首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of oxidation is the key mechanism in the regulation of energy metabolism. In glycolysis the oxidation of glyceraldehyde-3-phosphate is controlled by DPNH, which inhibits glyceraldehyde-3-phosphate dehydrogenase. In oxidative phosphorylation the inhibition of electron flow from DPNH to oxygen, called "respiratory control," is the subject of this paper. After a discussion of the physiological significance of the "tight coupling" between phosphorylation and oxidation, studies on "loosely coupled" submitochondrial particles are reported. These particles are capable of oxidative phosphorylation in the presence of a suitable phosphate acceptor system, but in contrast to controlled, intact mitochondria they oxidize DPNH in the absence of phosphate and ADP. The addition of o-phenanthroline to submitochondrial particles gives rise to an inhibition of respiration, which is partly reversed by phosphate and ADP or by dinitrophenol. The properties of this model system of respiratory control will be described.  相似文献   

2.
It has been found that mitochondria isolated from the flight muscle of the housefly, Musca domestica, are capable of effecting oxidative phosphorylation. A systematic investigation of the factors which regulate this coupling was undertaken. It was found: 1. The molarity of the isolation medium had considerable influence on the morphology of the mitochondria. These physical alterations were associated with changes in oxidation, phosphorylation, and ATPase activity. 2. In addition to an optimum isolation medium, the normal morphology of the mitochondria needed to be further stabilized by serum albumin. 3. A "latent" ATPase activity in insect mitochondria was demonstrated. An inverse relationship was found between oxidative phosphorylation and ATPase activity. 4. Oxygen consumption and the uptake of phosphate were linear with respect to time. 5. A respiratory substrate was necessary for phosphorylation and for maintenance of spatially organized mitochondria. 6. No differences in oxygen uptake were found in the presence or absence of inorganic phosphate. 7. Magnesium was required for optimal oxidative phosphorylation. Calcium and manganese inhibited both respiration and phosphorylation. 8. The addition of cytochrome c had no effect on either oxygen or phosphate uptake. 9. ATP, ADP, or AMP were capable of participating in oxidative phosphorylation, but the glucose-hexokinase trapping system was necessary. 10. Fluoride inhibited the phosphorylation of AMP, but increased P/O when ATP was used. This stimulation was not due to the inhibition of ATPase. 11. Neither arginine nor creatine was phosphorylated. 12. The addition of other isolated fractions of flight muscle to the mitochondrial system had no appreciable effect on respiration or phosphorylation.  相似文献   

3.
Rat liver mitochondria are not fully functional at birth. The relationship between this deficiency and the affinity for phosphate, in oxidative phosphorylation or in phosphate transport, have been studied.The phosphate concentration necessary to observe maximal rate of succinate oxidation in the presence of ADP was higher for newborn than for adult rat liver mitochondria. After preincubation of newborn rat liver mitochondria with ATP, the rate of succinate oxidation in the presence of ADP increased with phosphate concentration similarly for newborn and adult rat liver mitochondria. The maximal rate of phosphate-acetate exchange, which is an indirect measure of the rate of phosphate transport across the mitochondrial membrane, was not significantly different for adult and newborn rat liver mitochondria. On the contrary the apparent affinity for phosphate was about ten-fold lower for newborn than for adult mitochondria.  相似文献   

4.
L Baggetto  J Comte  R Meister  C Godinot 《Biochimie》1983,65(11-12):685-690
Rat liver mitochondria are not fully functional at birth. The relationship between this deficiency and the affinity for phosphate, in oxidative phosphorylation or in phosphate transport, have been studied. The phosphate concentration necessary to observe maximal rate of succinate oxidation in the presence of ADP was higher for newborn than for adult rat liver mitochondria. After preincubation of newborn rat liver mitochondria with ATP, the rate of succinate oxidation in the presence of ADP increased with phosphate concentration similarly for newborn and adult rat liver mitochondria. The maximal rate of phosphate-acetate exchange, which is an indirect measure of the rate of phosphate transport across the mitochondrial membrane, was not significantly different for adult and newborn rat liver mitochondria. On the contrary the apparent affinity for phosphate was about ten-fold lower for newborn than for adult mitochondria.  相似文献   

5.
Respiratory control ratios between 2.0 and 9.0 were obtained by comparison of the respiratory rates of cabbage mitochondria in the presence and in the absence of individual components of the system used to provide ADP and by comparing the rates before and after exhaustion of added ADP. These results indicate that respiration in cabbage mitochondria is controlled by the availability of ADP, which serves as the phosphate acceptor.Pentachlorophenol (PCP), 2,4-dinitrophenol (DNP), gramicidin and oleic acid inhibited phosphorylation to a greater extent than respiration in the cabbage mitochondria, but these reagents did not stimulate respiration in the absence of a phosphate acceptor. Respiration was stimulated by DNP only in the presence of added ATP.2,4-Dinitrophenol, pentachlorophenol, dicumarol and gramicidin did not stimulate ATPase activity either in the presence or absence of added Mg(2+). Oleic acid stimulated ATPase activity in the presence of added Mg(2+), but did not stimulate respiration even in the presence of added ATP.The ATP-(32)Pi exchange rate was increased many fold in the presence of added Mg(2+). Oleic acid and 2,4-dinitrophenol inhibited the exchange almost completely.  相似文献   

6.

Background

Mitochondrial dysfunctions appear strongly implicated in a wide range of pathologies. Therefore, there is a growing need in the determination of the normal and pathological integrated response of oxidative phosphorylation to cellular ATP demand. The present study intends to address this issue by providing a method to investigate mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria.

Methodology/Principal Findings

The proposed method is based on the simultaneous monitoring of substrate oxidation (determined polarographically) and phosphorylation (determined using the glucose - hexokinase - glucose-6-phosphate dehydrogenase - NADP+ enzymatic system) rates, coupled to the determination of actual ADP and ATP concentrations by bioluminescent assay. This enzymatic system allows the study of oxidative phosphorylation during true steady states in a wide range of ADP concentrations. We demonstrate how the application of this method allows an accurate determination of mitochondrial affinity for ADP from both oxidation (KmVox) and phosphorylation (KmVp) rates. We also demonstrate that determination of KmVox leads to an important overestimation of the mitochondrial affinity for ADP, indicating that mitochondrial affinity for ADP should be determined using phosphorylation rate. Finally, we show how this method allows the direct and precise determination of the mitochondrial coupling efficiency. Data obtained from rat skeletal muscle and liver mitochondria illustrate the discriminating capabilities of this method.

Conclusions/Significance

Because the proposed method allows the accurate determination of mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria, it also opens the route to a better understanding of functional consequences of mitochondrial adaptations/dysfunctions arising in various physiological/pathophysiological conditions.  相似文献   

7.
1. High rates of state 3 pyruvate oxidation are dependent on high concentrations of inorganic phosphate and a predominance of ADP in the intramitochondrial pool of adenine nucleotides. The latter requirement is most marked at alkaline pH values, where ATP is profoundly inhibitory. 2. Addition of CaCl(2) during state 4, state 3 (Chance & Williams, 1955) or uncoupled pyruvate oxidation causes a marked inhibition in the rate of oxygen uptake when low concentrations of mitochondria are employed, but may lead to an enhancement of state 4 oxygen uptake when very high concentrations of mitochondria are used. 3. These properties are consistent with the kinetics of the NAD-linked isocitrate dehydrogenase (EC 1.1.1.41) from this tissue, which is activated by isocitrate, citrate, ADP, phosphate and H(+) ions, and inhibited by ATP, NADH and Ca(2+). 4. Studies of the redox state of NAD and cytochrome c show that addition of ADP during pyruvate oxidation causes a slight reduction, whereas addition during glycerol phosphate oxidation causes a ;classical' oxidation. Nevertheless, it is concluded that pyruvate oxidation is probably limited by the respiratory chain in state 4 and by the NAD-linked isocitrate dehydrogenase in state 3. 5. The oxidation of 2-oxoglutarate by swollen mitochondria is also stimulated by high concentrations of ADP and phosphate, and is not uncoupled by arsenate.  相似文献   

8.
Yukiko Tokumitsu  Michio Ui 《BBA》1973,292(2):325-337
1. The mitochondrial level of AMP gradually diminishes during incubation of mitochondria with glutamate but does not with succinate. This decline of AMP, associated with stoichiometric increase in ADP and/or ATP, is accelerated by the addition of electron acceptors or 2,4-dinitrophenol, while arsenite, arsenate and rotenone are inhibitory. These results are in agreement with the view that AMP is phosphorylated to ADP in the inner space of rat liver mitochondria via succinyl-CoA synthetase (succinate: CoA ligase (GDP), EC 6.2.1.4) and GTP:AMP phosphotransferase dependent on the oxidation of 2-oxoglutarate, which is promoted by the transfer of electron from NADH to the respiratory chain.2. Studies of the periodical changes of chemical quantities of adenine nucleotides as well as of their labelling with 32Pi reveals the following characteristics concerning mitochondrial phosphorylation. (i) In contrast to the mass action ratio of ATP to ADP, the ratio of ADP to AMP is not affected by the intramitochondrial concentration of Pi. (ii) 32Pi, externally added, is incorporated into ADP much more slowly than into γ-phosphate of ATP. (iii) Conversely, ATP loses its radioactivity from γ-phosphate position more rapidly than [32P]ADP when 32P-labelled mitochondria are incubated with non-radioactive Pi.3. In order to elucidate the above characteristic properties of phosphorylation, a hypothetical scheme is proposed which postulates the two separate compartments in the intramitochondrial pool of Pi; one readily communicates with external Pi and is utilized for the phosphorylation of ADP in oxidative phosphorylation, while the other less readily communicates with external Pi and serves as the precursor of ADP via succinyl-CoA synthetase and GTP:AMP phosphotransferase.  相似文献   

9.
Mitochondria were prepared from the spadices of skunk cabbage (Symplocarpus foetidus) whose respiratory rate with succinate and malate showed 15% to 30% sensitivity to cyanide inhibition, and which showed respiratory control by added ADP. The observed respiratory control ratios ranged from 1.1 to 1.4. The change in pH of the mitochondrial suspension was recorded simultaneously with oxygen uptake: alkalinization of the medium, expected for phosphorylation of ADP, coincided with the period of acceleration in oxygen uptake caused by addition of an ADP aliquot. The ADP/O ratios obtained were 1.3 for succinate and 1.9 for malate. In the presence of 0.3 mm cyanide, the ADP/O ratio for succinate was zero, while that for malate was 0.7. These results are consistent with the existence of an alternate oxidase which interacts with the flavoprotein and pyridine nucleotide components of the respiratory chain and which, in the presence of cyanide, allows the first phosphorylation site to function with an efficiency of about 70%. In the absence of respiratory inhibitors, the efficiency of each phosphorylation site is also about 70%. This result implies that diversion of reducing equivalents through the alternate oxidase, thereby bypassing the 2 phosphorylation sites associated with the cytochrome components of these mitochondria, occurs to a negligible extent during the oxidative phosphorylation of ADP or State 3.Addition of ADP or uncoupler to skunk cabbage mitochondria respiring in the controlled state or State 4, results in reduction of cytochrome c and the oxidation of the cytochromes b, ubiquinone and pyridine nucleotide. A site of interaction of ADP with the respiratory chain between cytochromes b and cytochrome c is thereby identified by means of the crossover theorem. Flavoprotein measured by fluorescence is also oxidized upon addition of ADP or uncoupler, but flavoprotein measured by optical absorbance changes becomes more reduced under these conditions. Depletion of the mitochondria by pretreatment with ADP and uncoupler prevents reduction of most of the fluorescent flavoprotein by succinate. These results indicate that skunk cabbage mitochondria contain both high and low potential flavo-proteins characterized by different fluorescence/absorbance ratios similar to those demonstrated to be part of the respiratory chain in mitochondria from animal tissues.  相似文献   

10.
A kinetic study of oxidative phosphorylation by pea submitochondrial particles gave two Km values for ADP, one low, the other high. The high value probably reflected a damaged site or a population of leaky mitochondria. Only the high affinity site with a low Km for ADP was involved in ATP synthesis. α,β-Methylene ADP was found to be a competitive inhibitor of ATP synthesis. The inorganic phosphate analog, thiophosphate, decreased the apparent Km of ADP while the rate of the reaction remained approximately the same. Adenyl imidodiphosphate, a specific inhibitor of ATP hydrolysis activity, had little effect on oxidative phosphorylation. A slight decrease in the Km of the high affinity binding site for ADP was noted. Aurovertin was found to be a potent inhibitor of oxidative phosphorylation in pea submitochondrial particles. The Km of the high affinity site was increased 10-fold. Also, the inhibition normally exerted by ADP on ATPase activity was severely reduced by aurovertin. In contrast, increasing the concentration of aurovertin only slightly affected the level of inhibition caused by adenyl imidodiphosphate on ATP hydrolysis.  相似文献   

11.
《Insect Biochemistry》1989,19(5):471-480
In the flight muscle of Locusta migratoria L., arginine kinase activity increased 10-fold when 5th instar larvae and adult animals were compared. During the onset of flight, ATP decreased slightly with the amount of phospho-l-arginine remaining constant. Thus, high arginine kinase activity characterizes the adult muscle, giving rise to the speculation that the phospho-l-arginine/l-arginine kinase system does not act only as a buffer system for high-energy phosphate but also as a shuttle mechanism for high-energy phosphate between mitochondria and myofibrils. Judged from electrophoretic mobility, only one isoenzyme exists that is not bound to subcellular structures. Calculations of the diffusive fluxes of ATP, ADP, phosphate, phospho-l-arginine and l-arginine between the sites of ATP-consumption and production, respectively, can be interpreted in such a way, that the low concentration of ADPfree might limit ATP-turnover during flight. Judging from the high arginine kinase activity, the major acceptor for high-energy phosphate at the mitochondria could be l-arginine, while phospho-l-arginine is transphosphorylated to ATP at the myofibrils, thus presumably serving as an energy shuttle.  相似文献   

12.
Moreau F  Romani R 《Plant physiology》1982,70(5):1385-1390
After preparation on self-generated Percoll gradients, avocado (Persea americana Mill, var. Fuerte and Hass) mitochondria retain a high proportion of cyanide-insensitive respiration, especially with α-ketoglutarate and malate as substrates. Whereas α-ketoglutarate oxidation remains unchanged, the rate of malate oxidation increases as ripening advances through the climacteric. An enhancement of mitochondrial malic enzyme activity, measured by the accumulation of pyruvate, closely parallels the increase of malate oxidation. The capacity for cyanide-insensitive respiration is also considerably enhanced while respiratory control decreases (from 3.3 to 1.7), leading to high state 4 rates.

Both malate dehydrogenase and malic enzyme are functional in state 3, but malic enzyme appears to predominate before the addition of ADP and after its depletion. In the presence of cyanide, a membrane potential is generated when the alterntive pathway is operating. Cyanide-insensitive malate oxidation can be either coupled to the first phosphorylation site, sensitive to rotenone, or by-pass this site. In the absence of phosphate acceptor, malate oxidation is mainly carried out via malic enzyme and the alternative pathway. Experimental modification of the external mitochondrial environment in vitro (pH, NAD+, glutamade) results in changes in malate dehydrogenase and malic enzyme activities, which also modify cyanide resistance. It appears that a functional connection exists between malic enzyme and the alternative pathway via a rotenone-insensitive NADH dehydrogenase and that this pathway is responsible, in part, for nonphosphorylating respiratory activity during the climacteric.

  相似文献   

13.
T.A. Out  K. Krab  A. Kemp  E.C. Slater 《BBA》1977,459(3):612-616
Even when oxidative phosphorylation is blocked completely by addition of high concentrations of oligomycin plus aurovertin, the addition of ADP to a suspension of mitochondria containing a high concentration of ATP inside the mitochondria induces a stimulation of respiration and oxidation of nicotinamide nucleotide.It is concluded that transport of ADP into mitochondria with a high endogenous ATP/ADP ratio requires energy.  相似文献   

14.
Metabolic activity of plant mitochondria in hypertonic sucrose solutions   总被引:1,自引:1,他引:0  
This study deals with effects of hypertonic sucrose solutions on respiration and oxidative phosphorylation of intact mitochondria isolated from sugar beet (Beta vulgaris L.) taproots and etiolated pea (Pisum sativum L.) seedlings. Mitochondria from plants, like those of animals, showed a trend to inhibition of oxidative phosphorylation in hypertonic sucrose solutions. The increase in sucrose concentration from 0.5 to 1.0 M suppressed malate oxidation in the presence of glutamate in state 3 by a factor of 2.5–3.5 and diminished the respiratory control ratio by a factor of 1.5–2.0. Plant mitochondria turned out remarkably resistant to osmotic stress; they retained significant respiratory control and high ADP/O ratios in a hypertonic 1 M sucrose solution. Although the origin of the observed phenomenon remains unresolved and warrants further studies, it is evident that elevated resistance of plant mitochondria to osmotic stress might be significant for energy supply under extreme environmental conditions (upon drought and salinity) when the plant organism experiences dehydration with a concomitant increase in the cytoplasmic osmolarity.  相似文献   

15.
Isolated mitochondria of wheat shoots oxidize α- ketoglutarate, DL-malate succinate and NADH with good relative respiration control and ADP: O ratio. They have high affinity for α-ketoglutarate and NADH as substrates and utilize malate and succinate with a respiration ratio of about one-half of α-ketoglutarate. The average ADP : O ratios approach the expected theoretical values, i.e., 3.6 ± 0.2 for α-ketoglutarate, 1.8 ± 0.2 for succinate, and 2.8 ± 0.2 for malate. The ADP: O ratio with NADH is 1.8 ± 0.2. The maximum coupling of oxidation and phosphorylation is obtained at concentrations of 10 mM, 2 mM, 10 mM and 8 mM for α-ketoglutarate, NADH, malate and succinate, respectively. — Wheat mitochondria have little or no dependence on added cofactors. Mitochondria prepared by our procedure apparently retain sufficient amounts of endogenous cofactors required for NAD-linked systems. FAD+ is found to improve succinate oxidation. Cytochrome c does not have any significant effect on respiratory parameters of wheat mitochondria. — Wheat mitochondria are some -what resistant to DNP at 1.7 × 10-5M. Malonate seems to improve coupling of α-ketoglutarate oxidation. Other Krebs cycle intermediates have been tested on three major substrates of TCA cycle, i.e., α-ketoglutarate, malate and succinate.  相似文献   

16.
Mitochondria isolated from the hepatopancreas of the blue crab Callinectes sapidus show up to 12-fold stimulation of respiration on addition of Ca2+, which is accompanied by Ca2+ accumulation (Ca2+:site = 1.9) and H+ ejection (H+:Ca2+ = 0.85). Sr2+ and Mn2+ are also accumulated; Mg2+ is not. A strongly hypertonic medium (383 mosM), Mg2+, and phosphate are required for maximal Ca2+ uptake. Ca2+ uptake takes precedence over oxidative phosphorylation of ADP for respiratory energy. Once Ca2+ is accumulated by the crab mitochondria, it is stable and only very slowly released, even by uncoupling agents. ATP hydrolysis also supports Ca2+ uptake. Respiration-inhibited crab hepatopancreas mitochondria show both high-affinity and low-affinity Ca2+-binding sites, which are inactive in the presence of uncoupling agents. Crab hepatopancreas mitochondria have an enormous capacity for accumulation of Ca2+, up to 5,500 ng-atoms Ca2+ per mg protein, with an equivalent amount of phosphate. Freshly isolated mitochondria contain very large amounts of Ca2+, Mg2+, phosphate, K+, and Na+; their high Ca2+ content is a reflection of the vary large amount of extra-mitochondrial Ca2+ in the whole tissue. Electron microscopy of crab mitochondria loaded with Ca2+ and phosphate showed large electron-dense deposits, presumably of precipitated calcium phosphate. They consisted of bundles of needle-like crystals, whereas Ca2+-loaded rat liver mitochondria show only amorphous deposits of calcium phosphate under similar conditions. The very pronounced capacity of crab hepatopancreas mitochondria for transport of Ca2+ appears to be adapted to a role in the storage and release of Ca2+ during the molting cycle of this crustacean.  相似文献   

17.
The effect of mono-, di-, and trinucleoside phosphates and respiratory inhibitors on respiration in winter wheat (Triticum aestivum L. cv. Rideau) mitochondria has been examined. When added during state 4 respiration, subsequent to addition of ADP, all of the dinucleotides stimulated oxidation and induced respiratory control with all substrates examined. Similar results were obtained with AMP, but other mononucleotides and all trinucleotides did not affect the rate of oxidation. Nucleoside diphosphates did not stimulate respiration when added prior to the addition of ADP, but subsequent addition of AMP, ADP, or ATP re-established coupled respiration in the presence of the dinucleotides.  相似文献   

18.
Day DA  Hanson JB 《Plant physiology》1977,59(2):139-144
A study was made to determine conditions under which malate oxidation rates in corn (Zea mays L.) mitochondria are limited by transport processes. In the absence of added ADP, inorganic phosphate increased malate oxidation rates by processes inhibited by mersalyl and oligomycin, but phosphate did not stimulate uncoupled respiration. However, the uncoupled oxidation rates were inhibited by butylmalonate and mersalyl. When uncoupler was added prior to substrate, subsequent O2 uptake rates were reduced when malate and succinate, but not exogenous NADH, were used. Uncoupler and butylmalonate also inhibited swelling in malate solutions and malate accumulation by these mitochondria, which were found to have a high endogenous phosphate content. Addition of uncoupler after malate or succinate produced an initial rapid oxidation which declined as the mitochondria lost solute and contracted. This decline was not affected by addition of ADP or AMP, and was not observed when exogenous NADH was substrate. Increasing K+ permeability with valinomycin increased the P-trifluoromethoxy (carboxylcyanide)phenyl hydrazone inhibition. Kinetic studies showed the slow rate of malate oxidation in the presence of uncoupler to be characterized by a high Km and a low Vmax, probably reflecting a diffusion-limited process.  相似文献   

19.
Energization of isolated brown adipose tissue mitochondria of cold-stressed guinea pigs has been studied by measuring rates and steady-state reduction of the cytochrome b complex. Our previous conclusion (Pedersen, J. I. and Flatmark, T. (1972) Biochim. Biophys. Acta 275, 135–147) that brown adipose tissue and liver mitochondria of these animals are fundamentally different from an energetic point of view, has been confirmed.ADP induced an energization of brown adipose tissue mitochondria very similar to that previously observed with ATP (ref. cited), but the maximal “energy potential” obtained by ADP is lower. Furthermore, this potential of brown adipose tissue mitochondria is much more sensitive to changes in the extramitochondrial phosphate potential than is that of liver mitochondria. Energization by ADP is largely mediated by ATP formed by the adenylate kinase reaction.The oligomycin-induced oxidation of the cytochrome b complex of maximally energized mitochondria appears to be a suitable measure of the rate of energy dissipation. By using this parameter, it has been found that the rate as well as the extent of endogenous dissipation of energy is approx. 15 times higher in brown adipose tissue mitochondria than in liver mitochondria at pH 6.8. The pH dependence of this reaction is a further indication of the importance of the transmembrane pH gradient in the control of coupling of electron transport to phosphorylation in brown adipose tissue mitochondria.  相似文献   

20.
A procedure was described for preparing intact mitochondria from spinach (Spinacia oleracea L.) leaves. These mitochondria oxidized succinate, malate, pyruvate, α-ketoglutarate, and NADH with good respiratory control and ADP/O ratios comparable to those observed with mitochondria from other plant tissues. Glycine was oxidized by the preparations. This oxidation linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport and phosphorylation inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号