首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nine unmodified endotoxin preparations constituted of Re-, Rd-, and Rc-type lipopolysaccharides (2 to 5 glycoses), representing four species of enterobacteria were analyzed by 252Cf plasma desorption mass spectrometry. The constituent lipopolysaccharides were characterized by the ion pair: (M-H)- and its corresponding lipid fragment ion. The lipid fragment ion is produced by cleavage of the glycosidic bond of the 3-deoxy-D-manno-oct-2-ulosonic acid unit that substitutes O-6' of the glucosamin beta 1'-6glucosamine ("lipid A backbone") disaccharide of the lipid A moiety. These lipid fragment ions were identical to the (M-H)- ions seen in the spectra of homologous isolated lipid A preparations that were obtained by hydrolysis (pH 4.5, 100 degrees C) promoted by sodium dodecyl sulfate. Since the molecular components present in the endotoxin preparations analyzed are known, the ion pair (M-H)(-)-lipid fragment ion defines the molecular compositions of each individual lipopolysaccharide. Heterogeneity of the R-type endotoxin preparations analyzed was due almost exclusively to differing lipid A moieties. In three Salmonella minnesota 595 Re endotoxin preparations 10 different lipopolysaccharides were identified, only two of which were common to all three preparations. Of the nine lipopolysaccharides identified in two S. minnesota R7 endotoxin preparations, only two were present in both.  相似文献   

2.
New antibacterial peptide derived from bovine hemoglobin   总被引:9,自引:0,他引:9  
Peptic digestion of bovine hemoglobin at low degree of hydrolysis yields an intermediate peptide fraction exhibiting antibacterial activity against Micrococcus luteus A270, Listeria innocua, Escherichia coli and Salmonella enteritidis after separation by reversed-phase HPLC. From this fraction a pure peptide was isolated and analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). This peptide correspond to the 107-136 fragment of the alpha chain of bovine hemoglobin. The minimum inhibitory concentrations (MIC) towards the four strains and its hemolytic activity towards bovine erythrocytes were determined. A MIC of 38 microM was reported against L. innocua and 76 microM for other various bacterial species. This peptide had no hemolytic activity up to 380 microM concentration.  相似文献   

3.
Chloroform-soluble purified lipid A preparations from 10 sources, including five Escherichia coli strains (EH100, K-12, O127, O111, RCDC), two Salmonella strains (Salmonella typhimurium, Salmonella minnesota R595), Shigella sonnei II, and a hybrid of Shigella flexneri and E. coli K-12, were compared with lipid A from S. flexneri. Purified lipid A from S. flexneri was earlier found to be composed of eight fractions. The various lipid A preparations were assayed by thin-layer chromatography. Chromatograms were stained for phosphate or carbohydrate by molybdenum blue or orcinol, respectively. The number of major bands found for each lipid A preparation varied between 7 and 10, depending on the source. Comparable bands, based on Rf, were found among all of the different lipid A preparations, but the quantity of each band varied between the sources of lipid A. Four bands (designated 2, 3, 7, and 8) were abundant in every preparation. Variations of conditions used for preparing lipid A, such as changing of hydrolysis time, did not affect the appearance of lipid A on thin-layer chromatography. Change in the type of acid used for hydrolysis also did not affect the band pattern, but it did change the quantitative amounts of the various bands to some degree.  相似文献   

4.
Heterogeneity in the lipooligosaccharides (LOS) of pathogenic Haemophilus and Neisseria species is evident from the multiplicity of components observed with electrophoretic analyses. Knowledge of the precise structures that make up these diverse LOS molecules is clearly the key to reaching an understanding of pathogenic processes such as phase variation and molecular mimicry. Except for a few cases, little is known about the specific structural features of LOS that underlie phase variation and molecular mimicry, partly because of the inherent difficulties in the structural elucidation of these complex glycolipids. In the lipopolysaccharides (LPS) from Salmonella typhimurium and Escherichia coli, rough, or R-type, mutants have been isolated that have provided insight into the biosynthetic pathways and associated genetics that control LPS expression. Nonetheless, recent work has shown that these R-type LPS are more complex than originally thought, and significant heterogeneity is still observed, primarily in their phosphorylation states. In order to investigate the structures of LPS and LOS in a more rapid fashion, we have determined the precise molecular weights of LOS (and LPS) preparations from various Haemophilus, Neisseria, and Salmonella species by electrospray ionization-mass spectrometry. The LOS (or LPS) were first O-deacylated under mild hydrazine conditions to remove O-linked esters primarily from the lipid A portion. Under negative-ion conditions, the O-deacylated LOS yield abundant multiply deprotonated molecular ions, (M-nH)n-, where n refers to the number of protons removed and therefore determines the absolute charge state, n = z. Mass spectra from different LOS and LPS preparations have provided detailed information concerning the structural basis for LOS (and LPS) heterogeneity and corresponding saccharide compositions. The identification of sialic acid in the LOS of Haemophilus and Neisseria species and the variable phosphorylation of the core of S. typhimurium LPS have afforded insights into the biosynthetic pathways used by these organisms. Information of this type is important for understanding the underlying genetic and environmental factors controlling LOS and LPS expression.  相似文献   

5.
Polymyxin-resistant mutants of Escherichia coli and Salmonella typhimurium accumulate a novel minor lipid that can donate 4-amino-4-deoxy-l-arabinose units (l-Ara4N) to lipid A. We now report the purification of this lipid from a pss(-) pmrA(C) mutant of E. coli and assign its structure as undecaprenyl phosphate-alpha-l-Ara4N. Approximately 0.2 mg of homogeneous material was isolated from an 8-liter culture by solvent extraction, followed by chromatography on DEAE-cellulose, C18 reverse phase resin, and silicic acid. Matrix-assisted laser desorption ionization/time of flight mass spectrometry in the negative mode yielded a single species [M - H](-) at m/z 977.5, consistent with undecaprenyl phosphate-alpha-l-Ara4N (M(r) = 978.41). (31)P NMR spectroscopy showed a single phosphorus atom at -0.44 ppm characteristic of a phosphodiester linkage. Selective inverse decoupling difference spectroscopy demonstrated that the undecaprenyl phosphate group is attached to the anomeric carbon of the l-Ara4N unit. One- and two-dimensional (1)H NMR studies confirmed the presence of a polyisoprene chain and a sugar moiety with chemical shifts and coupling constants expected for an equatorially substituted arabinopyranoside. Heteronuclear multiple-quantum coherence spectroscopy analysis demonstrated that a nitrogen atom is attached to C-4 of the sugar residue. The purified donor supports in vitro conversion of lipid IV(A) to lipid II(A), which is substituted with a single l-Ara4N moiety. The identification of undecaprenyl phosphate-alpha-l-Ara4N implies that l-Ara4N transfer to lipid A occurs in the periplasm of polymyxin-resistant strains, and establishes a new enzymatic pathway by which Gram-negative bacteria acquire antibiotic resistance.  相似文献   

6.
Advances in mass spectrometry (MS) have made comprehensive lipidomics analysis of complex tissues relatively commonplace. These compositional analyses, although able to resolve hundreds of molecular species of lipids in single extracts, lose the original cellular context from which these lipids are derived. Recently, high-resolution MS of individual lipid droplets from seed tissues indicated organelle-to-organelle variation in lipid composition, suggesting that heterogeneity of lipid distributions at the cellular level may be prevalent. Here, we employed matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSI) approaches to visualize lipid species directly in seed tissues of upland cotton (Gossypium hirsutum). MS imaging of cryosections of mature cotton embryos revealed a distinct, heterogeneous distribution of molecular species of triacylglycerols and phosphatidylcholines, the major storage and membrane lipid classes in cotton embryos. Other lipids were imaged, including phosphatidylethanolamines, phosphatidic acids, sterols, and gossypol, indicating the broad range of metabolites and applications for this chemical visualization approach. We conclude that comprehensive lipidomics images generated by MALDI-MSI report accurate, relative amounts of lipid species in plant tissues and reveal previously unseen differences in spatial distributions providing for a new level of understanding in cellular biochemistry.  相似文献   

7.
The structure of the O-antigen polysaccharide from Escherichia coli O164 has been determined. Nuclear magnetic resonance spectroscopy together with component and methylation analyses of lipid free polysaccharide were the principal methods used. The sequence of the sugar residues could be determined by NOESY and heteronuclear multiple bond connectivity NMR experiments. It is concluded that the polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [structure: see text]. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was performed on intact lipopolysaccharide and from the resulting molecular mass, the O-antigen part was estimated to contain approximately 24 repeating units. The nature of the previously reported cross-reactivity of this O-antigen to those of Escherichia coli O124 and Shigella dysenteriae type 3 is discussed.  相似文献   

8.
Mass spectrometry has made significant advances in the analysis of lipid substances, both simple and complex present in extracts of eukaryotic and prokaryotic cells. The development of the ionization techniques of electrospray ionization and matrix-assisted laser desorption ionization (MALDI) have both been applied to the analysis of lipids. The example of the types of structural information that can be obtained from MALDI-TOF tandem mass spectrometry is exemplified by the analysis of Kdo2-lipid A, a complex lipopolysaccharide known to activate toll-like 4 receptors on mammalian cells. Analysis of Kdo2-lipid A obtained from an Escherichia coli WBB06 was found to generate an abundant [M-H]- ion at m/z 2236.4 and a more abundant carbon-13 isotope at m/z 2237.4. Furthermore, collisional activation of the lipid A portion of the molecule at m/z 1796.3 resulted in a series of ions corresponding to the loss of all four fatty acyl groups as neutral carboxylic acids. An altogether different challenge of mass spectrometry applied to the area of lipid analysis is that of quantitative analysis. Two rather different requirements have emerged. One with high precision and accuracy for the measurement of relatively few lipid species that are produced at very low concentrations and typically interact with specific receptor proteins. A rather different challenge is that for the analysis of abundant lipid classes, which are composed of multiple molecular species that can approach several hundred under certain circumstances.  相似文献   

9.
N-tert-butyloxycarbonyl (t-Boc) protected 6-aminocaproic (Cap) anhydride was reacted with unprotected hexaacyl-4'-O-monophosphoryl lipid A (MLA) obtained from the lipopolysaccharide of Escherichia coli J5 to yield t-Boc-Cap-MLA. After a column purification step, the t-Boc group was removed by incubating the sample at low temperature in the presence of acid to yield Cap-MLA. This product was analyzed by californium plasma desorption mass spectrometry (PDMS). Purified t-Boc-Cap-MLA was further fractionated by reverse-phase high-performance liquid chromatography as its methyl ester and characterized by laser desorption mass spectrometry, PDMS, and proton nuclear magnetic resonance spectroscopy. These analyses revealed that the Cap group was selectively introduced into the 6'-position of MLA. To demonstrate that Cap-MLA can be conjugated to other compounds, it was reacted with biotin-Cap N-hydroxysuccinimide ester to yield biotin-(Cap)2-MLA. Analysis of this product by PDMS confirmed its expected molecular weight of 2171 and showed the presence of fragments containing the biotin and Cap groups. Monoclonal antibodies and streptavidin were used to show the presence of both lipid A and biotin in this conjugated product. These two novel lipid A derivatives were then tested for their bioactivities. Although both Cap-MLA and biotin-(Cap)2-MLA showed mitogenic activity using murine splenocytes, they were about 4-8 times less active than MLA at 20 micrograms/mL or less and only one-half as active at 100 micrograms/mL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
By using qualitative and quantitative high-performance thin layer chromatography (hpTLC) we found lipids associated with purified Alzheimer's (AD) paired helical filaments (PHF) in an amount of 1.4+/-0.2% of the total anhydrous mass. Compared to normal brain tissue these lipids have an unusual lipid class composition. The most prominent lipid classes were phosphatidylcholine (PC), cholesterol (CH), galactocerebrosides (GC) and sphingomyelin (SM). In addition, the use of micro high-performance liquid chromatography (HPLC) in combination with matrix-assisted laser desorption and ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) allowed the determination of the molecular species of the polar membrane lipid classes present in PHF. The lipid pattern of intracellular PHF shows many characteristics of the conserved lipid pattern previously described for extracellular amyloid fibrils, suggesting similarities in their pathway of formation.  相似文献   

11.
Porphyromonas gingivalis lipid A is heterogeneous with regard to the number, type, and placement of fatty acids. Analysis of lipid A by matrix-assisted laser desorption ionization-time of flight mass spectrometry reveals clusters of peaks differing by 14 mass units indicative of an altered distribution of the fatty acids generating different lipid A structures. To examine whether the transfer of hydroxy fatty acids with different chain lengths could account for the clustering of lipid A structures, P. gingivalis lpxA (lpxA(Pg)) and lpxD(Pg) were cloned and expressed in Escherichia coli strains in which the homologous gene was mutated. Lipid A from strains expressing either of the P. gingivalis transferases was found to contain 16-carbon hydroxy fatty acids in addition to the normal E. coli 14-carbon hydroxy fatty acids, demonstrating that these acyltransferases display a relaxed acyl chain length specificity. Both LpxA and LpxD, from either E. coli or P. gingivalis, were also able to incorporate odd-chain fatty acids into lipid A when grown in the presence of 1% propionic acid. This indicates that E. coli lipid A acyltransferases do not have an absolute specificity for 14-carbon hydroxy fatty acids but can transfer fatty acids differing by one carbon unit if the fatty acid substrates are available. We conclude that the relaxed specificity of the P. gingivalis lipid A acyltransferases and the substrate availability account for the lipid A structural clusters that differ by 14 mass units observed in P. gingivalis lipopolysaccharide preparations.  相似文献   

12.
Abstract Lipopolysaccharides from six nitrogen-fixing strains of Acetobacter diazotrophicus (PR2, PAL3, PAL5, PR4, PR14, PR20), isolated from sugarcane, were purified by phenol-water extraction and ultracentrifugation. The relatively large molecular mass observed by SDS-PAGE indicated that the lipopolysaccharides of each strain possessed an O-side chain. Analysis of each lipopolysaccharide by colorimetric assays and by gas liquid chromatography/mass spectrometry combination showed that the core and lipid A composition was similar for all strains, containing 3-deoxy-d-manno-2-octulosonic acid, glucosamine and fatty acid (16-0, 3-OH-14, 2-OH-16:0, 3-OH-16:0). The neutral sugar composition showed the predominance of 6-deoxy-hexose (rhamnose and fucose) and ribose, in comparison with hexose (glucose, galactose, mannose). The presence of 6-deoxy-hexose and ribose containing O-side chains is discussed as a way of discriminating A. diazotrophicus from other Acetobacter species.  相似文献   

13.
A new heterocyclic amine mutagen was isolated from a dry-heated reaction of the natural meat components creatine, glutamic acid and glucose. Heating creatine and glutamic acid alone had only one seventh of the Ames/Salmonella mutagenic activity of the glucose, creatine and glutamic acid mixture. The major mutagenic compound was purified by HPLC using the Ames/Salmonella test to guide the purification. The mutagen has a molecular weight of 244 and a composition of C12H12N4O2 as determined by high-resolution mass spectrometry. NMR and IR spectral data suggest the structure is a 2,6-diamino-3,4-dimethyl-7-oxo-pyrano[4,3-g]benzimidazole. Mutagenic activity in strains TA1538, TA98 and TA100, was approximately 7000, 5200, and 550 revertants per microgram, respectively. The formation of this mutagen from natural meat components suggests that it may be present in cooked food. The preferential formation of this mutagen with glucose shows that glucose can be important in dry-heated mutagen-forming reactions.  相似文献   

14.
Strains representing the species Campylobacter coli, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enterica, and Staphylococcus aureus were randomly selected to assess the consistency of cells preserved on lenticule discs to those archived in traditional freeze-dried ampoules. Each matched pair was cultured using identical conditions and analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) to profile the surface-associated molecules of the cells. In addition, the cytosolic/membrane-bound proteins of C. coli and S. aureus strains were further analysed by surface-enhanced laser desorption/ionization time-of-flight MS. The mass spectral profiles in all cases showed a high degree of concordance between cells preserved by both methods and suggest that the properties of cells preserved on lenticule disc are consistent with those archived by the traditional method of freeze-drying.  相似文献   

15.
Chemical analyses of the carbohydrate composition of lipopolysaccharides (LPS) from a number of LPS mutants were used to propose a schematic composition for the LPS from Escherichia coli K-12. The formula contains four regions: the first consists of lipid A, ketodeoxyoctonoic acid, and a phosphorous component; the second contains only heptose; the third only glucose; and the fourth additional glucose, galactose, and rhamnose. LPS from E. coli B may have a similar composition but lacks the galactose and rhamnose units. A set of LPS-specific bacteriophages were used for comparing three mutants of Salmonella with a number of LPS mutants of E. coli K-12. The results confirm that there are basic similarities in the first and second regions of the LPS structure; they also support the four region divisions of the LPS formula. Paper chromatography was used for characterization of 32-P-labeled LPS from different strains of E. coli and Salmonella. The Rf values for LPS varied from 0.27 to 0.75 depending on the amounts of carbohydrates in the molecule. LPS from all strains studied was homogenous except for strain D31 which produced two types of LPS. Mild acid hydrolysis of labeled LPS liberated lipid A and two other components with phosphate, one of which was assigned to the first region. It is suggested that paper chromatography can be used in biosynthetic studies concerning regions 2 to 4.  相似文献   

16.
17.
Salmonella antibiotic-resistant strains, isolated from patients with hospital infections and from various environmental objects, showed lower virulence than antibiotic-sensitive strains in experiments on mice infected by intraperitoneal and enteral routes. Salmonella strains, sensitive to antimicrobial preparations, contained 1-2 plasmids, while those with multiple drug resistance contained 3-10 plasmids varying in their molecular weight. All these strains, with the exception of one laboratory strain, carried a plasmid with a molecular weight of about 60 Md. A decrease in the virulence of Salmonella strains, carrying R-plasmid, with respect to mice, their natural host, in experimental infection by the above-mentioned routes was probably unrelated to the loss of this plasmid. 80% of Salmonella strains with multiple resistance to antibiotics yielded positive results in the keratoconjunctival and conjunctival tests as compared with 42% of sensitive strains. These data suggest that Salmonella strains, carrying R-plasmid, retained pronounced capacity for local colonization.  相似文献   

18.
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry has been used to obtain accurate molecular weight information for the integral membrane proteins bacteriorhodopsin and bovine rhodopsin desorbed from solubilized membrane preparations. Mass differences in the molecular weights measured for bleached and unbleached bacteriorhodopsin and rhodopsin indicate the removal of the retinal chromophores upon bleaching. The MALDI technique was also successful for determination of the major cleavage products obtained upon treatment of membrane bound rhodopsin with endoproteinase Asp-N and thermolysin. Our results indicate that the MALDI method is a useful means of obtaining accurate molecular weight information on hydrophobic proteins isolated in their native membranes.  相似文献   

19.
Lipidomics: practical aspects and applications   总被引:3,自引:0,他引:3  
Lipidomics is the characterization of the molecular species of lipids in biological samples. The polar lipids that comprise the bilayer matrix of the constituent cell membranes of living tissues are highly complex and number many hundreds of distinct lipid species. These differ in the nature of the polar group representing the different classes of lipid. Each class consists of a range of molecular species depending on the length, position of attachment and number of unsaturated double bonds in the associated fatty acids. The origin of this complexity is described and the biochemical processes responsible for homeostasis of the lipid composition of each morphologically-distinct membrane is considered. The practical steps that have been developed for the isolation of membranes and the lipids there from, their storage, separation, detection and identification by liquid chromatography coupled to mass spectrometry are described. Application of lipidomic analyses and examples where clinical screening for lipidoses in collaboration with mass spectrometry facilities are considered from the user point of view.  相似文献   

20.
Sialic acid-containing lipopolysaccharides (LPS) were isolated from six bacterial strains of the family Enterobacteriaceae. Sialic acid was released from permethylated LPS by methanolysis, and partially O-methylated N-acetyl-N-methyl-neuraminic acid methyl ester methyl glycosides were analyzed by gas-liquid chromatography-electron ionization mass spectrometry. It was proved that all LPS contain N-acetylneuraminic acid (NeuAc). The occurrence of 7-substituted NeuAc in Escherichia coli serotypes O24 and O56 and in Citrobacter freundii O37 LPS was documented. The LPS preparations also contained terminal NeuAc. LPS of E. coli O104 had exclusively 4-substituted sialic acid. The remaining LPS studied, namely, from Salmonella toucra O48 and Hafnia alvei 2, had 4-linked and terminally localized NeuAc residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号