首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) generated from 1-hydroxy-2-0×0-3, 3-bis(2-aminoethyl)-l-triazene (NOC 18), an NO-releasing compound, induced monocytic differentiation of human promyelocytic leukemia HL-60 cells as assessed by expression of nonspecific esterases and morphologic maturation. Simultaneously, DNA fragmentation and morphological alterations typical of apoptosis were also induced. To investigate the mechanisms of apoptosis during differentiation of HL-60 cells induced by NO, the endogenous levels of Bcl-2 and Bax were assessed by immunoblotting. Treatment of cells with NOC 18 slightly reduced the level of Bcl-2 followed by Bax. These changes might be involved in the induction of apoptosis. The involvement of the activation of the interleukin-lβ converting enzyme (ICE) family of proteases (caspases), such as ICE and CPP32, in the pathways was also investigated. CPP32, but not ICE, was strongly activated in response to NOC 18 stimulation, thereby implicating CPP32-like activity in the induction of apoptosis. Moreover, the possible involvement of tyrosine phosphorylation in apoptosis was investigated. Pretreatment of cells with herbimycin A, an inhibitor of tyrosine kinases, suppressed DNA fragmentation and CPP32-like activity, whereas pretreatment with vanadate, an inhibitor of tyrosine phosphatases, enhanced both parameters, suggesting that tyrosine phosphorylation might be involved in the pathways of apoptosis in HL-60 cells induced by NO.  相似文献   

2.
Because nitric oxide (NO) reacts with various molecules, such as hemeproteins, superoxide and thiols including glutathione (GSH) and cysteine residues in proteins, biological effects and metabolic fate of this gaseous radical are affected by these reactants. Although the lifetime of NO is short particularly under air atmospheric conditions (where the oxygen tension is unphysiologically high), it increases significantly under physiologically low oxygen concentrations. Because oxygen tensions in human body differ from one tissue to another and change depending on their metabolism, biological activity of NO in various tissues might be affected by local oxygen tensions. To elucidate the role of NO and related radicals in the regulation of circulation and energy metabolism, their effects on arterial resistance and energy metabolism in mitochondria, mammalian cells and enteric bacteria were studied under different oxygen tensions. Kinetic analysis revealed that NO-dependent generation of cGMP in resistance arteries and their relaxation were strongly enhanced by lowering oxygen tensions in the medium. NO reversibly suppressed the respiration and ATP synthesis of isolated mitochondria and intact cells particularly under low oxygen tensions. Kinetic analysis revealed that cross-talk between NO and superoxide generated in and around endothelial cells regulates arterial resistance particularly under physiologically low oxygen tensions. NO also inhibited the respiration and ATP synthesis of E. coli particularly under low oxygen tensions. Because concentrations of NO and H+ in gastric juice are high, most ingested bacteria are effectively killed in the stomach. However, the inhibitory effects of NO on the respiration and ATP synthesis of H. pylori are extremely small. Kinetic analysis revealed that H. pylori generates the superoxide radical thereby inhibiting the bactericidal action of NO in gastric juice. Based on such observations, critical roles of the cross-talk of NO, superoxide and molecular oxygen in the regulation of energy metabolism and survival of aerobic and microaerophilic organisms are discussed.  相似文献   

3.
To understand the role of nitric oxide (NO) in the regulation of cellular metabolism in peritoneal macrophages under physiological low oxygen tension, its effect on the respiration and energy metabolism was examined with casein-induced peritoneal macrophages from the rat. Intraperitoneal injection of casein transiently induced peritoneal infiltration of neutrophils (peaked on day 1) followed by the migration of macrophages that peaked on day 2. Western blotting analysis using antibodies against inducible type of NO synthase (iNOS) revealed that macrophages appeared in the peritoneal cavity during an early stage (approximately day 2) but not during the late stage (day 3 approximately) of inflammation expressed iNOS and generated substantial amounts of NO by a mechanism that was inhibited by N-iminoethyl-L-ornithine (NIO), a specific inhibitor of iNOS. Although NO reversibly but strongly inhibited the respiration of macrophages from both stages particularly under physiologically low oxygen tension, NIO markedly enhanced the respiration of macrophages obtained from the early period but not from the late period of inflammation. The ATP level in the macrophages from the late period but not from the early period was markedly decreased by NO. Biochemical analysis revealed that the glycolytic activity in the macrophages obtained from the early period was significantly higher than that from the late period of inflammation. These results indicate that significant fractions of cellular ATP in iNOS-positive peritoneal macrophages are synthesized by the increased activity of glycolysis particularly under physiological low oxygen tensions where the mitochondrial respiration is strongly inhibited by endogenously generated NO by macrophages and neutrophils.  相似文献   

4.
Because nitric oxide (NO) reacts with various molecules, such as hemeproteins, superoxide and thiols including glutathione (GSH) and cysteine residues in proteins, biological effects and metabolic fate of this gaseous radical are affected by these reactants. Although the lifetime of NO is short particularly under air atmospheric conditions (where the oxygen tension is unphysiologically high), it increases significantly under physiologically low oxygen concentrations. Because oxygen tensions in human body differ from one tissue to another and change depending on their metabolism, biological activity of NO in various tissues might be affected by local oxygen tensions. To elucidate the role of NO and related radicals in the regulation of circulation and energy metabolism, their effects on arterial resistance and energy metabolism in mitochondria, mammalian cells and enteric bacteria were studied under different oxygen tensions. Kinetic analysis revealed that NO-dependent generation of cGMP in resistance arteries and their relaxation were strongly enhanced by lowering oxygen tensions in the medium. NO reversibly suppressed the respiration and ATP synthesis of isolated mitochondria and intact cells particularly under low oxygen tensions. Kinetic analysis revealed that cross-talk between NO and superoxide generated in and around endothelial cells regulates arterial resistance particularly under physiologically low oxygen tensions. NO also inhibited the respiration and ATP synthesis of E. coli particularly under low oxygen tensions. Because concentrations of NO and H+ in gastric juice are high, most ingested bacteria are effectively killed in the stomach. However, the inhibitory effects of NO on the respiration and ATP synthesis of H. pylori are extremely small. Kinetic analysis revealed that H. pylori generates the superoxide radical thereby inhibiting the bactericidal action of NO in gastric juice. Based on such observations, critical roles of the cross-talk of NO, superoxide and molecular oxygen in the regulation of energy metabolism and survival of aerobic and microaerophilic organisms are discussed.  相似文献   

5.
Properties of DNA fragmentation activity generated by ATP depletion   总被引:1,自引:0,他引:1  
Internucleosomal DNA fragmentation is generally perceived as one of the characteristic features of apoptosis, most of which are driven by caspase activation dependent upon ATP. On the other hand, ATP depletion has been reported to induce apoptosis accompanying DNA fragmentation. To address this apparent paradox, we analyzed the DNA-fragmenting activity generated in ATP-depleted cells. In HL-60 promyelocytic leukemia cells cultured in glucose-free medium with oligomycin, internucleosomal DNA fragmentation occurred as an early event. The DNA fragmentation was blocked by serine protease inhibitors but not by caspase inhibitors. Consistently, ICAD/DFF45 could not inhibit the DNA-fragmenting activity of the ATP-depleted cytosol in a cell-free system. When ATP was supplied to the cell-free assay, 80% of the DNA-fragmenting activity was lost. The reduced activity was then restored by proteasome inhibitors, suggesting a role of proteasome to protect from a cellular insult derived from ATP-depletion.  相似文献   

6.
Abstract : It is well known that caspases are produced as proforms, which are proteolytically cleaved and activated during apoptosis or programmed cell death. We report here that caspases are activated during apoptosis by treatment with NOC18, a nitric oxide (NO) donor. Our present experiments have examined the way in which NO induces neuronal cell death, using a new type of NO donor that spontaneously releases only NO without enzymatic metabolism. NOC18 induced apoptosis in human neuroblastoma SH-SY5Y cells in a concentration-and time-dependent manner as estimated by DNA fragmentation assay, FACScan analysis, and nuclear morphology. Oxyhemoglobin, an NO trapper, suppressed NOC18-triggered DNA fragmentation, indicating that NO from NOC18 is a real activator in this study. Upon the induction of apoptosis, an increase in caspase-3-like protease activity, but not caspase-1, was observed. Procaspase-2 protein, an inactive form of caspase-2, decreased dramatically. In addition, NOC18 also resulted in poly (ADP-ribose) polymerase (PARP) cleavage, yielding an 85-kDa fragment typical of caspase activity. Oxyhemoglobin blocked the decrease of procaspase-2 and the cleavage of PARP by NOC18 in a concentration-dependent manner. Moreover, NO elicited the release of cytochrome c into the cytosol during apoptosis. These results suggest that both stimulation of caspase activity and cytochrome c release are partly involved in NO-induced neuronal apoptosis.  相似文献   

7.
Zhu XF  Liu ZC  Xie BF  Li ZM  Feng GK  Xie HH  Wu SJ  Yang RZ  Wei XY  Zeng YX 《Life sciences》2002,70(11):1259-1269
Annonaceous acetogenins have potent antitumor effect in vitro and in vivo. Squamocin is one of the annonaceous acetogenins and has been reported to have antiproliferative effect on cancer cells. Our results from this study showed that squamocin inhibited proliferation of HL-60 cells with IC50 value of 0.17 microg/ml and induced apoptosis of HL-60 cells. Investigation of the mechanism of squamocin-induced apoptosis revealed that treatment of HL-60 cells with squamocin resulted in extensive nuclear condensation. DNA fragmentation, cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and induction of caspase-3 activity. Pretreatment of HL-60 cells with caspase-3 specific inhibitor DEVD-CHO prevented squamocin-induced DNA fragmentation, PARP cleavage and cell death. The expression levels of protein bcl-2, bax have no change in response to squamocin treatment in HL-60 cells, whereas stress-activated protein kinase (SAPK/JNK) was activated after treatment with squamocin in HL-60 cells. These results suggest that apoptosis of HL-60 cells induced by squamocin requires caspase-3 activation and is related to SAPK activation.  相似文献   

8.
Electron microscopy studies demonstrate unequivocally that the observed oligonucleosome-sized secondary DNA fragmentation in human promyelocytic HL-60 cells treated with the topoisomerase inhibitors camptothecin and teniposide is correlated with the morphological changes in cell structure typical of programmed cell death (apoptosis). Since apoptosis has been associated with potential involvement of intracellular signaling linked to the Ca2+/calmodulin and protein kinase C transduction pathways, we also investigated the effects of signaling modulators on camptothecin- and teniposide-induced secondary DNA fragmentation in HL-60 cells. Neither calcium chelators, calcium/calmodulin inhibitors (calmidazolium or cyclosporine A), protein kinase C stimulation by TPA, protein phosphatase inhibition by okadaic acid, protein kinase inhibition by staurosporine, calphostin C, genistein or H7, nor cell cycle alterations by caffeine had any detectable effect. Interestingly, most of these intracellular signaling modulators were able to induce DNA fragmentation in HL-60 cells by themselves. These results may suggest that even though modulation of these signaling pathways was unable to prevent topoisomerase inhibitor-induced apoptosis, their sole deregulations could induce apoptosis in HL-60 cells. In contrast, aphidicolin blocked camptothecin-induced secondary DNA fragmentation, indicating that replication-induced DNA damage is required for camptothecin- but not teniposide-induced secondary DNA fragmentation. Zinc, 3-aminobenzamide, and spermine also modulated both camptothecin- and teniposide-induced secondary DNA fragmentation without significant alteration of topoisomerase-mediated primary DNA strand breaks. Hence, poly(ADP-ribosyl)ation and chromatin structure may be important in modulating oligonucleosomesized DNA fragmentation associated with apoptosis in HL-60 cells treated with topoisomerase inhibitors.  相似文献   

9.
Nitric oxide (NO) released from (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO or NOC-18) induces apoptosis in human leukemia HL-60 cells. In this study, we isolated a HL-60 variant cell line, HL-NR6, that is resistant to DETA/NO toxicity as assessed by DNA fragmentation, morphology, and colony forming ability. The variant cells also showed resistance to reactive oxygen species (ROS) such as superoxide and hydrogen peroxide as well as NO donors, but not to anti-tumor drugs. We found that HL-NR6 cells when compared with HL-60 cells possessed twice the activities of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and catalase, but no change in Mn-SOD nor in glutathione peroxidase. Immunoblotting confirmed the high levels of both enzymes in the variant cell. We also observed that ROS generation following DETA/NO exposure was substantially higher in HL-60 cells than in HL-NR6 cells, using the 2′,7′-dichlorofluorescein fluorometric method. Moreover, the SOD mimetic Mn(III) tetrakis(1-methyl-4-pyridyl) porphyrin and exogenous catalase effectively attenuated DETA/NO-elicited DNA fragmentation in HL-60 cells. Taken together, these data suggested that the NO resistance in HL-NR6 cells is associated with the increased Cu,Zn-SOD/catalase and that NO-mediated apoptosis in HL-60 cells is correlated with the generation of ROS and derived molecules like peroxynitrite.  相似文献   

10.
Nitric oxide (NO) is a widespread biological messenger that has many physiological and pathophysiological roles. Most of the physiological actions of NO are mediated through the activation of sGC (soluble guanylate cyclase) and the subsequent production of cGMP. NO also binds to the binuclear centre of COX (cytochrome c oxidase) and inhibits mitochondrial respiration in competition with oxygen and in a reversible manner. Although sGC is more sensitive to endogenous NO than COX at atmospheric oxygen tension, the more relevant question is which enzyme is more sensitive at physiological oxygen concentration. Using a system in which NO is generated inside the cells in a finely controlled manner, we determined cGMP accumulation by immunoassay and mitochondrial oxygen consumption by high-resolution respirometry at 30 microM oxygen. In the present paper, we report that the NO EC50 of sGC was approx. 2.9 nM, whereas that required to achieve IC50 of respiration was 141 nM (the basal oxygen consumption in the absence of NO was 14+/-0.8 pmol of O2/s per 10(6) cells). In accordance with this, the NO-cGMP signalling transduction pathway was activated at lower NO concentrations than the AMPKs (AMP-activated protein kinase) pathway. We conclude that sGC is approx. 50-fold more sensitive than cellular respiration to endogenous NO under our experimental conditions. The implications of these results for cell physiology are discussed.  相似文献   

11.
Our aim was to better understand the mechanism and importance of sustained c-Jun N-terminal kinase (JNK) activation in endoplasmic reticulum (ER) stress and effects of ER stress on mitochondria by determining the role of mitochondrial JNK binding protein, Sab. Tunicamycin or brefeldin A induced a rapid and marked decline in basal mitochondrial respiration and reserve-capacity followed by delayed mitochondrial-mediated apoptosis. Knockdown of mitochondrial Sab prevented ER stress-induced sustained JNK activation, impaired respiration, and apoptosis, but did not alter the magnitude or time course of activation of ER stress pathways. P-JNK plus adenosine 5′-triphosphate (ATP) added to isolated liver mitochondria promoted superoxide production, which was amplified by addition of calcium and inhibited by a blocking peptide corresponding to the JNK binding site on Sab (KIM1). This peptide also blocked tunicamycin-induced inhibition of cellular respiration. In conclusion, ER stress triggers an interaction of JNK with mitochondrial Sab, which leads to impaired respiration and increased mitochondrial reactive oxygen species, sustaining JNK activation culminating in apoptosis.  相似文献   

12.
Nitric oxide (NO) or its derivatives (reactive nitrogen species, RNS) inhibit mitochondrial respiration in two different ways: (i) an acute, potent, and reversible inhibition of cytochrome oxidase by NO in competition with oxygen; and, (ii) irreversible inhibition of multiple sites by RNS. NO inhibition of respiration may impinge on cell death in several ways. Inhibition of respiration can cause necrosis and inhibit apoptosis due to ATP depletion, if glycolysis is also inhibited or is insufficient to compensate. Inhibition of neuronal respiration can result in excitotoxic death of neurons due to induced release of glutamate and activation of NMDA-type glutamate receptors. Inhibition of respiration may cause apoptosis in some cells, while inhibiting apoptosis in other cells, by mechanisms that are not clear. However, NO can induce (and inhibit) cell death by a variety of mechanisms unrelated to respiratory inhibition.  相似文献   

13.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

14.
Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. The protective role of antioxidant enzymes against singlet oxygen-induced oxidative damage in HL-60 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole and oxlalomalate, specific inhibitors of superoxide dismutase, catalase and NADP+-dependent isocitrate dehydrogenase, respectively. Upon exposure to rose bengal (20 μM)/light (15 min), which generates singlet oxygen, to HL-60 cells, the viability was lower and the lipid peroxidation and oxidative DNA damage were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species as well as the significant decrease in the intracellular GSH level in inhibitor-treated HL-60 cells exposed to singlet oxygen. Upon exposure to rose bengal (3 μM)/light (15 min), which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated HL-60 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against singlet oxygen-induced cell death including necrosis and apoptosis.  相似文献   

15.
Kim SY  Lee SM  Park JW 《Free radical research》2006,40(11):1190-1197
Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. The protective role of antioxidant enzymes against singlet oxygen-induced oxidative damage in HL-60 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole and oxlalomalate, specific inhibitors of superoxide dismutase, catalase and NADP+-dependent isocitrate dehydrogenase, respectively. Upon exposure to rose bengal (20 μM)/light (15 min), which generates singlet oxygen, to HL-60 cells, the viability was lower and the lipid peroxidation and oxidative DNA damage were higher in inhibitor-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species as well as the significant decrease in the intracellular GSH level in inhibitor-treated HL-60 cells exposed to singlet oxygen. Upon exposure to rose bengal (3 μM)/light (15 min), which induced apoptotic cell death, a clear inverse relationship was observed between the control and inhibitor-treated HL-60 cells in their susceptibility to apoptosis. These results suggest that antioxidant enzymes play an important role in cellular defense against singlet oxygen-induced cell death including necrosis and apoptosis.  相似文献   

16.
《Phytomedicine》2015,22(5):545-552
BackgroundNatural products are one of the most important sources of drugs used in pharmaceutical therapeutics. Screening of several natural products in the search for novel anticancer agents against human leukemia HL-60 cells led us to identify potent apoptosis-inducing activity in the essential oil fraction from Artemisia capillaris Thunb. flower.MethodsThe cytotoxic effects of extracts were assessed on human leukemia HL-60 cells by XTT assay. Induction of apoptosis was assessed by analysis of DNA fragmentation and nuclear morphological change. The plant name was checked with the plant list website (http://www.theplantlist.org).ResultsA purified compound from the essential oil fraction from Artemisia capillaris Thunb. flower that potently inhibited cell growth in human leukemia HL-60 cells was identified as capillin. The cytotoxic effect of capillin in cells was associated with apoptosis. When HL-60 cells were treated with 106 M capillin for 6 h, characteristic features of apoptosis such as DNA fragmentation and nuclear fragmentation were observed. Moreover, activation of c-Jun N-terminal kinase (JNK) was detected after treatment with capillin preceding the appearance of characteristic properties of apoptosis. Release of cytochrome c from mitochondria was also observed in HL-60 cells that had been treated with capillin.ConclusionCapillin induces apoptosis in HL-60 cells via the mitochondrial apoptotic pathway, which might be controlled through JNK signaling. Our results indicate that capillin may be a potentially useful anticancer drug that could enhance therapeutic efficacy.  相似文献   

17.
Nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in a variety of cells, but the mechanism of this effect has not been fully elucidated. We report that diclofenac, a NSAID, induces growth inhibition and apoptosis of HL-60 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS), Akt, caspase-8, and Bid. ROS generation occurs in an early stage of diclofenac-induced apoptosis preceding cytochrome c release, caspase activation, and DNA fragmentation. N-Acetyl-L-cysteine, an antioxidant, suppresses ROS generation, Akt inactivation, caspase-8 activation, and DNA fragmentation. Cyclic AMP, an inducer of Akt phosphorylation, suppresses Akt inactivation, Bid cleavage, and DNA fragmentation. LY294002, a PI3 kinase inhibitor, enhances Akt inactivation and DNA fragmentation. Ac-IETD-CHO, a caspase-8 inhibitor, suppresses Bid cleavage and DNA fragmentation. z-VAD-fmk, a universal caspase inhibitor, but not cyclosporin A (CsA), an inhibitor of mitochondrial membrane permeability transition, suppresses DNA fragmentation. These results suggest the sequential mechanism of diclofenac-induced apoptosis of HL-60 cells: ROS generation suppresses Akt activity, thereby activating caspase-8, which stimulates Bid cleavage and induces cytochrome c release and the activation of caspase-9 and-3 in a CsA-insensitive mechanism. Furthermore, we found that 2-methoxyestradiol (2-ME), a superoxide dismutase inhibitor, significantly enhances diclofenac-induced apoptosis; that is, diclofenac combined with 2-ME may have therapeutic potential in the treatment of human leukemia.  相似文献   

18.
Activation of apoptosis contributes to cardiomyocyte dysfunction and death in diabetic cardiomyopathy. The peptide glucagon-like peptide-1 (GLP-1), a hormone that is the basis of emerging therapy for type 2 diabetic patients, has cytoprotective actions in different cellular models. We investigated whether GLP-1 inhibits apoptosis in HL-1 cardiomyocytes stimulated with staurosporine, palmitate, and ceramide. Studies were performed in HL-1 cardiomyocytes. Apoptosis was induced by incubating HL-1 cells with staurosporine (175 nM), palmitate (135 μM), or ceramide (15 μM) for 24 h. In staurosporine-stimulated HL-1 cardiomyocytes, phosphatidylserine exposure, Bax-to-Bcl-2 ratio, Bad phosphorylation (Ser(136)), BNIP3 expression, mitochondrial membrane depolarization, cytochrome c release, caspase-3 activation, DNA fragmentation, and mammalian target of rapamycin (mTOR)/p70S6K phosphorylation (Ser(2448) and Thr(389), respectively) were assessed. Apoptotic hallmarks were also measured in the absence or presence of low (5 mM) and high (10 mM) concentrations of glucose. In addition, phosphatidylserine exposure and DNA fragmentation were analyzed in palmitate- and ceramide-stimulated cells. Staurosporine increased apoptosis in HL-1 cardiomyocytes. GLP-1 (100 nM) partially inhibited staurosporine-induced mitochondrial membrane depolarization and completely blocked the rest of the staurosporine-induced apoptotic changes. This cytoprotective effect was mainly mediated by phosphatidylinositol 3-kinase (PI3K) and partially dependent on ERK1/2. Increasing concentrations of glucose did not influence GLP-1-induced protection against staurosporine. Furthermore, GLP-1 inhibited palmitate- and ceramide-induced phosphatidylserine exposure and DNA fragmentation. Incretin GLP-1 protects HL-1 cardiomyocytes against activation of apoptosis. This cytoprotective ability is mediated mainly by the PI3K pathway and partially by the ERK1/2 pathway and seems to be glucose independent. It is proposed that therapies based on GLP-1 may contribute to prevent cardiomyocyte apoptosis.  相似文献   

19.
Ultraviolet-C (UVC) irradiation induces DNA damage and UVC-irradiated cells undergo cell growth arrest to repair the damaged DNA or the induction of apoptosis to prevent the risk of neoplastic transformation. Phospholipase C-gamma1 (PLC-gamma1) is a mediator of growth factor induced-signal cascade, catalyzing the hydrolysis of phosphatidyl 4,5-bisphosphate to generate second messengers, diacylglycerol and inositol 1,4,5-trisphosphate (IP(3)). PLC-gamma1 is activated by phosphorylation of tyrosine residues upon occupation of cell surface receptors by growth factors and plays an important role in controlling cellular proliferation and differentiation. In this study, we found that PLC-gamma1 was tyrosine phosphorylated within 2.5 min after UVC irradiation. To investigate the role of UVC-induced tyrosine phosphorylation of PLC-gamma1, we compared the effect of UVC between PLC-gamma1 overexpressing cells and empty vector transfected cells. Overexpression of PLC-gamma1 inhibited UVC-induced sub-diploid peak and DNA fragmentation. Northern blot analysis revealed that UVC-induced c-fos mRNA accumulation was inhibited in PLC-gamma1 overexpressing cells, while c-jun expression was not affected. In addition, UVC-induced activation of c-Jun N-terminal kinase (JNK) was significantly suppressed in PLC-gamma1 overexpressing cells. These results suggest that PLC-gamma1 may associate with the protective function against the UVC-induced cell death progression via the inhibition of accumulation of c-fos mRNA and the inhibition of JNK kinase activity.  相似文献   

20.
目的:研究氟苯达唑对人急性髓系白血病HL-60细胞增殖的抑制作用,明确氟苯达唑对HL-60细胞周期,凋亡发生的作用机制。方法:噻唑蓝法(MTT)检测氟苯达唑对人急性髓系白血病HL-60细胞的生长抑制作用,流式细胞术检测氟苯达唑对HL-60细胞周期,DNA片段化的影响,免疫印迹法检测Caspase, Raf, Bcl-2家族蛋白表达。结果:氟苯达唑抑制人急性髓系白血病HL-60细胞生长,HL-60细胞G2/M期增加,与阴性对照组相比,在一定的剂量和时间内,差别具有显著统计学意义;DNA片段化上升,0.25,0.5,1μM组与对照组相比差别具有显著统计学意义,促使Cleaved PARP,Cleaved-caspase 3,Cleaved-caspase 9蛋白表达量趋势增加;Bag-1和Bcl-2蛋白表达量降低;b-raf,c-raf磷酸化蛋白表达水平逐渐降低。结论:氟苯达唑通过诱导HL-60细胞阻滞于G2/M期,增加DNA片段化水平,激活Caspase, Raf, Bcl-2家族介导的凋亡相关通路抑制人急性髓系白血病HL-60细胞增殖,诱导人急性髓系白血病HL-60细胞发生凋亡而发挥抗肿瘤作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号