycosylation site shows that Pro has the maximum preference around the O-glycosylation site. Pro at +3 and/or -1 positions strongly favors glycosylation irrespective of single and multiple glycosylation sites. In addition, serine and threonine are preferred around the multiple glycosylation sites due to the effect of clusters of closely spaced glycosylated Ser/Thr. The preference of amino acids around the sites of mucin-type glycosylation is found likely to be similar to that of the O-glycosylation sites when taken together, but the acidic amino acids are more preferred around Ser/Thr in mucin-type glycosylation when compared totally. Aromatic amino acids hinder O-glycosylation in contrast to N-glycosylation. Cysteine and amino acids with bulky side chains inhibit O-glycosylation. The preference of certain potential sequence motifs of glycosylation has been discussed.  相似文献   

3.
A large family of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases (ppGalNAc Ts) catalyzes the first step of mucin-type protein O-glycosylation by transferring GalNAc to serine and threonine residues of acceptor polypeptides. The acceptor peptide substrate specificity and specific protein targets of the individual ppGalNAc T family members remain poorly characterized and poorly understood, despite the fact that mutations in two individual isoforms are deleterious to man and the fly. In this work a series of oriented random peptide substrate libraries, based on the GAGAXXXTXXXAGAGK sequence motif (where X = randomized positions), have been used to obtain the first comprehensive determination of the peptide substrate specificities of the mammalian ppGalNAc T1 and T2 isoforms. ppGalNAc T-glycosylated random peptides were isolated by lectin affinity chromatography, and transferase amino acid preferences were determined by Edman amino acid sequencing. The results reveal common and unique position-sensitive features for both transferases, consistent with previous reports of the preferences of ppGalNAc T1 and T2. The random peptide substrates also reveal additional specific features that have never been described before that are consistent with the x-ray crystal structures of the two transferases and furthermore are reflected in a data base analysis of in vivo O-glycosylation sites. By using the transferase-specific preferences, optimum and selective acceptor peptide substrates have been generated for each transferase. This approach represents a relatively complete, facile, and reproducible method for obtaining ppGalNAc T peptide substrate specificity. Such information will be invaluable for identifying isoform-specific peptide acceptors, creating isoform-specific substrates, and predicting O-glycosylation sites.  相似文献   

4.
Mucin type O-glycosylation begins with the transfer of GalNAc to serine and threonine residues on proteins by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminlytransferases. These enzymes all contain a lectin-like (QXW)(3) repeat sequence at the C terminus that consists of three tandem repeats (alpha, beta, and gamma). The putative lectin domain of one of the most ubiquitous isozymes, GalNAc-T1, is reportedly not functional. In this report, we have reevaluated the role of the GalNAc-T1 lectin domain. Deletion of the lectin domain resulted in a complete loss of enzymatic activity. We also found that GalNAc-T1 has two activities distinguished by their sensitivities to inhibition with free GalNAc; one activity is sensitive, and the other is resistant. In our experiments, the former activity is represented by the O-glycosylation of apomucin, an acceptor that contains multiple glycosylation sites, and the latter is represented by synthetic peptides that contain a single glycosylation site. Site-directed mutagenesis of the lectin domain selectively reduced the former activity and identified Asp(444) in the alpha repeat as the most important site for GalNAc recognition. A further reduction of the GalNAc-inhibitable activity was observed when both Asp(444) and the corresponding aspartate residues in the beta and the gamma repeats were mutated. This suggests a cooperative involvement of each repeat unit in the glycosylation of polypeptides with multiple acceptor sites.  相似文献   

5.
The specificities of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases which link the carbohydrate GalNAc to the side-chain of certain serine and threonine residues in mucin type glycoproteins, are presently unknown. The specificity seems to be modulated by sequence context, secondary structure and surface accessibility. The sequence context of glycosylated threonines was found to differ from that of serine, and the sites were found to cluster. Non-clustered sites had a sequence context different from that of clustered sites. Charged residues were disfavoured at position – 1 and +3. A jury of artificial neural networks was trained to recognize the sequence context and surface accessibility of 299 known and verified mucin type O-glycosylation sites extracted from O-GLYCBASE. The cross-validated NetOglyc network system correctly found 83% of the glycosylated and 90% of the non-glycosylated serine and threonine residues in independent test sets, thus proving more accurate than matrix statistics and vector projection methods. Predictions of O-glycosylation sites in the envelope glycoprotein gp120 from the primate lentiviruses HIV-1, HIV-2 and SIV are presented. The most conserved O-glycosylation signals in these evolutionary-related glycoproteins were found in their first hypervariable loop, V1. However, the strain variation for HIV-1 gp120 was significant. A computer server, available through WWW or E-mail, has been developed for prediction of mucin type O-glycosylation sites in proteins based on the amino acid sequence. The server addresses are http://www.cbs.dtu.dk/services/NetOGlyc/ and netOglyc@cbs.dtu.dk.  相似文献   

6.
The sulfation of proteins by tyrosylprotein sulfotransferase (TPST) is highly site-specific. In this study, we examined the sequence specificity of the target site for TPST by determining the kinetics of rat liver TPST with peptides related to the sequence of the C4 component of complement. The data obtained from this study demonstrate that selective elimination of negative charges from the -5 to +5 region of the acceptor tyrosine, either by removal or by isosteric substitution or the acidic amino acids in the region, produced a substantial change in the Km value, with relatively little effect on Vmax. Substitutions at -1 and +1 positions increase the Km value by 22- and 4-fold, respectively, whereas removal of the acidic amino acids from the -5, -4, or +4 positions increased the Km values by a factor of 2-4. The effect of elimination of an acidic amino acid on the Km value was constant and specific for its particular position in relation to tyrosine, and the effect of modification of more than one amino acid was multiplicative. This study provides evidence that: 1) acidic residues near tyrosines promote sulfation by increasing the affinity of enzyme-substrate binding and have little effect on catalytic rate; 2) the contribution of each acidic residue to affinity for TPST is independent and varies according to position relative to the acceptor tyrosine; and 3) the enzyme interacts with a segment of at least 4-5 residues on each side of the tyrosine, with the residues on the -1 and +1 positions being the most important determinants. In general, residues on the NH2-terminal side of the tyrosine have a greater effect on affinity for TPST.  相似文献   

7.
The specificity of casein kinase II has been further defined by analyzing the kinetics of phosphorylation reactions using a number of different synthetic peptides as substrates. The best peptide substrates are those in which multiple acidic amino acids are present on both sides of the phosphorylatable serine or threonine. Acidic residues on the NH2-terminal side of the serine (threonine) greatly enhance the kinetic constants but are not absolutely required. Acidic residues on the COOH-terminal side of the serine (threonine) are absolutely required. One position for which the occupation of an acidic residue is especially critical is the position located 3 residues to the COOH terminus of the phosphate acceptor site, although the presence of an acidic amino acid in the positions that are 4 or 5 residues removed may also provide an appropriate structure that will serve as a substrate for the kinase. Aspartate serves as a better amino acid determinant than glutamate. A relatively short sequence of amino acids surrounding the phosphate acceptor site appears to serve as the basis for the specificity of casein kinase II. The peptides in this study were also assayed with casein kinase I and the casein kinase from the mammary gland so that the specificities of these kinases could be compared to that of casein kinase II.  相似文献   

8.
The present work was carried out to study the role of the peptide moiety in the addition of O-linked N-acetylgalactosamine to human apomucin using human crude microsomal homogenates from gastric mucosa (as enzyme source) and a series of peptide acceptors representative of tandem repeat domains deduced from the MUC5AC mucin gene (expressed in the gastric mucosa). Being rich in threonine and serine placed in clusters, these peptides provided several potential sites for O-glycosylation. The glycosylated products were analysed by a combination of electrospray mass spectrometry and capillary electrophoresis in order to isolate the glycopeptides and to determine their sequence by Edman degradation. The O-glycosylation of our MUC5AC motif peptides gave information on the specificity and activity of the gastric microsomal UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase(s). The proline residues and the induced-conformations are of great importance for the recognition of MUC5AC peptides but they are not the only factors for the choice of the O-glycosylation sites. Moreover, for the di-glycosylated peptides, the flanking regions of the proline residues strongly influence the site of the second O-glycosylation.  相似文献   

9.

Background

The assembly of Ser/Thr-linked O-glycans of mucins with core 2 structures is initiated by polypeptide GalNAc-transferase (ppGalNAc-T), followed by the action of core 1 β3-Gal-transferase (C1GalT) and core 2 β6-GlcNAc-transferase (C2GnT). β4-Gal-transferase (β4GalT) extends core 2 and forms the backbone structure for biologically important epitopes. O-glycan structures are often abnormal in chronic diseases. The goal of this work is to determine if the activity and specificity of these enzymes are directed by the sequences and glycosylation of substrates.

Methods

We studied the specificities of four enzymes that synthesize extended O-glycan core 2 using as acceptor substrates synthetic mucin derived peptides and glycopeptides, substituted with GalNAc or O-glycan core structures 1, 2, 3, 4 and 6.

Results

Specific Thr residues were found to be preferred sites for the addition of GalNAc, and Pro in the + 3 position was found to especially enhance primary glycosylation. An inverse relationship was found between the size of adjacent glycans and the rate of GalNAc addition. All four enzymes could distinguish between substrates having different amino acid sequences and O-glycosylated sites. A short glycopeptide Galβ1–3GalNAcα-TAGV was identified as an efficient C2GnT substrate.

Conclusions

The activities of four enzymes assembling the extended core 2 structure are affected by the amino acid sequence and presence of carbohydrates on nearby residues in acceptor glycopeptides. In particular, the sequences and O-glycosylation patterns direct the addition of the first and second sugar residues by ppGalNAc-T and C1GalT which act in a site directed fashion.

General significance

Knowledge of site directed processing enhances our understanding of the control of O-glycosylation in normal cells and in disease.  相似文献   

10.
L M Shen  J I Lee  S Y Cheng  H Jutte  A Kuhn  R E Dalbey 《Biochemistry》1991,30(51):11775-11781
Leader peptidase cleaves the leader sequence from the amino terminus of newly made membrane and secreted proteins after they have translocated across the membrane. Analysis of a large number of leader sequences has shown that there is a characteristic pattern of small apolar residues at -1 and -3 (with respect to the cleavage site) and a helix-breaking residue adjacent to the central apolar core in the region -4 to -6. The conserved sequence pattern of small amino acids at -1 and -3 around the cleavage site most likely represents the substrate specificity of leader peptidase. We have tested this by generating 60 different mutations in the +1 to -6 domain of the M13 procoat protein. These mutants were analyzed for in vivo and in vitro processing, as well as for protein insertion into the cytoplasmic membrane. We find that in vivo leader peptidase was able to process procoat with an alanine, a serine, a glycine, or a proline residue at -1 and with a serine, a glycine, a threonine, a valine, or a leucine residue at -3. All other alterations at these sites were not processed, in accordance with predictions based on the conserved features of leader peptides. Except for proline and threonine at +1, all other residues at this position were processed by leader peptidase. None of the mutations at -2, -4, or -5 of procoat (apart from proline at -4) completely abolished leader peptidase cleavage in vivo although there were large effects on the kinetics of processing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Conformational aspects of N-glycosylation have been investigated with a series of proline-containing peptides as molecular probes. The results demonstrate that, depending on the position of the imino acid in the peptide chain, dramatic alterations of glycosylation rates are produced, pointing to a critical contribution of the amino acids framing the 'marker sequence' triplet Asn-Xaa-Thr(Ser) on the formation of a potential sugar-attachment site. No glycosyl transfer at all was detectable to those peptides containing a proline residue either in position Xaa or in the next position beyond the threonine of the Asn-sequon on the C-terminal side, whereas the hexapeptide Pro-Asn-Gly-Thr-Ala-Val was glycosylated at a high rate. (Emboldened residues denote the 'marker sequence' that is identical in all the peptides; italicized residues distinguish the positions of proline in the various peptides.) Studies with space-filling models reveal that the lack of glycosyl-acceptor capabilities of Ala(Pro)-Asn-Gly-Thr-Pro-Val might be directly related to their inability to adopt and/or stabilize a turn or loop conformation which permits the catalytically essential interaction between the hydroxy amino acid and the asparagine residue within the 'marker sequence' [Bause & Legler (1981) Biochem. J. 195, 639-644]. This conclusion is supported by circular-dichroism spectroscopic data, which suggest structure-forming potentials in this type of non-acceptor peptides dominating over those that favour the induction of an appropriate sugar-attachment site in the acceptor peptides. The lack of acceptor properties of Tyr-Asn-Pro-Thr-Ser-Val indicates that even small modifications in the 'recognition' pattern are not tolerated by the N-glycosyltransferases.  相似文献   

12.
Gerken TA  Tep C  Rarick J 《Biochemistry》2004,43(30):9888-9900
A large family of uridine 5'-diphosphate (UDP)-alpha-N-acetylgalactosamine (GalNAc):polypeptide N-acetylgalactosaminyl transferases (ppGalNAc Ts) initiates mucin-type O-glycan biosynthesis at serine and threonine. The peptide substrate specificities of individual family members are not well characterized or understood, leaving an inability to rationally predict or comprehend sites of O-glycosylation. Recently, a kinetic modeling approach demonstrated neighboring residue glycosylation as a major factor modulating the O-glycosylation of the porcine submaxillary gland mucin 81 residue tandem repeat by ppGalNAc T1 and T2 [Gerken et al. (2002) J. Biol. Chem. 277, 49850-49862]. To confirm the general applicability of this model and its parameters, the ppGalNAc T1 and T2 glycosylation kinetics of the 80+ residue tandem repeat from the canine submaxillary gland mucin was obtained and characterized. To reproduce the glycosylation patterns of both mucins (comprising 50+ serine/threonine residues), specific effects of neighboring peptide sequence, in addition to the previously described effects of neighboring residue glycosylation, were required of the model. Differences in specificity of the two transferases were defined by their sensitivities to neighboring proline and nonglycosylated hydroxyamino acid residues, from which a ppGalNAc T2 motif was identified. Importantly, the model can approximate the previously reported ppGalNAc T2 glycosylation kinetics of the IgA1 hinge domain peptide [Iwasaki, et al. (2003) J. Biol. Chem. 278, 5613-5621], further validating both the approach and the ppGalNAc T2 positional weighting parameters. The characterization of ppGalNAc transferase specificity by this approach may prove useful for the search for isoform-specific substrates, the creation of isoform-specific inhibitors, and the prediction of mucin-type O-glycosylation sites.  相似文献   

13.
Two series of glycopeptides with mono- and disaccharides, [GalNAc and Galbeta (1-3)GalNAc] O-linked to serine and threonine at one, two or three contiguous sites were synthesized and characterized by 1H NMR. The conformational effects governed by O-glycosylation were studied and compared with the corresponding non-glycosylated counterparts using NMR, CD and molecular modelling. These model peptides encompassing the aa sequence, PAPPSSSAPPE (series I) and APPETTAAPPT (series II) were essentially derived from a 23-aa tandem repeat sequence of low molecular weight human salivary mucin (MUC7). NOEs, chemical shift perturbations and temperature coefficients of amide protons in aqueous and nonaqueous media suggest that carbohydrate moiety in threonine glycosylated peptides (series II) is in close proximity to the peptide backbone. An intramolecular hydrogen bonding between the amide proton of GalNAc or Galbeta (1-3)GalNAc and the carbonyl oxygen of the O-linked threonine residue is found to be the key structure stabilizing element. The carbohydrates in serine glycosylated peptides (series I), on the other hand, lack such intramolecular hydrogen bonding and assume a more apical position, thus allowing more rotational freedom around the O-glycosidic bond. The effect of O-glycosylation on peptide backbone is clearly reflected from the observed overall differences in sequential NOEs and CD band intensities among the various glycosylated and non-glycosylated analogues. Delineation of solution structure of these (glyco)peptides by NMR and CD revealed largely a poly L-proline type II and/or random coil conformation for the peptide core. Typical peptide fragments of tandem repeat sequence of mucin (MUC7) showing profound glycosylation effects and distinct differences between serine and threonine glycosylation as observed in the present investigation could serve as template for further studies to understand the multifunctional role played by mucin glycoproteins.  相似文献   

14.
15.
The alpha kinases are a widespread family of atypical protein kinases characterized by a novel type of catalytic domain. In this paper the peptide substrate recognition motifs for three alpha kinases, Dictyostelium discoideum myosin heavy chain kinase (MHCK) A and MHCK B and mammalian eukaryotic elongation factor-2 kinase (eEF-2K), were characterized by incorporating amino acid substitutions into a previously identified MHCK A peptide substrate (YAYDTRYRR) (Luo X. et al. (2001) J. Biol. Chem. 276, 17836-43). A lysine or arginine in the P+1 position on the C-terminal side of the phosphoacceptor threonine (P site) was found to be critical for peptide substrate recognition by MHCK A, MHCK B and eEF-2K. Phosphorylation by MHCK B was further enhanced 8-fold by a basic residue in the P+2 position whereas phosphorylation by MHCK A was enhanced 2- to 4-fold by basic residues in the P+2, P+3 and P+4 positions. eEF-2K required basic residues in both the P+1 and P+3 positions to recognize peptide substrates. eEF-2K, like MHCK A and MHCK B, exhibited a strong preference for threonine as the phosphoacceptor amino acid. In contrast, the Dictyostelium VwkA and mammalian TRPM7 alpha kinases phosphorylated both threonine and serine residues. The results, together with a phylogenetic analysis of the alpha kinase catalytic domain, support the view that the metazoan eEF-2Ks and the Dictyostelium MHCKs form a distinct subgroup of alpha kinases with conserved properties.  相似文献   

16.
Protein glycosylation is an important post-translational modification underlying host-parasite interactions, which may determine the outcome of infection. Although Mesocestoides vogae represents an important model for investigating the various aspects of cestode biology, virtually no information is available about the structure and synthesis of glycans in this parasite. In this work, focused on the initiation pathway of mucin-type O-glycosylation in M. vogae, we characterized O-glycoproteins bearing the simple mucin-type cancer-associated Tn and sialyl-Tn antigens, and the expression and activity of ppGalNAc-T, the key enzyme responsible for the first step of mucin-type O-glycosylation. Using immunohistochemistry, Tn and sialyl-Tn antigens were detected mainly in the tegument (microtriches) and in parenchymal cells. Tn expression was also observed in lateral nerve cords. Both Tn and sialyl-Tn antigens were detected in in vitro cultured parasites. Based on their electrophoretic mobility, Tn- and sialyl-Tn-bearing glycoproteins from M. vogae were separated into several components of 22 to 60 kDa. The observation that Tn and sialyl-Tn glycoproteins remained in the 0.6N perchloric acid-soluble fraction suggested that they could be good candidates for characterizing mucin-type glycosylation in this parasite. O-glycoproteins were purified and initially characterized using a proteomic approach. Immunohistochemical analysis of the tissue distribution of ppGalNAc-T revealed that this enzyme is expressed in the sub-tegumental region and in the parenchyma of the parasite. In M. vogae cultured in vitro, ppGalNAc-T was mainly detected in the suckers. Using a panel of 8 acceptor substrate synthetic peptides, we found that M. vogae ppGalNAc-T preferentially glycosylate threonine residues, the best substrates being peptides derived from human mucin MUC1 and from Trypanosoma cruzi mucin. These results suggest that M. vogae might represent a useful model to study O-glycosylation, and provide new research avenues for future studies on the glycopathobiology of helminth parasites.  相似文献   

17.
In search of possible epigenetic regulatory mechanisms ruling the initiation of O-glycosylation by polypeptide:N-acetylgalactosaminyltransferases, we studied the influences of mono- and disaccharide substituents of glycopeptide substrates on the site-specific in vitro addition of N-acetylgalactosamine (GalNAc) residues by recombinant GalNAc-Ts (rGalNAc-T1, -T2, and -T3). The substrates were 20-mers (HGV20) or 21-mers (AHG21) of the MUC1 tandem repeat peptide carrying GalNAcalpha or Galbeta1-3GalNAcalpha at different positions. The enzymatic products were analyzed by MALDI mass spectrometry and Edman degradation for the number and sites of incorporated GalNAc. Disaccharide placed on the first position of the diad Ser-16-Thr-17 prevents glycosylation of the second, whereas disaccharide on the second position of Ser-16-Thr-17 and Thr-5-Ser-6 does not prevent GalNAc addition to the first. Multiple disaccharide substituents suppress any further glycosylation at the remaining sites. Glycosylation of Ser-16 is negatively affected by glycosylation at position -6 (Thr-10) or -10 (Ser-6) and is inhibited by disaccharide at position -11 (Thr-5), suggesting the occurrence of glycosylation-induced effects on distant acceptor sites. Kinetic studies revealed the accelerated addition of GalNAc to Ser-16 adjacent to GalNAc-substituted Thr-17, demonstrating positive regulatory effects induced by glycosylation on the monosaccharide level. These antagonistic effects of mono- and disaccharides could underlie a postulated regulatory mechanism.  相似文献   

18.
The hinge region of human immunoglobulin A1 (*IgA1) possesses multiple O-glycans, of which synthesis is initiated by the addition of GalNAc to serine or threonine through the activity of UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases (pp-GalNAc-Ts). We found that six pp-GalNAc-Ts, pp-GalNAc-T1, -T2, -T3, -T4, -T6, and -T9, were expressed in B cells, IgA-bearing B cells, and NCI-H929 IgA myeloma cells. pp-GalNAc-T activities of these six enzymes for a synthetic IgA hinge peptide, which has nine possible O-glycosylation sites, were examined using a reversed phase-high performance liquid chromatography, a matrix-assisted laser desorption ionization time of flight mass spectrometry, and peptide sequencing analysis. pp-GalNAc-T2 showed the strongest activity transferring GalNAc to a maximum of eight positions. Other pp-GalNAc-Ts exhibited different substrate specificities from pp-GalNAc-T2; however, their activities were extremely weak. It was reported that the IgA1 hinge region possesses a maximum of five O-glycans, and their amino acid positions have been determined. We found that pp-GalNAc-T2 selectively transferred GalNAc residues to the same five positions. These results strongly suggested that pp-GalNAc-T2 is an essential enzyme for initiation of O-linked glycosylation of the IgA1 hinge region.  相似文献   

19.
We present evidence that site-specific O-glycosylation by recombinant polypeptide N-acetylgalactosaminyltransferases rGalNAc-T2 and -T4 is controlled by the primary sequence context, as well as by the position and structure of previously introduced O-glycans. Synthetic mucin-type (glyco)peptides corresponding to sections of the tandem repeat regions of MUC1, MUC2, and MUC4 were used as substrates for recombinant polypeptide N-acetylgalactosaminyltransferases, rGalNAc-T2 and -T4. By concerted and sequential action the two transferases are able to fully glycosylate MUC1 but only partially MUC2 and MUC4 tandem repeat peptides. GalNAc residues on MUC1 acceptor peptides trigger activity of rGalNAc-T4 directed to Ser in VTSA and Thr in PDTR and of rGalNAc-T2 to Ser/Thr within the GSTA motif of variant MUC1 peptides. However, elongation of GalNAc by beta3-galactosylation inhibits rGalNAc-T4 activity completely and rGalNAc-T2 activity with respect to the acceptor site GSTA. These findings are in accord with the inhibition of rGalNAc-T2 and -T4 by fully GalNAc-substituted MUC1 repeat peptide and support a glycosylation-dependent activity induction or enhancement of both enzymes.  相似文献   

20.
Chemical modification of the gamma-carboxyglutamyl (Gla) residues of bovine prothrombin fragment 1 using the formaldehyde-morpholine method in the presence of 100 Kappm Tb3+ ions at pH 5.0 provided a modified protein containing 3 gamma-methyleneglutamyl residues (gamma-MGlu) and 7 Gla residues (bovine 3-gamma-MGlu-fragment 1). The modified protein bound the same number of Ca2+ ions as the native protein (six to seven), exhibited 28Mg2+-binding properties identical to native fragment 1 (five Mg2+ ions bound), exhibited the metal ion-promoted quenching of the intrinsic fluorescence in a manner similar to the native protein, but did not bind to phosphatidylserine (PS)/phosphatidylcholine (PC) vesicles in the presence of Ca2+ ions. Modification of the bovine protein using [14C]formaldehyde-morpholine provided a 14C-labeled 3-gamma-MGlu-fragment 1 suitable for sequence analysis. Edman sequencing of the peptides released by a tryptic digest of the reduced and carboxymethylated bovine [14C]3-gamma-MGlu-fragment 1 indicated that Gla residues at positions 7, 8, and 33 had been converted to [14C]gamma-methyleneglutamyl residues. In addition Lys97 was found to contain a 14C label. Similar analysis of the human [14C]3-gamma-MGlu-fragment 1 indicated that Gla residues at positions 7 and 32 were major modification sites and that Gla residues at positions 6 and 14 were partially modified. Lysine 96 was also modified in the human protein. The incorporation of a 14C label at Lys97 in bovine 3-gamma-MGlu-fragment 1 protein is not responsible for the loss of Ca2+-promoted binding to PS/PC vesicles. We suggest that Gla residues 7, 8, and 33 are elements of the first Ca2+-binding site; occupancy of this site establishes the Ca2+-specific conformation which is essential for the Ca2+-promoted interaction of the bovine protein with PS/PC vesicles. These studies also suggest that the loss of Gla residues at positions 7 and 32 prevents the formation of the initial Ca2+-binding site in the human protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号